荷载与结构设计方法第4章 风荷载
- 格式:pptx
- 大小:10.07 MB
- 文档页数:68
工程结构中的风荷载分析与设计在工程结构设计中,风荷载是一个重要的考虑因素。
它对建筑物、桥梁、塔吊等结构物的稳定性和安全性有着重要影响。
风荷载分析与设计是工程师必须要掌握的一项技术。
首先,风荷载的分析是建立在风力的基础上的。
风力是空气流动引起的力量,它与气压差、空气密度、流体力学等因素密切相关。
在风荷载分析中,工程师需要考虑到风力的大小、方向和变化规律。
这对于结构的设计和材料的选择都有着重要的影响。
其次,风荷载的分析需要考虑到结构的形状和几何特征。
不同形状的结构在风力作用下会产生不同的应力和变形。
例如,高层建筑在风力作用下容易出现摆振现象,而桥梁则需要考虑到横风对桥面的冲击力。
因此,在风荷载分析中,工程师需要根据结构的形状和几何特征来确定合适的风荷载模型。
此外,风荷载的分析还需要考虑到结构的材料特性和强度。
不同材料的抗风性能各不相同,因此在设计过程中需要选择合适的材料。
同时,工程师还需要根据结构的强度和刚度来确定合理的安全系数。
这样可以保证结构在风力作用下不会发生过度变形和破坏。
在风荷载分析的过程中,工程师可以采用多种方法和工具来辅助计算和模拟。
例如,可以利用计算机软件进行数值模拟和风荷载计算。
同时,还可以通过实验室测试和风洞试验来验证分析结果的准确性。
这些方法和工具的应用可以提高风荷载分析的精度和可靠性。
最后,风荷载分析与设计不仅仅是为了满足建筑物的安全要求,还可以为结构的优化设计提供参考。
通过合理的风荷载分析,可以发现结构的薄弱环节和设计缺陷,并采取相应的措施进行改进。
这样可以提高结构的抗风能力,延长其使用寿命。
综上所述,风荷载分析与设计是工程结构设计中的重要环节。
它需要考虑到风力的大小、方向和变化规律,结构的形状和几何特征,材料的特性和强度等因素。
通过合理的分析和设计,可以保证结构在风力作用下的稳定性和安全性,同时还可以为结构的优化设计提供参考。
因此,工程师在进行结构设计时必须要掌握风荷载分析与设计的技术。
第四章风荷载主要内容:¾4.1 风的有关知识¾4.2 风压¾4.3 结构抗风计算的几个重要概念¾4.4 顺风向结构风效应¾4.5 横向结构风效应4.1 风的有关知识1 . 风的形成由于存在压力差或气压梯度,空气从气压高的地方向气压底的地方流动而形成风。
2 . 两类性质的大风1.台风弱的热带气旋→引入暖湿空气→在涡旋内部产生上升和对流运动→加强涡旋→‥‥‥→台风2.季风冬季:大陆冷,海洋暖,风:大陆→海洋夏季:大陆热,海洋凉,风:海洋→大陆3. 我国的风气候总况我国的风气候总体情况如下:(1)台湾、海南和南海诸岛,由于地处海洋,年年受台风直接影响,是我国的最大风区。
(2)东南沿海地区由于受台风影响,是我国大陆上的大风区。
风速梯度由沿海指向内陆。
台风登陆后,由于受地面摩擦的影响,风速能弱很快,在离海岸100km处,风速约减小一半。
(3)东北、华北和西北地区是我国的次大风区,风速梯度由北向南,与寒潮入侵路线一致。
华北地区夏季受季风影响,风速有可能超过寒潮风。
黑龙江西北部处于我国纬度最北地区,它不在蒙古高压的正前方,因此那里的风速不大。
(4)青藏高原地势高,平均海拔4-5km,也属较大风区。
(5)长江中下游、黄河中下游是小风区,一般台风到此已大为减弱,寒潮风到此也是强弩之末。
(6)云贵高原处于东亚大气环流的死角,空气经常处于静止状态,加之地形闭塞,形成我国最小风区。
4. 风级为了区分风的大小,根据风对地面(或海面)物体影响程度,常将风划分为13个等级。
