4.3 用一元一次方程解决问题 第2课时 行程问题与工程问题-2020秋苏科版七年级数学上册课件(共23张PPT)
- 格式:pptx
- 大小:6.24 MB
- 文档页数:23
行程问题与一元一次方程
行程问题通常涉及到两个物体或人在不同的速度或方向下移动的情况。
这类问题可以通过一元一次方程来解决。
我们以一个简单的例子来说明:
例题:
小明和小红同时从同一地点出发,小明的速度是每小时5公里,小红的速度是每小时4公里。
如果小明出发后1小时,两人相距多少公里?
解析:
设小明和小红相遇的时间为t(小时),则小明走了t 小时,小红走了t-1 小时。
两者相距的距离就是各自的速度与时间的乘积之和。
●小明走的距离:5t(公里)
●小红走的距离:4(t-1)(公里)
因为在相遇时两人的位置相同,所以我们可以得到方程:5t=4(t−1)
现在我们来解这个一元一次方程:5t=4t−4,
将4t 移到方程的左边,得到:
5t−4t=−4
简化得到:t=−4
但是在这个上下文中,时间不可能是负数,所以我们需要重新检查问题。
在这个问题中,我们要求的是小明出发后多久两人相遇,所以我们只关心正数解。
在这里,t 的值应该是正整数。
通过观察方程,我们可以得出t=4。
这意味着小明和小红在4小时后相遇。
现在我们可以用5t 或4(t−1) 中的任何一个来计算他们相遇时的距离。
例如,小明在相遇时走了5×4=20 公里。
所以,答案是小明和小红在相遇时相距20公里。
这就是一个简单的行程问题的解法,利用一元一次方程来求解。
《用一元一次方程解决问题》作业设计方案(第一课时)一、作业目标本作业旨在通过一元一次方程的实际应用,加深学生对一元一次方程的理解,并能够熟练运用一元一次方程解决生活中的实际问题。
同时,培养学生独立思考和解决问题的能力,以及分析和推理的思维能力。
二、作业内容本课时的作业内容主要围绕一元一次方程的实际应用展开。
1. 基础知识练习:通过课本中的例题和习题,巩固一元一次方程的基本概念和解题方法。
2. 实际问题解决:选取5个与日常生活相关的问题,如购物找零、速度与时间的关系等,要求学生将问题转化为一元一次方程,并求解。
3. 拓展练习:设计一些具有挑战性的问题,如行程问题、工程问题等,要求学生运用所学知识进行解答。
4. 小组合作:学生分组进行讨论,每组选择一个实际问题进行探讨,并尝试用一元一次方程解决。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭他人答案。
2. 规范书写:解题过程要规范,步骤要清晰,结果要准确。
3. 及时反馈:遇到问题时,要及时向老师或同学请教,不得拖延。
4. 小组合作要求:小组内成员要积极参与讨论,互相帮助,共同完成任务。
四、作业评价1. 评价标准:根据学生完成作业的准确性、规范性、创新性以及小组合作情况进行评价。
2. 评价方式:教师批改作业时,要给予详细的评语和分数,指出学生的优点和不足。
同时,可以选取优秀作业进行展示,鼓励其他学生向其学习。
3. 反馈机制:教师将评价结果及时反馈给学生,让学生了解自己的学习情况,以便及时调整学习策略。
五、作业反馈1. 学生自评:学生完成作业后,要进行自我评价,总结自己在解题过程中的收获和不足。
2. 教师点评:教师根据学生的作业情况,进行针对性的点评和指导,帮助学生解决学习中遇到的问题。
3. 家长反馈:家长要关注孩子的学习情况,了解孩子在完成作业过程中遇到的困难和问题,并及时与老师沟通,共同帮助孩子解决问题。
4. 课堂讨论:在下一课时的课堂上,教师可以针对学生在完成作业过程中出现的问题进行讨论和讲解,帮助学生更好地掌握一元一次方程的解题方法。
一元一次方程解决实际问题(分类)实用文档:一元一次方程解决实际问题一、行程问题一)一般行程问题在行程问题中,需要找到三个基本量:路程、速度和时间,并且它们之间有着明确的关系。
具体来说,路程等于速度乘以时间,时间等于路程除以速度,速度等于路程除以时间。
我们也可以通过变形得到速度等于路程除以时间,时间等于路程除以速度。
二)相遇问题(相向而行)在相遇问题中,需要注意以下三个关键点:快行距加慢行距等于原距,快行距减慢行距等于路程差,快行距加慢行距减路程差等于原距。
举例来说,如果甲、乙两车同时从A、B两地相向而行,两车相遇点距A、B两地中点处8km,已知甲车速度是已车的1.2倍,求A、B两地的路程,我们可以利用方法一找出甲乙两车的路程差,也可以利用方法二将甲乙的速度看成是1和1.2.例2中,XXX、XXX从相距50千米的两地相向而行,XXX下午2时出发步行,每小时行4.5千米。
XXX下午3时半骑自行车出发,经过2.5小时两人相遇。
我们需要求出XXX骑自行车每小时行多少千米。
例3中,XXX的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,XXX走了两村间路程的一半还多0.75千米,此时恰好与XXX相遇。
已知小王的速度是每小时3.7千米,需要求出XXX每小时行多少千米。
例4中,一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
需要求出行了几小时后两车相距51千米,以及再行几小时两车又相距51千米。
三)追及问题(同向而行)在追及问题中,需要注意以下三个关键点:快行距减慢行距等于原距(从不同点出发),追及路程除以速度差等于追及时间,速度差乘以追及时间等于追及路程。
