初一数学(上)知识点:多项式
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
七年级数学上册知识点代数初步知识1.代数式:用运算符号( +-×÷等) 连接数及表示数的字母的式子称为代数式。
字母所取得数应保证它所在的式子有意义。
单独一个数或一个字母也是代数式。
2.列代数式的注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如 a×5 应写成 5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如 a×11应写成3 a;22(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如 3÷a 写成3的形式;a(6)a 与 b 的差写作 a-b,要注意字母顺序;若只说两数的差,当分别设两数为 a、b 时,则应分类,写做 a-b 和 b-a .3.几个重要的代数式:(m、n 表示整数)二、初一数学上册知识点:几个重要的代数式(m、n 表示整数)。
(1)a 与 b 的平方差是:a22与b 差的平方是:2- b ; a(a-b) ;(2)若 a、b、c 是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若 m、n 是整数,则被 5 除商 m 余 n 的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若 b>0,则正数是:a2+b,负数是:- a2 - b,非负数是:a2,非正数是:-a2.有理数1. 有理数:(1) 凡能写成q(p, q为整数且p0) 形式的数,都是有理数p.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;正有理数正整数正分数(2) 有理数的分类:① 有理数零负有理数负整数负分数正整数整数零② 有理数负整数分数正分数负分数(3)有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4) 自然数0 和正整数;a>0 a 是正数;a<0 a 是负数;a≥0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;相反数的和为 0a+b=0 a 、b 互为相反数(2) a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b的相反数是-a-b ;4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数;绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:a a(a0)a (a0)0(a0) 或 a;绝对值的问题经常分类讨论;a (a 0) a (a0)(3)a 1 a 0 ;a1 a 0 ;a a(4) |a|是重要的非负数,即|a|≥0;注意:|a| ·|b|=|a ·b|,a a .b b5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数- 小数> 0 ,小数-大数<0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a ≠0,那么a的倒数是1;倒数是本身的数是±1;若 ab=1 a 、b 互为倒数;若 ab=-1 a 、b 互为a负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义 . 013.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a) n=-a n 或(a -b) n=-(b-a) n ,当n为正偶数时: (-a)n =a n或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即 a2≥0;若 a2+|b|=0a=0,b=0;0.120.01(4)据规律121底数的小数点移动一位,平方数的小数点移动二位.10210015.科学记数法:把一个大于 10 的数记成 a×10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
初一数学(上)应知应会的知识点代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 有理数1.有理数:(1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
七年级上册数学多项式知识点总结一、什么是多项式?多项式指的是一种形式为幂次函数之和的函数,即由单项式相加或相减而成的代数式。
例如:$ax^2 + bx + c$就是一个二次多项式。
二、多项式的基本操作1.加减法将同类项合并,即系数相加减外,变量的指数要保持不变。
例如:$2x^2+3x+1+(3x^2-2x)+4x^2-3x=x^2+4x+1$2.乘法将多项式的各项按照升幂排列,分别乘以另一个多项式的各项,生成新的多项式。
最后再将各项合并,即同类项系数相加减。
例如:$(2x+1)(3x+4)=6x^2+14x+4$3.除法求多项式的商和余数,方法是用除数的首项除被除数的首项,得到商的首项,再将商的首项乘以除数,与被除数的前几项相减,得到余数的前几项。
例如:$5x^3+3x^2+2x+1 \div x + 2=5x^2+x-2 \cdots{1}$3x^2+x-2________________x+2 |5x^3+3x^2+2x+1-x^3-2x^2_______________3x^2+2x-3x^2-6x___________8x+1-8x-16________17所以,原式$=5x^2+x-2+\dfrac{17}{x+2}$三、多项式的值及根1. 多项式的值多项式的值是指将指定的数值代入多项式中求得的结果。