风速越大,风级越大,由于早期人们还没有仪器来测定风速,就按照风所引起的现象来划分风级。
风的13个等级如表4-1所示。
b w m w(5)基本风速的重现期设基本风速的重现期为T0年,则1/T为每年实际风速超过基本风速的概率,每年不超过基本风速的概率为:基本风压:当地比较空旷平坦地面上,离地10m高处统计所得50年一遇10分钟时距内的最大风速。
建筑结构设计中的风力与风荷载分析风力与风荷载分析在建筑结构设计中扮演着至关重要的角色。
本文将探讨风力对建筑物的影响,并详细介绍风荷载的计算方法和应对措施。
一、风力对建筑结构的影响风力是由大气运动引起的空气流动力量,当风吹向建筑物时,其产生的压力和力矩会对结构造成影响。
对于高层建筑和长跨度结构来说,风力作用更为明显。
风对建筑物的影响主要表现为静风压和动风荷载。
静风压描述了风对建筑物表面的压力分布情况,而动风荷载则是风对建筑物结构的力矩和力的作用。
二、风荷载的计算方法风荷载的计算需要考虑多个因素,包括建筑物的高度、形状、曝风面积和当地的气象条件等。
以下是常用的计算方法:1. 基本风速的确定:根据当地的气象数据和规范要求确定基本风速。
2. 载荷压力的计算:根据建筑物的形状和曝风面积,采用规范提供的公式计算不同部位的载荷压力。
3. 动力风荷载的计算:通过求解结构的振型和阻尼参数,采用相关公式计算建筑结构的动力风荷载。
4. 风作用效应的考虑:考虑到风对结构的作用效应,例如风致振动、风致振荡等,进行相应的分析和计算。
三、应对风荷载的措施为了保证建筑结构的安全性和稳定性,需要采取一系列的措施来减轻风荷载的影响。
1. 结构设计的优化:通过合理的结构形式和布局,减小风荷载的作用。
2. 风洞试验与数值模拟:通过风洞试验和数值模拟技术,研究风场分布及结构响应,优化结构设计。
3. 风挡设施的设置:在建筑物周围设置风挡设施,减小风力对结构的作用。
4. 结构加强与防护:对于特殊的地质条件和建筑要求,采用增强结构或者加装防护设施的方式应对风荷载。
结语风力和风荷载在建筑结构设计中具有重要的地位,对建筑物的安全性和稳定性起着至关重要的作用。
通过合理的风荷载分析和有效的措施应对,可以确保建筑物在恶劣气候条件下的稳定运行。
高层建筑风荷载计算与结构设计随着城市化进程的加快和城市人口的增长,高层建筑在现代城市中扮演着越来越重要的角色。
而高层建筑在设计与施工过程中,风荷载的计算和结构设计是至关重要的环节。
本文将探讨高层建筑风荷载计算与结构设计的相关内容。
一、风荷载计算1. 风荷载的定义和分类风荷载是指风对建筑物表面的静压力和动压力所产生的作用力。
根据风的性质和特点,风荷载可分为静风荷载、动风荷载和波浪风荷载等多种类型。
2. 风荷载计算方法风荷载计算是高层建筑结构设计的重要内容之一。
常用的计算方法包括静态风荷载计算方法、动态风荷载计算方法和实验风洞模拟等。
3. 风荷载标准为了保证高层建筑的结构安全性,各国都颁布了相应的风荷载标准,如中国《建筑抗震设计规范》、美国《ASCE7-10》等。
二、结构设计1. 结构材料选择高层建筑的结构设计应选择适宜的结构材料,如混凝土、钢结构、钢混凝土结构等,以满足建筑的承载能力要求。
2. 结构形式设计高层建筑的结构形式设计应考虑建筑本身的使用功能和外部环境,合理选择适应的结构形式,如框架结构、剪力墙结构、框筒结构等。
3. 结构稳定性设计高层建筑结构的稳定性设计是保证建筑整体稳定性和安全性的关键,需要考虑风荷载、地震作用等外部因素对结构的影响。
结语高层建筑风荷载计算与结构设计是高层建筑设计中的重要内容,直接影响到建筑物的安全性和稳定性。