例1中,A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,需要求出几小时后甲车能追上乙车。
我们可以根据题意得知要追及的路程是28千米,每行1小时,甲车可追上32-25=7千米,即速度差。
完整版)一元一次方程应用行程问题行程问题是数学中常见的应用问题之一,其中最基本的关系是路程等于速度乘以时间,速度等于路程除以时间,时间等于路程除以速度。
在相遇问题中,甲、乙相向而行时,它们的路程之和等于总路程。
在追及问题中,当甲、乙同向不同地时,追者的路程等于前者的路程加上两地间的距离。
当甲、乙同向同地不同时,追者的路程等于前者的路程。
在环形跑道问题中,当甲、乙在环形跑道上同时同地同向出发时,快的必须多跑一圈才能追上慢的;当它们同时同地反向出发时,它们相遇时的总路程为环形跑道一圈的长度。
在飞行(航行)问题中,顺风(顺水)速度等于无风(静水)速度加上风速(水速),逆风(逆水)速度等于无风(静水)速度减去风速(水速),因此顺风(水)速度减去逆风(水)速度等于2倍的风(水)速。
在车辆(车身长度不可忽略)过桥问题中,车辆通过桥梁(或隧道等)时,它的行驶路程等于桥梁(隧道)长度加上车身长度。
在超车(会车)问题中,超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差;会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和。
在解决行程问题时,可以画出行程图来更直观、更容易理解问题的分析过程。
此外,列表分析也是解决行程问题的一种重要方法。
典型例题中的相遇问题包括甲、乙相向而行的情况。
例如,甲、乙两站相距600km,慢车每小时行40km,快车每小时行60km。
经过x小时后,慢车行了40x km,快车行了60x km,两车共行了100x km。
如果两车同时开出,x小时后相遇,可得方程40x+60x=600,解得x=6.如果两车相向而行,快车先行50km,在慢车开出y小时后两车相遇,可得方程40(y+50)+60y=600,解得y=2.如果两车相向而行,慢车先开50分钟,在快车开出t小时后两车相遇,可得方程40(t-50/60)+60t=600,解得t=2.5.另一个例题是甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米。
《用一元一次方程解决问题》作业设计方案(第一课时)一、作业目标本作业旨在通过一元一次方程的实际应用,培养学生的数学建模能力和问题解决能力。
通过解决实际问题,加深学生对一元一次方程的理解,并能够灵活运用其进行问题的分析和解答。
二、作业内容1. 基础练习:设计一系列一元一次方程的练习题,包括方程的建立、解的求解等基本操作。
题目应涵盖日常生活中的实际问题,如购物找零、速度与时间的关系等,旨在巩固学生对一元一次方程基本概念的理解。
2. 实际问题分析:提供几个实际问题的背景材料,如路程问题、工程问题等。
要求学生根据问题背景,分析并建立一元一次方程模型。
这一部分旨在培养学生的数学建模能力和对实际问题的分析能力。
3. 实践应用:设计一些实际问题的解决作业,如计划问题、优化问题等。
要求学生在解决过程中,不仅要建立方程,还要考虑实际情况,如解的合理性、实际意义等。
这一部分旨在培养学生的应用意识和解决问题的能力。
三、作业要求1. 基础练习部分:要求学生在规定时间内完成练习题,并保证答案的准确性。
对于每一道题目,学生应详细写出解题步骤和答案。
2. 实际问题分析部分:学生需根据问题背景,详细分析并建立一元一次方程模型。
要求分析过程清晰,方程建立准确,并能够解释方程的实际意义。
3. 实践应用部分:学生需结合实际情况,综合考虑各种因素,建立合理的数学模型并求解。
要求学生在解答过程中,注重解的合理性和实际意义,并能够用数学语言解释实际问题。
四、作业评价1. 评价标准:以准确性、解题思路、解题步骤和答案的完整性为主要评价标准。
对于基础练习部分,重点评价学生的答案准确性和解题速度;对于实际问题分析部分和实践应用部分,重点评价学生的数学建模能力和对实际问题的分析能力。
2. 评价方式:采取教师评价和同学互评相结合的方式。
教师评价主要针对学生的答案准确性和解题思路进行评价;同学互评则旨在培养学生之间的交流和学习能力,促进共同进步。
五、作业反馈1. 教师反馈:教师根据学生的作业情况,给出详细的反馈意见和建议,指出学生在解题过程中存在的问题和不足,并给出改进方法。
用一元一次方程解决问题的一般步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的数量之间的相等关系,列出方程。
【题型1】月历中数之间的关系问题:同一横行中,后一个数比前一个数多1,同一竖列中,下一个数比上一个多7。
【题型2】比赛问题:胜、负、平局。
【题型3】年龄问题:随着年龄变化但年龄差始终不变。
【题型4】等积变形问题:变形前的体积=变形后的体积:【题型5】盈余"和"不足"问题:用两种不同的方法描述量。
基本相等关系是:盈时的总量一盈的数量=亏时的总量+亏的数量。
