低合金高强钢的焊接技术
- 格式:ppt
- 大小:201.50 KB
- 文档页数:8
低合金高强度钢及其焊接技术概述-工程低合金高强度钢概述低合金高强度钢的分类低合金高强度结构钢包括一般低合金结构钢和其它一些优质低碳低合金高强度钢,其强度高于含碳量相当的碳素钢,但塑性、韧性和焊接性良好,。
适用于较重要的钢结构,如压力容器、发电站设备、管道、工程机械、海洋结构、桥梁、船舶、建筑结构等。
低合金高强度结构钢是在低碳结构钢的基础上添加一定量的合金元素(如Mn、Si、Cr、Mo、Ni、Cu、Nb、Ti、V、Zr、B、P和N 等,但总量不超过5%,一般在3%以下),以强化铁素体基体,控制晶粒长大,提高强度和塑性、韧性。
一般在热轧后条件下供货以满足用户对冲击韧度的特殊要求。
如要求更高强度(σs=490-980MPa),也可以在调质状态下供货。
低合金高强度结构钢按屈服点(σs)分级。
国外对低合金高强度结构钢已制定标准,规定了C、S和P的上限而且对碳当量的上限,最高硬度及V型夏比值的下限均有严格规定,如日本焊接协会(WES)焊接结构用钢板标准。
低合金高强度结构钢根据屈服点和热处理状态可分为两种:1.非热处理强化钢(热轧与正火钢)(1)σs=249-392MPa级的低合金高强度钢。
除15MnTi 为正火状态供货外,均为热轧状态使用。
这类钢是在含C≤0.20%的基础上加入少量的固溶强化元素来保证钢的强度。
组织为细晶粒的铁素体和珠光体。
Mn是一种固溶强化效果最显著又比较便宜的元素,除增加强度外,还改善塑性、韧性,加入量不超过1.8%。
Si的固溶强化效果也好、但含量高于0.6%,对冲击韧度不利。
我国广泛使用的焊接性良好的16Mn、德国的St52以及日本的SM50均属此类钢。
用它代替普通低碳钢,可节约20%-30%钢材。
还可在16Mn钢中加入少量V (0.03%-0.2%),Nb(0.01%-0.05%),利用V、Nb的碳化物和氮化物的沉淀析出进一步提高钢的强度、细化晶粒,改善塑韧性,如12MnV、14MnNb、15MnV和16MnNb等钢种。
低合金高强钢焊接时的主要工艺措施。
⑴预热预热是防止裂纹的有效措施,并且还有助于改善接头性能。
但预热会恶化劳动条件,使生产工艺复杂化,过高的预热温度还会降低接头韧性。
因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。
⑵焊接线能量的选择含碳低的热轧钢(09Mn2、09MnNb钢等)以及含碳量偏下限的16Mn钢焊接时,因为这些钢的冷裂淬硬、脆化等倾向小,所以对焊接线能量没有严格的限制。
焊接含碳量偏高的16Mn钢时,为降低淬硬倾向,焊接线能量应偏大一点。
对于含V、Nb、Ti的钢种,为降低热影响区粗晶脆化所造成的不利影响,应选择较小的焊接线能量。
如15MnVN钢的焊接线能量应控制在40~45kJ/cm以下。
对于碳及合金元素含量较高而屈服点为490MPa的正火钢(如18MnMoNb钢等),因淬硬倾向大,应选择较大的焊接线能量,但当采用焊前预热时,为了避免过热倾向,可以适当地减少线能量。
⑶后热及焊后热处理后热是指焊接结束或焊完一条焊缝后,将焊件立即加热至150~250℃范围内,并保温一段时间,使接头中的氢扩散逸出,防止延迟裂纹产生。
对于厚壁容器、高刚性的焊接结构以及一些在低温、耐蚀条件下工作的构件,焊后应及时进行消除应力的高温回火,其目的是消除焊接残余应力,改善组织。
焊后立即进行高温回火的焊件,无需再进行后热处理。
Gr60低合金高强结构钢焊接施工工法Gr60级低合金高强度结构钢为国内首次在建筑钢结构上使用钢材,符合美国材料标准ASTM903/913M一97 Gr60标准,相当于国内钢材标准中的Q420级钢。
由于Gr60钢为国内首次使用,目前尚无成熟的规范及焊接工艺参数作参照,焊接不确定性因素多,难度较大。
探索总结Gr60级钢的使用,对于推动Q420低合金高强度结构钢在国内建筑钢结构的应用,从节约资源的角度上符合我国的可持续发展国策,对于本企业乃至国内建筑钢结构行业的良性发展,均具有积极的创新意义。
1工法特点1.1Gr60属低合金高强度结构钢,能大幅度提高结构杆件的承载力,减小了杆件截面面积,从而减小自重,增加建筑空间。
1.2 Gr60钢对于需验算疲劳的焊接结构具有一40℃冲击韧性的合格保证,使其应用范围和结构可靠度得以扩大。
1.3 Gr60级钢的焊接性能优于国内工程中正在大量使用的Q345钢。
现场安装施焊操作较易控制。
在常温及低温下,Gr60级钢的预热温度较之同条件下的Q345钢低;并且,在负温下,只需对板厚在lOOmm以上的钢材采取低温度的后热措施。