设计者在进行设计时应充分考虑风荷载的计算方法和结构设计原则,确保建筑物能够承受外部环境的作用力,达到设计要求。
通过本文的介绍,希望读者对高层建筑风荷载计算与结构设计有了进一步的了解,为高层建筑的设计与建设提供一定的参考和指导。
结构设计知识:风荷载在结构设计中的应用随着建筑物不断增加的高度和流线型设计的尝试,风荷载已成为结构设计中非常重要的考虑对象之一。
风荷载是指建筑物、桥梁或其他结构体受到的风压力和风力的力量,是一种非常重要的外部荷载。
因此,在结构设计中,必须根据实际情况综合考虑风荷载的影响,进行合理的结构设计,以保证结构的安全性和稳定性。
1.风荷载的形成原因风荷载是由气体环境中流动的空气造成的。
它的大小与气流速度和空间布局等因素有关。
风荷载的影响主要来自以下几个方面:(1)风速风速是决定风荷载大小的关键因素。
随着风速的增加,风荷载也相应增大。
(2)风的气动特性建筑物的形状和固体本身的材料有很大的影响。
例如,如果风部分绕过了建筑物,在高层建筑的顶部和角部会形成强大的负压力,风荷载也相应较大。
(3)地面的地貌和建筑物周围的环境地面地形和建筑物周围的环境都会对风荷载造成影响。
例如,建筑物周围有其他高层建筑,会影响风的流向和速度。
2.风荷载的计算方法在结构设计中,风荷载的计算方法通常使用国家和国际标准的规定和方法。
例如,我国现行的规范:《建筑结构荷载规范》第二部分给出了关于建筑物风荷载的计算方法和标准。
(1)静力分析法利用静力分析法计算建筑物(或其他结构体)受到风荷载的作用力,主要是计算结构体的振动和位移,从而确定结构的稳定性。
这种方法比较适合于大型建筑和桥梁的设计。
(2)风洞实验法风洞实验方法通常适用于建筑物的设计,特别是高层建筑的设计。
风洞实验可以通过物理实验来模拟风的流动,从而更准确地估计结构体所受的风荷载。
(3)数值模拟法数值模拟法是一种比较新颖的计算方法,使用计算机模拟建筑物在风荷载下的响应,可以预测建筑物在不同风荷载下的响应和损伤,进而为结构设计工作提供更为准确的依据。
3.风荷载对结构设计的影响风荷载是结构设计中必须考虑的重要因素之一,影响结构的安全性、稳定性和经济性。
建筑物在风荷载下,会导致建筑物发生倾覆、倾斜、震动和损坏等问题。
浅谈结构设计——风荷载计算城市建筑越做越高,尤其是一线城市.在过去的一年,我们所接触的住宅、公寓、办公楼,几乎没有低于150m的.粗略来讲,结构高度提高,周期变长,地震力减小(想想地震反应谱);但是,结构迎风面增加,风载加大,如果结构高宽比较大的话,结构横风向风振效应显著增大.此消彼长,超高层建筑基本以风控为主.基于本人的感受,我们工程师普遍对风载的认识要浅于对地震的认识,这当然不是一件好事.这篇文章就以工程师的角度,结合自身实践,谈谈本人对“风荷载”的一些浅薄认识.横风向风振效应《荷规》规定,“建筑高度超过150m或高宽比大于5的高层建筑、高度超过30m且高宽比大于4的细长圆形构筑物,应考虑横风向风振的影响”.但规范对横风向风振的计算,往往偏大.我们曾对比过几栋超高层塔楼,塔楼高宽比基本在7.0及以上,核心筒高宽比在20.0及以上,主要结论是:1)在顺风向,风洞实验结果与规范差别不大;2)在横风向,风洞实验结果比规范小15%~20%(以最大层间位移角指标为准).到目前为止,不少专家普遍认为规范计算的结构横风向效应偏大,但究竟偏大多少,由于项目经验不同,众说纷坛,但基本接受10%~15%的区间值.像Arup、TT这样的国际咨询公司,给出的经验值也处于这个区间.地面粗糙度在做设计时,我们其实很少细究场地粗糙度,一般按经验取一个大家都认可、偏保守的粗糙度类别.但如果大家对粗糙度取值有异议,无法统一,该怎么办呢?