【题型6】行程问题:(1)相遇、追及问题:甲的行程+乙的行程=甲、乙两人总的行程追者的路程=前者的路程+原本的路程(2)顺流与逆流问题:顺流速度=静水速度+水流速度逆流速度=静水速度一水流速度【题型7】工作总量问题:若问题中没有具体的工作总量,往往把全部工作量看成1。
工作总量=工作效率×工作时间各部工作分量之和=总量【题型8】配套问题:列比例式构造方程。
(通过比例关系明确数量之间的关系。
)【题型9】售价(标价)、成本(进价)、利润的关系:商品的利润=商品的售价一商品的成本 商品的售价=商品的成本×(1±盈利%/亏损%) 利润率=(商品的利润/商品的成本)x100% 商品的利润=商品的成本×利润率商品打X 折(10X%)后的售价=商品的标价x 折扣(10X )。
【题型10】银行储蓄问题:年存储利息=本金X 年利率X 年数【题型11】数字问题:两位数的数字之和=十位的数字×10+个位的数字。
【题型12】和差倍分问题:利用和倍差倍解方程。
【题型13】分量与总量问题:各分量之和=总量【题型14】分段收费【题型15】方案问题【题型1】月历中数之间的关系问题例1:某月的月历上竖列相邻的三个数的和是39,则该列的第一个数是( )。
A.6B.12C.13D.14例2:小丽在2月的月历上圈出5 个数,呈“十字框”形,它们的和是 55,则中间的数是( )。
《用一元一次方程解决问题》作业设计方案(第一课时)一、作业目标1. 掌握一元一次方程的基本概念和解题方法。
2. 能够根据实际问题,将实际问题抽象为数学问题,并运用一元一次方程进行求解。
3. 培养学生在实际问题中寻找已知和未知,合理设未知数,列方程解应用题的能力。
二、作业内容(一)课前复习与知识点巩固学生需对前一次课堂学习的知识点进行回顾和总结,尤其是对于一元一次方程的常见形式、解法步骤等要点进行巩固。
(二)作业练习1. 基础练习:学生需完成一定量的一元一次方程基本题目,包括对方程的建立和求解的练习。
2. 实际应用:选取几个实际问题,如购物找零、行程问题等,学生需将这些问题抽象为数学问题,并建立一元一次方程进行求解。
3. 拓展探究:设计一些较为复杂的问题情境,如比例问题、增长率问题等,鼓励学生尝试用一元一次方程解决这些问题。
(三)思考题设置一些富有挑战性的问题,让学生进行思考和探讨,如“一元一次方程在生活中的其他应用”等。
三、作业要求1. 作业量适中,确保学生有足够的时间完成作业。
2. 题目设计需有层次性,既包括基础题,也包括拓展题,以满足不同水平学生的需求。
3. 学生应独立审题、列方程并求解,严禁抄袭。
对于实际问题的解答,要求明确地表达解题过程和答案。
4. 对于思考题,鼓励学生在家长或同学的指导下尝试多种不同的解题方法,拓展思维。
四、作业评价1. 教师的评价标准:对学生的作业完成情况、准确性、解题思路等进行评分,并对其中反映出的问题及时给予反馈和指导。
2. 学生自评与互评:鼓励学生进行自我评价和互相评价,培养其反思和批判性思维的能力。
3. 家长参与:鼓励家长参与孩子的作业评价过程,加强家校合作。
五、作业反馈1. 教师需及时批改作业,对错误的地方进行标注和指导。
2. 对于共性问题,需在下一课时进行讲解和指导。
3. 对学生的进步和不足进行记录和分析,为后续教学提供参考。
4. 鼓励学生将所学知识应用到实际生活中,提高解决实际问题的能力。
一元一次方程的应用【教学目标】1.能用一元一次方程解决简单的实际问题,包括列方程、解方程,能根据实际问题的意义检验所得结果是否合理.2.经历“问题情境——建立数学模型——理解、应用与拓展”的过程,体会数学的应用价值和数学建模思想,提高分析和解决实际问题的能力.【知识点】1.列一元一次方程解应用题的基本步骤:审清题意、设未知数、列出方程、解方程、写出答案.2.列一元一次方程解决实际问题的常见类型:(1)利息问题:本金×利率×期数=利息(未扣税);本息和=本金+利息.(2)利润问题:利润率=利润÷进价;利润=售价-进价;售价=进价×(1+利润率).(3)行程问题:①路程=速度×时间;②相遇问题:路程=速度和×时间;③追及问题:路程差=速度差×时间;④顺流、逆流问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.(4)工程问题:工作量=工作时间×工作效率;总工作量=各部分工作量的和.(5)数字问题:熟悉两位数和三位数的表达方式,百位上的数字×100+十位上的数字×10+个位上的数字.数字问题常常设间接未知数.当然除上述类型外,还有几何图形问题、增长率问题、税收问题等.【例题精讲】例1.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今小王取出一年到期的本金和利息时,交纳利息税4.5元,则小王一年前存入银行的钱为A.1000元B.977.5元C.200元D.250元例2.(1)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店A.不赔不赚B.赚了32元C.赔了8元D.赚了8元(2)某商场经销一种商品,由于进货价格比原来预计的价格降低了6.4%,使得销售利润率增加了8个百分点,那么原来预计的利润率是.(3)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?例3.(1)在一直线形航道上,某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4h.