1.4焊接施工过程须严格按照既定的焊接工艺指导书的工艺参数及焊接规定进行施工,对焊接速度、预热温度、层问温度、后热温度、保护气体的气压与流速等严格控制,方能保证焊接质量。
1.5已经过一15℃条件下冬期施工焊接工艺评定和一7℃下冬期施工实践,寒冷地区冬期也可施工。
1.6本工法是在完成北京新保利大厦工程基础上总结编写的,因此实用性很强。
2适用范围适用于Gr60级低合金高强度结构钢进行CO2气体保护焊的各种焊缝连接形式。
3工艺原理根据Gr60钢化学成分及力学性能进行可焊性分析与试验,在依据国外规范标准对此类钢材的焊接性的指导意见基础上,结合国内在高强钢CO2气体保护焊方面的焊接施工工艺,按照国内焊接规范的规定,进行常温及负温下典型焊缝形式的现场工艺评定试验,以取得指导现场焊接操作的适用的工艺参数。
低合金高强度钢的焊接工艺1)焊接方法的选择低合金高强度钢可采用焊条电弧焊、熔化极气体保护焊、埋弧焊、钨极氩弧焊、气电立焊、电渣焊等所有常用的熔焊及压焊方法焊接。
具体选用何种焊接方法取决于所焊产品的结构、板厚、堆性能的要求及生产条件等。
其中焊条电弧焊、埋弧焊、实心焊丝及药芯焊丝气体保护电弧焊是常用的焊接方法。
对于氢致裂纹敏感性较强的低合金高强度钢的焊接,无论采用那种焊接工艺,都应采取低氢的工艺措施。
厚度大于100mm低合金高强度钢结构的环形和长直线焊缝,常常采用单丝或双丝载间隙埋弧焊。
当采用高热输入的焊接工艺方法,如电渣焊、气电立焊及多丝埋弧焊焊接低合金高强度钢时,在使用前应对焊缝金属和热影响区的韧性能够满足使用要求。
2)焊接材料的选择低合金高强度钢焊接材料的选择首先应保证焊缝金属的强度、塑性、韧性达到产品的技术要求,同时还应该考虑抗裂性及焊接生产效率等。
由于低合金高强度氢致裂纹敏感性较强,因此,选择焊接材料时应优先采用低氢焊条和碱度适中的埋弧焊焊剂。
焊条、焊剂使用前应按制造厂或工艺规程规定进行烘干。
为了保证焊接接头具有与母材相当的冲击韧性,正火钢与控轧控冷钢焊接材料优先选用高韧性焊材,配以正确的焊接工艺以保证焊缝金属和热影响区具有优良的冲击韧性。
3)焊接热输入的控制焊接热输入的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。
屈服强度不超过500MPa的低合金高强度钢焊缝金属,如能获得细小均匀针状铁素体组织,其焊缝金属则具有优良的强韧性。
而针状铁素体组织的形成需要控制焊接冷却速度。
因此为了确保焊缝金属的韧性,不宜采用过大的焊接热输入。
焊接操作上尽量不用横向摆动和挑弧焊接,推荐采用多层窄焊道焊接。
热输入对焊接热影响区的抗裂性及韧性也有显著的影响。
低合金高强度热影响区组织的脆化或软化都与焊接冷却速度有关。
由于低合金高强度钢的强度及板厚范围都较宽,合金体系及合金含量差别较大,焊接时钢材的状态各不相同,很难对焊接热输入作出统一的规定。
低合金高强度钢的主要焊接方式说到低合金高强度钢的焊接方式,嘿,咱们就来聊聊这个“金属兄弟”之间的“情感纠葛”。
低合金高强度钢,这个名字听起来就很高大上,对吧?它其实就是一种既强大又轻便的钢材,适合用在桥梁、建筑、汽车等地方。
用一句话总结,这家伙就是在力量和重量之间找到平衡的小能手。
不过,跟它打交道的时候,可得小心翼翼,焊接可不是小儿科,得认真对待!焊接这事儿,听起来简单,实际上却是个技术活。
最常见的焊接方式就是气体保护焊,俗称MIG焊。
想象一下,你在炎炎夏日里,扇着扇子,喝着冷饮,突然一阵风吹来,简直爽到不行。
这就是气体保护焊给钢材的保护,它在焊接过程中用气体保护焊缝,防止氧化,就像给金属披上一层保护罩。
焊工哥们儿在那儿一动一动,噼啪作响,简直像是在舞动金属的乐章,火花四溅,气氛那叫一个热烈!但是哦,掌握这个技巧可不是一朝一夕的事儿,得多练习,才能让钢材和焊丝“亲密接触”,配合得天衣无缝。
还有一种焊接方式叫电弧焊,听着是不是很神秘?其实嘛,电弧焊就像电闪雷鸣,发出耀眼的光芒。
想象一下,闪电划过天空的瞬间,那种力量感,是不是很刺激?电弧焊就是用电流在金属表面形成高温的电弧,把钢材融化,然后再冷却成形。
操作起来,焊工要一边控制焊枪的角度,一边保持焊接速度,就像在玩一场紧张刺激的游戏,随时都得保持专注,不然可就得“吃亏”了!说到这里,可能有人会问,为什么低合金高强度钢要用这些方式焊接呢?嘿,别急,这可有讲究。
低合金高强度钢的特点就是强度高、韧性好,但如果焊接不当,容易出现裂纹或者变形。
这就像是你把一块好肉放到锅里,不小心火候掌握不好,结果变得又老又柴,真是让人心疼。
所以,焊接的时候,要控制好温度,合理安排焊接顺序,确保每一处都能“受宠若惊”。
说到焊接的顺序,咱们就不得不提到交叉焊接。
这就像是舞蹈中的“交叉步”,每一步都得精确无误。
焊工在焊接的时候,有时候需要交叉焊接,这样可以避免热应力集中,降低焊接变形的风险。