规范对粗糙度的判别方法,其实是有说明的.《荷规》8.2.1条条文说明:以上统计方法并不复杂,经过一些合理简化,可以比较容易地确定平均高度.操作的难点是拿到拟建房屋2kM范围内的房屋数据.但如果偏保守计算,也可以仅取1km范围的房屋数据,统计总面积时,仍按2kM计算即可.我们曾算过一个距海边873m的一个项目场地,计算结论是,加权高度为6.7m,粗糙度可以按B类.除了国标,《广东省荷载规范》也提供了粗糙度的计算方法.广东省荷规不是以加权高度来划分粗糙度,而是以平面建筑密度和10层以上高层建筑平面面积占总建筑面积比值这两个指标进行划分.其中,B类粗糙度被描述为“有少量稀疏房屋高度到达10m的区域:平面建筑密度小于15%”.这条没有为建筑密度规定下限,其实是一个很大的BUG.根据字面意思,平面建筑密度无穷小,只要有几栋(甚至1栋)超过10m的建筑,粗糙度就可以划分为B类?这与逻辑不符.同样地,国标对B类的定义也有问题,应该给出一个下限值.风洞实验刚性模型风洞实验根据本人目前的理解,我们现在拿到的很多超高层建筑结构风洞实验报告,基本采用刚性模型来测试.即在刚性模型表面密布气孔,采用一定风速施加在模拟场地,然后测量统计各气孔承担的风压力.刚性模型的测试方法并不和结构的动力特性耦合,所以,结构外形不变,仅是动力特性发生变化,并不需要重复做风洞实验,仅需简单的数值换算即可(某次超限会上,专家提到的,具体原理,有待进一步考证).与刚性模型实验相对,气动弹性模型实验就要复杂得多,但其可以较真实地考虑结构与风的相互作用.相似比在风时程分析时,我们通常采用风洞实验的时程数据.有时需要注意对时程的时间步长进行换算,换算依据即是相似比.对不熟悉此原理的结构工程师,换算过程很容易出错.以下我们提供一个自己的算例,以帮助大家理解整个过程.假定风洞试验的几何缩尺1/400,基本风压为=0.45kN/m2,场地类型为A类时,10m高度处风压高度变化系数=1.283,修正风压为=0.577kN/m2,风速=30.38m/s,顶点位置风速为=45.34m/s.风洞试验中塔楼顶部最高处A类边界层验风速为10.09m/s,即风速缩尺=1/4.5,风压测量采样频率为313Hz,采样时间步长为0.00319s,则时程分析中风时程时间步长为0.283s.敏感系数与重现期《高规》4.2.2条规定,“对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用”.“对风荷载是否敏感,主要与高层建筑的体型、结构体系和自振特性有关,目前尚无实用的划分标准.一般情况下,对于房屋高度大于60m 的高层建筑,承载力设计时风荷载计算可按基本风压的1.1倍采用”.从这条来看,敏感系数是针对高层建筑的,且主要是和房屋高度有关.《高规》的这条规定简洁明了,具有很好的操作性.与此相对,《荷规》就比较含糊.《荷规》提到,“除超高层,自重较轻的钢木主体结构,也应该考虑敏感系数”.如何提高呢?“适当考虑提高风载重现期来确定基本风压”.按提高重现期的方法考虑敏感系数,很容易和《高规》产生出入.比如,深圳地区,如果按100年的重现期考虑基本风压,应为0.90kPa,但如果是考虑1.1的系数,则为1.1X0.75=0.825kPa.我们看到一些报告,写的是房屋高度超过60m,结构对风荷载敏感,按100年的重现期考虑基本风压,但给出的数却是0.825kPa,这就有问题了,起码和规范对不上.再来解释一下这个1.1是怎么来的.张相庭在《结构风工程理论·规范·实践》一书中曾给出不同重现期风压的换算公式,如按此公式,相对50年重现期的基本风压,100年重现期的放大系数确实为1.1.