3s技术集成
- 格式:ppt
- 大小:5.45 MB
- 文档页数:61
《3S 技术的集成及其应用》讲义一、3S 技术概述3S 技术是指遥感(Remote Sensing,RS)、地理信息系统(Geographic Information System,GIS)和全球定位系统(Global Positioning System,GPS)这三种技术的集成。
这三种技术各具特点,相互补充,为解决众多领域的问题提供了强大的支持。
遥感技术是一种通过非接触方式获取目标物体信息的技术。
它利用传感器接收来自地表物体反射或发射的电磁波信号,并对这些信号进行处理和分析,从而获取地表物体的特征和状态信息。
遥感技术具有大面积同步观测、时效性强、数据综合性和可比性等优点,能够快速提供大面积的地表信息。
地理信息系统是一种用于采集、存储、管理、分析和展示地理空间数据的计算机系统。
它可以将地理空间数据与属性数据相结合,进行空间分析和建模,为决策提供支持。
GIS 具有强大的空间分析能力、数据管理能力和可视化表达能力,能够对复杂的地理现象进行深入分析和研究。
全球定位系统是一种基于卫星的导航定位系统,能够为用户提供高精度的位置、速度和时间信息。
GPS 具有高精度、全天候、全球覆盖等优点,广泛应用于导航、测绘、地质勘探等领域。
二、3S 技术的集成3S 技术的集成不是简单的叠加,而是通过数据融合、系统集成和功能互补等方式,实现更强大的功能和更广泛的应用。
数据融合是 3S 技术集成的基础。
通过将遥感获取的图像数据、GPS 测量的位置数据和 GIS 中的地理空间数据进行融合,可以获得更全面、更准确的地理信息。
例如,将遥感图像与GPS 定位数据相结合,可以实现对遥感图像的精确定位和校正;将遥感数据和GIS 数据融合,可以进行土地利用变化监测、森林资源调查等。
系统集成是将 3S 技术的硬件和软件进行集成,形成一个统一的系统平台。
例如,将遥感传感器、GPS 接收机与 GIS 软件集成在一起,可以实现数据的实时采集、处理和分析,提高工作效率和数据质量。
名词解释:1 多光谱合成图像:multi-spectral posite imagery ,把同一地区多光谱影像,配以红、绿、蓝等多波段图像进行校正、配准、融合形成的图像。
2. 二值图像:binary image ,是指每个像素不是黑就是白,其灰度值没有中间过渡的图像。
3. 非监督分类:是以不同影像地物在特征空间中类别特征的差别为依据的一种无先验(已知)类别标准的图像分类,是以集群为理论基础,通过计算机对图像进行集聚统计分析的方法。
根据待分类样本特征参数的统计特征,建立决策规则来进行分类。
而不需事先知道类别特征。
把各样本的空间分布按其相似性分割或合并成一群集,每一群集代表的地物类别,需经实地调查或与已知类型的地物加以比较才能确定。
是模式识别的一种方法。
4. 辐射校正:radiometric correction ,是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。
5. 几何配准:geometric registration ,将不同时间、不同波段、不同遥感器系统所获得的同一地区的图像(数据),经几何变换使同名像点在位置上和方位上完全叠合的操作。
6. 拓扑关系:topological relation ,指满足拓扑几何学原理的各空间数据间的相互关系。
即用结点、弧段和多边形所表示的实体之间的邻接、关联、包含和连通关系。
7. 导航电文:导航卫星信号一般由3部分组成:载波信号、伪随机噪声码(测距码)和数据码。
其中,数据码是卫星以二进制码流形式发送给用户的导航定位数据,通常称为导航电文。
导航电文(Navigation Message )是由GPS卫星在L1和/或L2信号上,以50bps电文包含播发的1500bit导航电文。
电文包含有系统时间、时钟改正参数、电离层延迟模型参数、卫星星历及卫星健康状况、由C/A码捕获P码的信息等。
这是为了给用户提供时间、位置坐标。
3S技术集成及其在自然资源管理中的应用摘要:3S技术,包括全球卫星定位技术(Global position system,GPS)、遥感技术(Remote sensing,RS)以及地理信息系统技术(Geographic information system,GIS)。
通过技术的集成可以适应于自然资源管理工作的需求,首先,可以在自然资源的调查中进行技术的应用,了解自然资源的详细状况;其次,可以在自然资源的管理规划中进行技术的应用,提升规划的科学性;另外,在自然资源的管理监测中也需要进行技术的应用,了解自然资源状况的变化。
基于此,本文对3S技术集成及其在自然资源管理中的应用展开探讨。
关键词:3S技术集成;自然资源管理;应用策略引言自然资源能够满足人们的生产与生活需求,目前在自然资源的分类研究中根据资源的产生状况分为三类,分别是可持续应用取之不尽的资源,包括太阳能、风能等;可更新资源,包括水资源、土地资源以及生物资源等;不可更新资源,包括各类矿产资源。
自然资源管理的要点是提升资源应用的合理性,同时还要关注资源的保护以及资源的合理增殖。