例如,$f(x)=2x^2+3x+1$,当$x=2$时,$f(2)=2\times2^2+3\times2+1=15$。
2. 多项式的根多项式的根指的是将多项式中的变量$x$换成某个数值后,使得原来的多项式的值等于0的数值,称为多项式的根或零点。
例如,$f(x)=2x^2+3x+1$,当$x=-1$ 或 $-0.5$ 时,$f(x)=0$。
四、多项式的因式分解多项式的因式分解是一种将多项式分解成多个单项式相乘的运算。
例如:$6x^2+3x=3x(2x+1)$$2x^3-4x^2+4x-8=2(x-2)(x^2+x+2)$$2x^2-2xy-4y^2=2(x-\sqrt{2}y)(x+\sqrt{2}y)$五、多项式的最高公因式和最低公倍数1.最高公因式多项式的最高公因式是指多个多项式拥有的公共因式中,次数最大的因式。
人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
七年级上册数学知识点归纳5篇七年级上册数学知识点归纳12.1整式1、单项式:由数字和字母乘积组成的式子。
系数,单项式的次数。
单项式指的是数或字母的积的代数式。
单独一个数或一个字母也是单项式。
因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和。
4、多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。
每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。
多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。
特别注意多项式的项包括它前面的性质符号。
5、它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。
同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合(1)如果遇到括号按去括号法则先去括号。
(2)结合同类项。
(3)合并同类项七年级上册数学知识点归纳2第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
整式的加减用字母表示数学习内容:整式:单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;③单项式次数只与字母指数有关。
Putting people first and respecting employees is the key to success from beginning to end.(页眉可删)初中数学多项式知识点知识要领:由数与字母或字母与字母相乘组成的代数式叫做单项式,几个单项式的和叫做多项式。
多项式1、多项式及有关概念2、多项式的次数3、多项式的项在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。
多项式中的符号,看作各项的性质符号.一元N次多项式最多N+1项。
例:在多项式2x-3中,2x和-3是它的项,其中-3是常项数;在多项式x+2x+18中它的项分别是x,2x和18,其中18是常数项。
知识点总结:多项式中,次数最高的项的次数,就是这个多项式的次数.初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
初一数学上册重要知识点总结归纳(前三章)今天小编就为大家精心整理了一篇有关初一数学重要知识点总结归纳的相关内容,以供大家阅读!初一数学(上)知识点第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数小数0,小数大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;若ab=1?a、b互为倒数;若ab=1?a、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即ab=a+(b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(a)n=an或(ab)n=(ba)n,当n为正偶数时:(a)n=an或(ab)n=(ba)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学上册知识点总结归纳七年级数学知识点整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;5..6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).一元一次方程1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).第一学期初一数学复习资料一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。
从实物中抽象出的各种图形统称为几何图形。
几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。
七年级数学多项式知识点数学中有许多重要的概念和知识点,其中多项式是一个关于代数学的重要知识点。
多项式是由一个或多个单项式代数和(或)代数组成的,通常用字母表示。
在七年级数学中,多项式的概念和应用非常重要。
在这篇文章中,我们将详细讨论七年级数学中与多项式有关的知识点。
一、多项式的定义多项式通常用字母表示,如x、y、z等。
由一个或多个单项式代数和(或)代数组成。
单项式代数是一个数乘以一个或多个字母的积,如4x、3xy、2x²等。
代数是一个整数或任意一个字母,如2、x、y等。