只是规范在编排过程中,有些调整罢了,即如此,应以规范为准.基本风压、风速、风级有些建筑师、业主会问我们结构工程师,我们设计的这个楼,可以抵抗几级风?我们不少的工程师竟然答不出来.其实这个问题比问我们“某某楼可以抵抗几级地震”更容易解释.那为什么答不出来呢?因为不少人只有基本风压的概念,而没有风速的概念.流体力学中的伯努利公式可以描述基本风压与风速之间的关系,标准空气密度ρ=1.25kg/m³,以深圳为例,50年一遇基本风压0.75kPa,对应的=40=34.64m/s,100年一遇基本风压0.90kPa,对应的=37.94m/s.根据国家标准《热带气旋等级》(GBT19201-2006):热带低压(TD):最大风速为10.8~17.1米/秒,底层中心附近最大风力6-7级;热带风暴(TS):最大风速为17.2~24.4米/秒,风力8-9级;强热带风暴(STS):最大风速为24.5~32.6米/秒,风力10-11级;台风(TY):最大风速为32.7~41.4米/秒,风力12-13级;强台风(STY):最大风速为41.5~50.9米/秒,风力14-15级;超强台风(Super TY):最大风速为51.0以上米/秒,风力16级或以上.35m/s(对应0.75kPa)的风速相当于台风级别,风力大概在12~13级.看起来好像还不够大,因为我们经历过的超强台风风速都是在50m/s以上,但别忘了,气象预报给出的最大风速和我们规范中统计的最大风速是不同的.气象站测量的风速,“是以正点前2min至正点内的平均风速作为该正点的风速”.而《荷载规范》是以“离地10m高,10min内的平均风速作为统计风速”.如果按《荷载规范》的方法换算,气象预报的50m/s风速是要小于50m/s的.参考最早的《浦福风力等级表》,空旷平地上标准高度10m处的风速为32.7~36.9m/s,即是最高级别12级,被描述为“海上引起14m 高的巨浪,陆上绝少见,摧毁力极大”.我们可以想象一下,这是什么样的风力.结论是,按规范风荷载反算的风速及风级,事实上比想象中大.我们极少听到按规范设计的主体结构,在台风中被刮倒或摧毁的案例.真正在台风中被破坏的多数为附属结构,比如雨蓬、幕墙、阳台、出屋面构架等.风振系数与阵风系数在结构主体计算时,我们采用风振系数,在计算围护结构时,却采用阵风系数,这两者有何区别呢?可能很多工程师并不一定明白.我们把风对结构的作用分为静力的平均风作用以及动力的脉动风作用.静力风压使建筑物产生一定的侧移,而脉动风压使建筑物在该侧移附近左右振动.对高度较大、刚度较小的高层建筑,脉动风压会产生不可忽略的动力效应,在设计中必须考虑.那该如何考虑呢?即在静力风压的基础上乘一个风振系数,以考虑这个动力效应,因此,风振系数有点类似动力放大系数的概念.对围护结构来说,我们需要考虑的是局部风压作用,围护结构的局部刚度一般相对较大,风振影响一般很小可以忽略.围护结构风压计算,直接采用瞬时风压,所以,阵风系数,其实就是瞬时风较平均风的增大系数,即阵风风速与时距10min的平均风速的比值.在高度越高、越开阔平坦的场地,瞬时风与平均风越接近(仅有一个时距的差异),其阵风系数也越小.这就是规范8.6.1表格变化规律的由来.总的来说,风振系数是把风成份中的脉动风引起的风振效应转换成等效静力荷载所乘的系数.阵风系数是在不考虑风振系数时,考虑到瞬时风比平均风要大所乘的系数.这两者虽然都是针对平均风所采用的增大系数,但概念截然不同.风荷载计算中的其他细部概念,有待大家一起挖掘讨论.以上仅为个人观点,欢迎讨论.。
建筑结构抗风设计与风荷载分析引言:建筑结构的抗风设计与风荷载分析是建筑工程中非常重要的一部分。