已知船在静水中的速度为7.5km/h,水流速度为2.5km/h,若A、C两地的距离为10km,则A、B两地间的距离为;(2)梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).①若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;②假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.例4.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需A.9天B.10天C.11天D.12天例5.某会议厅主席台上方有一个长12.8m的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?例6.龙都电子商场出售A,B,C三种型号的笔记本电脑,四月份A型电脑的销售额占三种型号总销售额的56%,五月份B,C两种型号的电脑销售额比四月份减少了m%,A 型电脑销售额比四月份增加了23%,已知商场五月份该三种型号电脑的总销售额比四月份增加了12%,则m=.例7.十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?1.把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为A .70cmB .65cmC .35cmD .35cm 或65cm2.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A .240元B .250元C .280元D .300元3.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为A .4231B .8363 C .42 D .44 4.我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是A .80元B .95元C .135元D .270元5.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为 .6.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 .7.王会计在记帐时发现现金少了153.9元,查帐后得知是一笔支出款的小数点看错了一位,王会计查出这笔看错了的支出款实际是 元.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款 元.9.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份用水量?1.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .52.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD :AB =A .5:3B .7:5C .23:14D .47:293.如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为A .2n m -B .n m -C .2mD .2n4.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为A .26元B .27元C .28元D .29元5.甲、乙两个火车站相距189公里,一列快车和一列慢车分别从甲、乙两个车站同时出发,相向而行,经过1.5小时,两车相遇后又相距21公里,若快车比慢车每小时多行12公里,则慢车每小时行 公里.6.李先生向商店订购了每件定价100元的衣服80件,李先生对商店经理说:“如果你肯减价,那么减去定价的5%,我就多订20件”,商店经理算了一下,获得的利润反而比原来多100元,则这种商品成本是 元.7.某工厂去年生产某种产品一件,所获取的利润率为59%,今年由于物价上涨,工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,所以今年该工厂生产该产品一件所获取的利润率为 .8.股票交易中有涨停、跌停制度.它是证券管理部门为了防止过度的投机而采取的一种措施.是指一只股票每天的最大涨跌幅度不能超过前一交易日的百分比.普通的股票最大涨跌幅为前一交易日的10%.即今天的股价无论涨或者跌,其幅度最大只能达到上一个交易日的10%,所以如果上一个交易日收盘价是10元,那么今天最高价就是11元,最低价就是9元,不许超过.所以,达到11元就是涨停了,达到9元就是跌停了.(1)张先生在4月27日股市封盘前以每股m 元的收盘价买入一只普通股票A ,结果该股票28日封盘是涨停,29日后开盘后又涨停时的股价为12.1元,求该股票27日股市的收盘价m ?(2)若股票交易买、卖时,都需要付出0.5%的各种费用.请你计算:若以每股a 元的价格买入一只股票,当该股票的股价为多少时售出才能不亏不盈.(用a 的代数式表示)(3)在(1)(2)的条件下,若27日时张先生购入的股票A 为1000股,请你帮他计算若他在29日涨停时以涨停价全部抛出该股票,可以获得多少收益? 第1题 第2题 第3题。