借助于3S技术进行自然资源的管理,能够获取到更为详细的资源信息,了解自然资源的变化状况,提升管理工作的有效性。
因此,需要对3S技术在自然资源管理中的应用给予重视。
一、3S技术简介及3S技术集成(一)3S技术的简介GPS技术的应用需要通过卫星导航系统,借助于导航系统识别的信息完成精准的地理定位。
目前,该技术的应用范围较广,能够适应于全球不同地区、各个领域的卫星定位应用需求。
在自然资源管理中,可以根据管理的区域范围进行准确的定位,收集相应的位置信息。
RS技术即为遥感技术,在该技术的支持下,可以进行准确的信息监测,通过可见光、微波等技术进行信息的收集,并与影像设备同时发挥作用。
该技术的应用特点在于应用的成本低,能够获取到多种类型的详细信息。
另外,GIS技术的应用极为关键。
该技术的核心为计算机的软件系统,通过对于各类信息的收集、整合以及处理,满足更为多元的信息应用需求。
3S参数及主要特征(P6)�"3S"集成的关键技术集成的关键技术可分为五个方面(1)多源、多时相、多尺度信息的获取技术(2)多源、多时相、多尺度信息的集成技术(3)空间信息的动态管理与综合分析技术(4)"3S"技术集成的数据通信与交换技术(5)"3S"技术集成的虚拟现实与可视化技术RS遥感定义:通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获得其反射、散射和辐射的电磁波信息,进行处理、分析与应用的一门科学和技术主动遥感:传感器主动的发射一定的电磁波能量并接收目标的后向散射信号。
被动遥感:传感器不向目标发射电磁波,仅被动的接收目标物的自身发射和对自然辐射的反射能量。
遥感的特点与应用:大面积同步观测、时效性强、数据的综合性和可比性好、较高的经济效益和社会效益、一定的局限性、大面积实时观测、信息客观真实、20世纪地球科学进步的一个突出标志是人类脱离地球从太空观测地球电磁波普:按电磁波在真空中的传播波长和频率,递增或递减的排列,则构成了电磁波普大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段地球辐射的分段特性:1)0.3-2.5微米波段(主要在可见光与近红外波段),地表以反射太阳辐射为主,地球自身的辐射可以忽略。
2)2.5-6.0微米波段(主要在中红外波段),地表反射太阳辐射和地球自身的热辐射为被动遥感的辐射源。
3)6.0以上的红外热波段,地球自身的辐射为主,地表反射太阳辐射可以忽略不计。
植被的波普特征:1)可见光波段:在0.45微米附近区间兰色波段有一个吸收谷,在0.55微米附近区间绿色波段有一个反射峰,在0.67微米附近区间红色波段有一个吸收谷。
2)近红外波段:从0.76微米处反射率迅速增大,形成一个爬升的陡坡,至1.1微米附近有一个峰值,反射率最大可达50%,形成植被的独有特征。
3)中红外波段:1.5-1.9微米光谱区反射率增大,在1.45微米,1.95微米和2.7微米为中心的附近区间受到绿色植物含水量的影响,反射率降低,形成低谷。
3S技术的集成与应用重点3S技术的集成:由英文Integration一词翻译而来包含有使完整、整合、融合、合而为一等含义,其核心含义是要在不同的部分之间建立一种有机的联系。
目的:多源信息(多时相、多尺度、多类型)在同一坐标系的动态管理、分析与应用。
地理信息系统(GIS , Geographic Information System):以地理空间数据库为基础,在计算机软硬件的支持下,对空间相关数据进行采集、管理、操作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理决策服务而建立起来的计算机技术系统。
简言之,地理信息系统是综合处理和分析空间数据的一种技术系统。
全球定位系统(GPS):Navigation Satellite Timing And Ranging Global Position System 简称GPS,有时也被称作NA VSTAR GPS遥感(Remote Sensing):指遥远的感知,它是从不同高度的遥感平台(Platform)上,使用各种传感器(Remote Sensor),接收来自地球表层各类地物的各种电磁波信息,并对这些信息进行加工处理,从而对不同的地物及其特性进行远距离的探测和识别的综合技术。
集成的模式分为:广度:建立了联系的子系统或要素的多少,包括三种两要素集成方式(GIS+RS / GIS+GPS / RS+GPS)和一种三要素集成方式(GIS+GPS+RS)。
深度:联系的紧密程度,包括三个层次,即数据层次的集成、平台层次的集成和功能层次的集成。
数据层次的集成,是通过数据的传递来建立子系统之间的联系,此时平台处于分离状态,数据传递要通过网络或人工干预完成,故效率较低。
平台层次的集成是在一个统一的平台中分模块实现两个以上子系统的功能,各模块共用同一用户界面和同一数据库,但彼此保持相对的独立性。
功能层次的集成是一种面向任务的集成方式,此种集成方式同样要求平台统一,数据库统一,界面统一,不同的是,它不再保持子系统之间的相对独立性,而是面向应用设计菜单、划分模块,往往在同一模块中包括了属于不同子系统的功能实现。