例如,2x² + 4y + 3就是一个多项式。
二、多项式的分类在数学中,多项式可以分为各种类型。
其中最重要的是分类:按项数分类,按次数分类和按系数分类。
1. 按项数分类根据项数不同,多项式可以分为单项式、二项式、三项式……n项式。
单项式只有一个单项式项,如2x²;二项式有两个单项式项,如2x² + 4y;三项式有三个单项式项,如2x² + 4y + 3。
2. 按次数分类由于每个单项式的次数为整数,因此一个多项式的次数为最高单项式次数。
按次数分类,多项式可以分为零次多项式、一次多项式、二次多项式等。
零次多项式只包含常量项,如3;一次多项式只有一个一次单项式项,如2x + 4;二次多项式只有一个二次单项式项,如2x² + 4y + 3。
3. 按系数分类按系数分类,多项式可以分为数字多项式、字母多项式和混合多项式。
数字多项式仅包含数字,如3;字母多项式仅包含字母,如x² + y²;混合多项式同时包含数字和字母,如2x² + 4y + 3。
三、多项式的运算多项式的运算包括加、减、乘和除,这些运算不仅需要掌握各种常见的组合形式,还需要善于运用各种算术和代数技巧,加强计算技巧。
下面我们来介绍多项式的几个基本运算:1. 加法和减法多项式的加法和减法都是先将同类项合并,然后进行计算。
初一数学(上)知识点:多项式
多项式的概念:几个单项式的和叫做多项式。
多项式的项:在多项式中,每个单项式叫做多项式的项。
其中不含字母的项叫做常数项。
多项式的次数:多项式中,次数最高的项的次数,叫做这个多项式的次数。
多项式注意:多项式中的符号,看作各项的性质符号。
多项式的排列:
1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n 或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
第6讲小节单项式、多项式及整式的概念1.掌握单项式、单项式整式的定义;2.掌握单项式的系数、次数及多项式的系数、次数和项数;知识点01 单项式定义:由数与字母的积或字母与字母的积所组成的代数式叫做单项式系数:单项式中数字因数;次数:所有字母的指数的和。
1.下列代数式中,为单项式的是()A.B.a C.D.x2+y2【解答】解:A、分母中含有字母,不是单项式;B、符合单项式的概念,是单项式;C、分母中含有字母,不是单项式;D、不符合单项式的概念,不是单项式.故选:B.2.单项式2a的系数是()A.1B.a C.2D.2a【解答】解:单项式2a的系数是2,故选:C.3.单项式22xy2的次数是()A.5B.4C.3D.2【解答】解:单项式22xy2的次数是1+2=3.故选:C.4.单项式的系数和次数分别是()A.和3B.和2C.和4D.和2【解答】解:单项式的系数、次数分别是,3.故选:A.5.若单项式2xy3﹣b是三次单项式,则()A.b=0B.b=1C.b=2D.b=3【解答】解:因为单项式2xy3﹣b是三次单项式,所以3﹣b=2,所以b=1.故选:B.6.单项式ah的次数是2.【解答】解:单项式ah的次数是:1+1=2.故答案为:2.7.某单项式的系数为2,只含字母x,y,且次数是3次,写出一个符合条件的单项式可以是2xy2或2x2y(答案不唯一).【解答】解:2xy2或2x2y是只含字母x、y,系数为2,次数为3的单项式,故答案为:2xy2或2x2y(答案不唯一).8.指出下列各单项式的系数和次数(1)3xy(2)﹣xy(3)﹣7x2y3(4)﹣2a2b4c【解答】解:(1)系数为3,次数为2;(2)系数为﹣1,次数为2;(3)系数为﹣7,次数为5;(4)系数为﹣2,次数为7;知识点02 多项式定义:几个单项式的和;次数:多项式中次数最高的单项式的次数。
单项式和多项式都统称为整式9.多项式3m3+4m2n2﹣1的次数是()A.2B.3C.4D.7【解答】解:多项式3m3+4m2n2﹣1的次数是4,故选:C.10.多项式4x2﹣﹣x+1的三次项系数是()A.3B.﹣3C.﹣D.﹣【解答】解:多项式4x2﹣﹣x+1的三次项是﹣,三次项系数是﹣.故选:C.11.多项式的各项系数之积是()A.B.C.D.【解答】解:多项式的各项系数分别为:,﹣,则.故选:C.12.关于整式,下列说法正确的是()A.x2y的次数是2B.0不是单项式C.3πmn的系数是3D.x3﹣2x2﹣3是三次三项式【解答】解:A、x2y的次数是3,所以A选项错误;B、数字0是单项式,所以B选项错误;C、3πmn的系数是3π,所以C选项错误;D、x3﹣2x2﹣3是三次三项式,所以D选项正确.故选:D.13.多项式3x2y+2xy的次数为3.【解答】解:∵多项式3x2y+2xy的最高次项为3x2y,其次数是3,∴多项式3x2y+2xy的次数是3.故答案为:3.14.多项式3a2﹣2a﹣7a3+4是三次四项式.【解答】解:∵多项式的次数是“多项式中次数最高的项的次数”,∴多项式3a2﹣2a﹣7a3+4中次数最高的项是三次,由四个单项式组成,故答案为:三;四.15.已知(m+1)x3﹣(n﹣2)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式?(2)当m,n满足什么条件时,该多项式是关于x的三次二项式?【解答】解:(1)由题意得:m+1=0,且n﹣2≠0,解得:m=﹣1,n≠2,则m=﹣1,n≠2时,该多项式是关于x的二次多项式;(2)由题意得:m+1≠0,n﹣2=0,且2m+5n=0,解得:m≠﹣1,n=2,把n=2代入2m+5n=0得:m=﹣5,则m=﹣5,n=2时该多项式是关于x的三次二项式.知识点03 整式定义:单项式和多项式都统称为整式16.下列各式中不是整式的是()A.3a B.C.D.0【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.17.代数式ab,2m﹣n,,﹣4,中整式共有()个.A.2B.3C.4D.5【解答】解:代数式ab,2m﹣n,,﹣4,中整式有:ab,2m﹣n,﹣4,共4个.