捷联惯导系统划船效应补偿算法研究
- 格式:pdf
- 大小:247.36 KB
- 文档页数:4
5.划船误差参考系中的位置矢量5.1 导航方程与解算P 点相对于空间固定轴系的加速度为ii dt r d a 22=三个理想的加速度计可提供P 点比力的测量值G dt rd f i−=22导航方程:G f dt rd i+=22式中,G 为质量引力加速度矢量。
在近地面导航时,常常需要知道运载体在旋转参考坐标系中相对于地球的速度和位置。
参考系的转动会产生附加的外部力,根据哥氏定理,在地球上观察到的位置矢量的变化率,即运载体相对于地球的运动速度为r dt r d dt r d V ie ie e ×−==ω对上式两边求绝对变化率,并再次使用哥氏定理,其中相对变化率在系求取,则得到惯导系统的基本方程n ()g V f V enen ie en +×+−=ωω2& 式中,r G g ie ie ××−=ωω。
导航方程可以在任意选定的参考坐标系中解算,此时应将导航方程投影到参考系中。
在传统的捷联惯性导航系统中,要获取载体的速度信息和位置信息,就需要在导航参考坐标系中对比力信号进行积分。
5.2 捷联系统划船误差机理分析设导航坐标系选取地理坐标系,则计算载体相对地球速度的方程为n ()n n en n en n ie b n b n en g V f C V +×+−=ωω2&方便起见,省略地速nen V 的上下标。
将上式在[]1,+k k t t 时间段内积分,有()[]∫∫++×+−++=+1121k kk kt t n enn ie nt t bn b k k dtV g dtf C V V ωω在一般情况下,可以将看成常量,但在高动态环境下,就应该考虑在速度积分时间段内姿态矩阵的变化。
nb C对比力项在[]1,+k k t t 时间段内积分,记∫+=1k kt t bn bndtf C u有()()()()∫+=1k kt t bk b t b k n k b ndt f C C u利用旋转矢量Tz y x ],,[φφφ=Φ,有()()22][)cos 1(][sin ×Φ−+×Φ+=φφφφI C k b t b在很短的速度更新周期k k t t T−=+1内,旋转矢量Φ可近似为∫+=≈Φ1k kt t bdt ωαφφ≈sin21)cos 1(2≈−φφ 式中,α为角增量。
一种新的船用捷联惯导系统阻尼算法随着航运工业的不断发展,船舶导航系统也越来越得到了广泛的应用。
捷联惯导系统是现代导航系统中使用最广泛的一种,其具有高精度、长稳定性、无需外界支持等优势。
而在以往的航行过程中,捷联惯导系统在遇到海浪等环境因素时容易出现抖动,对航行稳定性造成了很大影响。
为了解决这个问题,我们提出了一种新的船用捷联惯导系统阻尼算法。
传统的阻尼算法是通过增加阻尼器的负载,使得惯性元件动能逐渐消耗来达到减少捷联惯导系统抖动的目的。
但这种方式会极大地增加系统的成本,同时也会使得系统的响应速度下降。
而我们的新算法则采用了多层次、多维度的动态阻尼控制策略,在保持系统灵敏度的同时,实现了抖动的最佳消除。
我们的新算法的主要特点如下:1.多层次阻尼控制策略我们的算法通过设置多层次的阻尼控制,使得阻尼器对系统的影响逐渐加重。
在海浪等恶劣环境下,我们可以根据船舶状态进行智能控制,选择适当的阻尼级别来抵消环境带来的影响。
2.多维度阻尼控制策略除了多层次的控制外,我们的算法还对系统的多个维度进行了分层控制。
这样可以更好地适应不同的风险、不同的航行模式,同时还可以更加灵活地应对突发状况。
3.动态自适应控制策略我们的算法还利用了机器学习技术,通过对实际航行数据的学习,实现了动态自适应的控制。
这样可以随着航行时不断变化的环境因素,实现对抖动的实时响应。
通过以上特点的结合,我们的新算法可以有效地消除捷联惯导系统的抖动,提升船舶导航系统的稳定性和精度。
与传统算法相比,我们的算法成本更低,响应速度更快,适用范围更广。
总之,我们的船用捷联惯导系统阻尼算法在航运工业中具有非常广泛的应用前景。
希望未来可以得到更多实际应用的机会,并为航运行业的发展作出更多贡献。