随着城市化进程的加快,高层建筑越来越多地出现在我们的生活中。
而高层建筑由于其高度较大、结构较为复杂,对风的抵抗能力要求较高。
因此,建筑结构抗风设计与风荷载分析成为了建筑工程师必须要深入研究的领域。
一、风荷载的定义与作用风荷载是指风对建筑物表面所产生的压力和力矩。
风荷载是建筑物设计时必须考虑的重要因素,它直接影响着建筑物的安全性和稳定性。
风荷载的大小与建筑物的形状、高度、周围环境等因素有关。
二、风荷载的计算方法风荷载的计算方法主要有静风法和动风法两种。
静风法是指根据风速和建筑物的特性,通过计算得到建筑物的风荷载。
动风法是指通过模拟风场的变化,计算建筑物在不同风速下的风荷载。
两种方法各有优劣,根据具体情况选择合适的方法进行计算。
三、建筑结构抗风设计的原则1.合理选择结构形式:不同的结构形式对风荷载的抵抗能力不同,建筑师应根据具体情况选择合适的结构形式,提高建筑物的抗风能力。
2.合理布置结构构件:结构构件的布置对建筑物的抗风能力有着重要的影响,合理布置结构构件可以提高建筑物的抗风能力。
3.合理选择材料:不同材料的抗风能力也有所不同,建筑师应根据具体情况选择合适的材料,提高建筑物的抗风能力。
4.合理设置风阻设施:风阻设施可以有效地减小风荷载对建筑物的影响,建筑师应根据具体情况设置合适的风阻设施。
四、建筑结构抗风设计的实践建筑结构抗风设计的实践需要建筑师具备一定的专业知识和经验。
在实践中,建筑师需要根据风荷载的计算结果,合理设计建筑物的结构形式、结构构件的布置和材料的选择等。
同时,建筑师还需要根据具体情况设置合适的风阻设施,提高建筑物的抗风能力。
五、建筑结构抗风设计的发展趋势随着科技的进步和建筑工程的发展,建筑结构抗风设计也在不断创新和发展。
未来,建筑师将更加注重风荷载的计算精确性和建筑物的抗风能力。
同时,随着新材料的应用和新技术的发展,建筑师将有更多的手段来提高建筑物的抗风能力。
第4章结构构件上的荷载及支座反力计算第4章主要是研究结构构件上所受到的荷载以及支座反力的计算。
结构构件上的荷载通常由外部荷载和内部荷载两部分组成。
外部荷载是指结构构件受到的来自外界的荷载作用,例如自重、活荷载、风荷载、地震作用等。
内部荷载是指结构构件内部的荷载,例如弯矩、剪力、轴力等。
在计算结构构件上的荷载时,通常采用静力学的原理,根据平衡条件和变形条件进行计算。
其中,平衡条件是指结构构件上受力的总和必须为零,即ΣF=0,ΣM=0;变形条件是指结构构件上的变形必须满足一定的条件,例如梁的弯曲变形必须满足梁的曲率方程。
在计算支座反力时,一般可以采用静力平衡的原理进行计算。
静力平衡的原理是指在结构构件的静力平衡状态下,结构构件上的受力总和必须为零。
在计算支座反力时,可以通过荷载和受力的平衡条件,根据结构构件的几何特性和荷载分布进行计算。
支座反力的计算是结构设计中的重要内容,其准确性对于结构的稳定性和安全性至关重要。
支座反力的计算需要考虑结构的几何形状、荷载分布、材料特性等因素,并且需要根据结构的使用要求和安全标准进行计算。
常用的计算方法包括力平衡法、变形平衡法、弹性平衡法等。
支座反力的计算是结构设计中的一项基本工作,它为结构的合理设计和安全使用提供重要依据。
合理的支座反力计算可以保证结构的稳定性和安全性,并且对于结构的经济性和可行性也有一定的影响。
总之,第4章是研究结构构件上的荷载及支座反力计算的重要内容。
荷载计算是结构设计的基础工作,而支座反力的计算对于结构的稳定性和安全性具有重要意义。
只有通过合理的计算方法和准确的计算结果,才能够保证结构的合理设计,从而满足设计要求和安全标准。