故选:C.18.在①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中,①②④是整式.(填写序号)【解答】解:①1﹣a;②;③;④﹣;⑤;⑥(x+1)(x+2)=0中①1﹣a;②;④﹣是整式.故答案为:①②④.19.把下列代数式分别填入下表适当的位置:3a,,,,5,﹣xy,a2﹣2ab+1.代数式整式单项式多项式非整式【解答】解:单项式:3a,5,﹣xy;多项式:,a2﹣2ab+1;非整式:,+b.一.选择题1.下列各式中是单项式的是()A.m+n B.2x﹣3y C.2xy2D.(5a+2b)2【解答】解:A、m+n是多项式,不合题意;B、2x﹣3y是多项式,不合题意;C、2xy2是单项式,符合题意;D、(5a+2b)2是多项式,不合题意;故选:C.2.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.3.单项式﹣ab2的系数是()A.B.C.2D.3【解答】解:单项式﹣ab2的系数是﹣.故选:A.4.多项式﹣5xy+xy2﹣1是()A.二次三项式B.三次三项式C.四次三项式D.五次三项式【解答】解:多项式﹣5xy+xy2﹣1是三次三项式,故选:B.5.单项式﹣的系数和次数分别是()A.﹣2,2B.3,1C.﹣,2D.,1【解答】解:单项式﹣的系数是﹣,次数是2,故选:C.6.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4B.2和﹣4C.3和4D.3和﹣4【解答】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.7.下列说法正确的是()A.﹣3mn的系数是3B.多项式m2+m﹣3的次数是3C.3m3n中n的指数是0D.多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5【解答】解:A、单项式﹣3mn的系数是﹣3,故原题说法错误;B、多项式m2+m﹣3的次数是2,故原题说法错误;C、单项式3m3n中n的指数是1,故原题说法错误;D、多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5,故原题说法正确;故选:D.二.填空题8.有下列式子:a,,,,4a2﹣b,,其中整式有4个.【解答】解:∵整式的分母上不能含有字母,∴,不是整式,∴整式有4个,故答案为4.9.多项式2x3﹣x2y2﹣1是四次三项式.【解答】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.10.单项式﹣xy3的系数是m,次数是n,则mn=﹣.【解答】解:∵单项式﹣xy3的系数是m,次数是n,∴m=﹣,n=4,则mn=﹣.故答案为:﹣.11.观察下列关于x的单项式:﹣x,4x2,﹣7x3,10x4,﹣13x5,16x6,…,按照上述规律,第2021个单项式是﹣6061x2021.【解答】解:∵一列关于x的单项式:﹣x,4x2,﹣7x3,10x4,﹣13x5,16x6……,∴第n个单项式为:(﹣1)n•(3n﹣2)x n,∴第2021个单项式是(﹣1)2021•(3×2021﹣2)x2021=﹣6061x2021,故答案为:﹣6061x2021.三.解答题12.下列单项式的系数与次数:32x2y3z;ab2;a2b3;﹣x;30%mn.【解答】解:32x2y3z系数与次数分别为:32;6;ab2系数与次数分别为:1;3;a2b3系数与次数分别为:;5;﹣x系数与次数分别为:﹣1,1;30%mn系数与次数分别为:30%;2.13.把下列代数式的序号填入相应的横线上:①a2b+ab2+b3②③④⑤0⑥﹣x+⑦⑧3x2+⑨⑩(1)单项式④⑤⑩(2)多项式①③⑥(3)整式①③④⑤⑥⑩(4)二项式③⑥.【解答】解:(1)单项式④⑤⑩(2)多项式①③⑥(3)整式①③④⑤⑥⑩(4)二项式③⑥.故答案为:(1)④⑤⑩;(2)①③⑥;(3)①③④⑤⑥⑩;(4)③⑥.14.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3,其中n为正整数.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?【解答】解:(1)因为多项式是五次四项式,所以m+2≠0,n+1=5.所以m≠﹣2,n=4.(2)因为多项式是四次三项式,所以m+2=0,n为任意正整数.所以m=﹣2,n为任意正整数.。
初一数学多项式一、什么是多项式多项式是数学中的一个重要概念,它由若干项组成,每一项都是一个常数与一个或多个变量的乘积。
多项式的一般形式可以表示为:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x^1 + a_0其中,P(x)为多项式的表达式,a_i为系数,x为变量,n为多项式的次数。
多项式的次数是指其中最高次项的次数。
二、多项式的分类根据多项式的次数,我们可以将其分为以下几种类型:1. 零次多项式:次数为0的多项式,也就是常数。
例如,P(x) = 5。
2. 一次多项式:次数为1的多项式,也就是一次函数。
例如,P(x) = 3x + 2。
3. 二次多项式:次数为2的多项式,也就是二次函数。
例如,P(x) = 2x^2 + 3x + 1。
4. 三次多项式:次数为3的多项式,也就是三次函数。
例如,P(x) = 4x^3 + 2x^2 + x + 3。
依此类推,根据多项式的次数不同,我们可以得到不同次数的多项式。
三、多项式的运算多项式可以进行加法、减法、乘法等运算。
下面我们来看一些具体的例子。
1. 多项式的加法:将两个多项式相加,只需将对应的系数相加即可。
例如,将多项式P(x) = 2x^2 + 3x + 1和Q(x) = 4x^2 + 2x + 3相加,得到R(x) = 6x^2 + 5x + 4。