为了更好地支持上面提出的船用捷联惯导系统阻尼算法,我们可以列出相关数据并进行分析。
以下是几个可能对算法性能有影响的数据指标:1.海浪高度和周期海浪的高度和周期是船舶航行中最重要的环境因素之一。
捷联惯导系统的算法研究及其仿真实现Study and Simulation of Strapdown Inertial Navigation System1.1.3捷联惯导系统的发展趋势捷联式惯导系统是从20世纪60年代初开始发展起来的。
20世纪70年代以来,作为捷联系统的核心部件—惯性测量装置和计算机技术有了很大发展,而电子技术、计算机技术、现代控制理论的不断进步,为捷联惯性技术的发展创造了有利条件。
在硬件方面,新一代惯性器件如激光陀螺、光纤陀螺的成功研制,为捷联惯导的飞速发展打下了物质基础。
进入20世纪80-90年代,在航天飞机、宇宙飞船、卫星等民用领域及各种战略、战术导弹、军用飞机、反潜武器、作战舰艇等军事领域开始采用动力调谐式陀螺、激光陀螺和光纤式陀螺的捷联惯导系统。
其中激光陀螺和光纤式陀螺是捷联惯导系统的理想器件。
激光陀螺具有角速率动态范围宽、对加速度和震动不敏感、不需温控、启动时间特别短和可靠性高等优点。
激光陀螺惯导系统己在波音757/767、A310民机以及F-20战斗机上试用,精度达到 1.85km/h 的量级。
20世纪90年代,激光陀螺惯导系统估计占到全部惯导系统的一半以上,其价格与普通惯导系统差不多,但由于增加了平均故障间隔时间,其寿命期费用只有普通惯导系统的15%-20%。
光纤陀螺实际上是激光陀螺中的一种,其原理与环型激光陀螺相同,它克服了由激光陀螺闭锁带来的负效应,具有检测灵敏度和分辨率极高、启动时间极短、动态范围极宽、结构简单、零部件少体积小、造价低、可靠性高等优点。
采用光纤陀螺的捷联航姿系统已用于战斗机的机载武器系统及波音777飞机中。
波音777由于采用了光纤陀螺的捷联惯导系统,其平均故障间隔时间可高达20000h。
采用光纤陀螺的捷联惯导系统被认为是一种极有发展前途的导航系统。
而随着航空航天技术的发展及新型惯性器件关键技术的陆续突破,捷联惯导系统的可靠性、精度将会更高。
船用捷联惯性导航系统惯性系快速对准算法1. 前言- 引言:船舶导航系统的发展及其重要性- 目的:介绍船用捷联惯性导航系统及其快速对准算法的原理和应用- 论文结构:本文共分五个章节,分别为:- 第一章:船用捷联惯性导航系统的概述- 第二章:捷联惯性导航系统的原理- 第三章:捷联惯性导航系统的对准方法综述- 第四章:船用捷联惯性导航系统惯性系快速对准算法- 第五章:结论与展望2. 船用捷联惯性导航系统的概述- 船用导航系统的需求- 船用捷联惯性导航系统的定义- 船用捷联惯性导航系统的组成和工作原理3. 捷联惯性导航系统的原理- 加速度计和陀螺仪的原理与特点- 惯性测量单元(IMU)的工作原理和结构组成- 惯性测量误差及影响因素分析4. 捷联惯性导航系统的对准方法综述- 对准的定义及意义- 惯性导航系统的对准方法分类- 对准误差评价指标及优化方法5. 船用捷联惯性导航系统惯性系快速对准算法- 快速对准算法的基本思想- 粗对准的实现方法与流程- 精确对准的实现方法与流程- 快速对准算法的实验结果与分析6. 结论与展望- 总结本文的主要研究内容和成果- 展望捷联惯性导航系统在船舶导航领域的应用前景和发展方向。
第一章:船用捷联惯性导航系统的概述1.1 船用导航系统的需求船舶是大海上的移动基地,船舶导航系统对于航行的安全和准确至关重要。
传统的船舶导航系统主要依赖于全球定位系统(GPS)、电子海图和罗盘等设备,但是这些设备都存在着一定的局限性。
首先,GPS在某些地区或气象条件下会受到干扰或信号遮挡,影响船舶的准确导航。
其次,电子海图只能提供基本的航线规划,而无法反映船舶的实际情况。
最后,传统的罗盘系统需要受到地球磁场的影响,导致精度不高。
因此,船用捷联惯性导航系统应运而生。
捷联惯性导航系统是一种基于惯性测量原理的导航系统,通过加速度计和陀螺仪等传感器来测量物体的线性和角速度运动,从而计算出物体的位置、姿态和速度等信息。