2. 多项式的减法:将一个多项式减去另一个多项式,只需将对应的系数相减即可。
例如,将多项式P(x) = 3x^2 + 2x + 1减去Q(x) = 2x^2 + x + 3,得到R(x) = x^2 + x - 2。
3. 多项式的乘法:将两个多项式相乘,需要将每一项的系数相乘,然后按照次数相加。
例如,将多项式P(x) = 2x^2 + 3x + 1乘以Q(x) = 3x + 2,得到R(x) = 6x^3 + 13x^2 + 9x + 2。
四、多项式的应用多项式在数学中有广泛的应用,特别是在代数、几何、概率等领域。
七年级上册数学《多项式的相加减》多项式相加减知识点整理1. 多项式的定义及表示方法- 多项式是指由数字和字母的乘积相加而成的代数式。
- 多项式一般写作多个单项式相加的形式。
例如:$3x^2 + 2xy - 5$ 是一个多项式。
2. 多项式的相加- 相加指的是将两个或多个多项式按照同类项相加的运算。
例如:$(3x^2 + 2xy - 5) + (2x^2 + 3xy + 1)$3. 同类项的概念- 同类项指的是具有相同字母和相同字母指数的项。
例如:$3x^2$ 和$2x^2$ 是同类项,$2xy$ 和$3xy$ 是同类项。
4. 多项式相加的步骤- 将同类项的系数相加,并保留相同的字母和字母指数。
例如:$(3x^2 + 2xy - 5) + (2x^2 + 3xy + 1)$= $3x^2 + 2xy + 2x^2 + 3xy - 5 + 1$= $5x^2 + 5xy - 4$5. 多项式的相减- 相减指的是将一个多项式减去另一个多项式的运算。
例如:$(3x^2 + 2xy - 5) - (2x^2 + 3xy + 1)$6. 多项式相减的步骤- 将被减数中各项的系数与减数中相同字母和字母指数的项的系数相减,并保留相同的字母和字母指数。
例如:$(3x^2 + 2xy - 5) - (2x^2 + 3xy + 1)$= $3x^2 - 2x^2 + 2xy - 3xy - 5 - 1$= $x^2 - xy - 6$7. 注意事项- 在相加和相减操作中,如果某个字母的项在一个多项式中不存在,就把对应字母的项的系数直接拷贝到结果多项式中。
例如:$(3x^2 + 2xy - 5) + (2x^2 - 3y + 1)$= $3x^2 + 2xy - 3y - 5 + 1$= $5x^2 + 2xy - 3y - 4$以上是关于七年级上册数学《多项式的相加减》的知识点整理,希望对你有所帮助!。
初一上学期数学知识点归纳初一上学期数学知识点归纳初一上学期数学知识点归纳有哪些你知道吗?初一数学解答题答题技巧,应仔细审题,再规范表述,最后给出结论,一起来看看初一上学期数学知识点归纳,欢迎查阅!七年级上册数学知识整式的加减单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:6.同类项:所含字母一样,并且一样字母的指数也一样的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.初一数学知识大全代数初步知识1.代数式:用运算符号+-×÷……连接数及表示数的字母的式子称为代数式(字母所获得数应保证它所在的式子有意义,其次字母所获得数还应使实际生活或生产有意义;单唯一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用·乘,或省略不写;(2)数与数相乘,仍应使用×乘,不用·乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联络,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只讲两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有本人的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有本人的特性;(4)自然数0和正整数;a0a是正数;a0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只要符号不同的两个数,我们讲其中一个是另一个的相反数;0的`相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.初一数学上册知识一元一次方程利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,按照题意画出有关图形,使图形各部分具有特定的含义,填入有关的代数式是获得方程的基础.1.等式与等量:用=号连接而成的式子叫等式.注意:等量就能代入!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果还是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果还是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的根据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于和,差,倍,分问题初一上学期数学知识点归纳。
初一数学(上)知识点:多项式
多项式的概念:几个单项式的和叫做多项式。
多项式的项:在多项式中,每个单项式叫做多项式的项。
其中不含字母的项叫做常数项。
多项式的次数:多项式中,次数最高的项的次数,叫做这个多项式的次数。
多项式注意:多项式中的符号,看作各项的性质符号。
多项式的排列:
1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排
列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。