解三角形知识点汇总和典型例题
- 格式:doc
- 大小:619.50 KB
- 文档页数:11
《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
第12讲解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()A B.2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b AB A A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sin cossin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC =,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以43sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得1183sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:2222232cos 3)132313492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆423sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆222232=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD 面积16sin12083S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理4212sin AC R B ==3sin 4214213θ== 由余弦定理可得:2226226cos 4024cos AC θθ=+-⨯⨯⨯=-334024cos sin 421421θθ-∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知sin 30,27,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。
文成教育学科辅导教案讲义授课对象授课教师徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课使用教具人教版教材教学目标 熟练掌握三角形六元素之间的关系,会解三角形教学重点和难点 灵活解斜三角形 参考教材人教版必修5第一章教学流程及授课详案解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式: (1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
333绵阳市开元中学高 2014 级高三一轮复习③ tan (A + B )= - tan C ;④sinA + BC = cos , ⑤cosA +B = sinC 《解三角形》知识点、题型与方法归纳制卷:王小凤学生姓名:7.实际问题中的常用角 (1)仰角和俯角2 22 2 一、知识点归纳(★☆注重细节,熟记考点☆★)1. 正弦定理及其变形在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)asin A = b sin B = c sin C= 2R (R 为三角形外接圆半径) 变式:(1) a = 2R sin A , b = 2R sin B , c = 2R sin C (边化角公式)(2)sin A = a ,sin B =2Rb , sin C =c 2R 2R (角化边公式) (2) 方位角(3)a : b : c = sin A : sin B : sin C(4) a = sin A , a = sin A , b =sin B b sin B c sin C c sin C2. 正弦定理适用情况: (1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况). 3. 余弦定理及其推论从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为 α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
仰角与俯角是相对于水平线而言的, 而方位角是相对于正北方向而言的。
(3) 方向角:相对于某一正方向的水平角(如图③)如: ①北偏东 即由指北方向顺时针旋转到达目标方向;a 2 =b 2 +c 2 - 2bc cos Acos A =b 2 +c 2 - a 22bc②“东北方向”表示北偏东(或东偏北) 45︒ .(4) 坡度:坡面与水平面所成的二面角的度数(如图④,角 θ 为坡角)b 2 = a 2 +c 2 - 2ac cos B c 2 = a 2 + b 2 - 2ab cos Ccos B =a 2 + c 2 -b 22ac a 2 + b 2 - c 2二、题型示例(★☆注重基础,熟记方法☆★)4. 余弦定理适用情况:cos C =2ab1.在V ABC 中,若∠A =60°,∠B =45°,BC =3 2,则 AC = ()(1)已知两边及夹角;(2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5. 常用的三角形面积公式A.4B .2C .D . 2 2.在V ABC 中, a 2 = b 2 + c 2 + 3bc ,则∠A 等于()A .60°B .45°C .120°D .150°(1) S ∆ABC = 1 ⨯ 底⨯高;2 (2) 1 1 1 abcS = ab sin C = ac sin B = bc sin A = (R 为∆A 接BC 圆半径 )(两边夹一角);2 2 2 4R6. 三角形中常用结论(1) a + b > c , b + c > a , a + c > b (即两边之和大于第三边,两边之差小于第三边) (2) 在∆A ,BC 即大边A 对> 大B ⇔角,a >大b 角⇔对s 大in 边A >)sin B ( (3) 在∆ABC 中, A + B + C = ,所以①sin (A + B )= sin C ;② cos (A + B )= -cos C ;3. 设V ABC 的内角 A , B , C 所对的边分别为a , b , c , 若b cos C + c cos B = a sin A , 则V ABC 的形状为( )A. 锐角三角形B .直角三角形C .钝角三角形D .不确定4. 若△ABC 的三个内角满足sin A : sin B : sin C = 3 : 5 : 7 ,则△ABC ()3考点一:正弦定理、余弦定理的简单应用 考点二:利用正弦定理、余弦定理判断三角形的形状3 3 33 3 14 15 3 14 15考点四:利用正余弦定理求角2 考点三:利用正余弦定理求三角形的面积A. 一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形∴∠ADB =180°-(45°+30°)=105°.DBAB在△DAB 中,由正弦定理,得sin ∠DAB =sin ∠ADB ,cos A bAB ·sin ∠DAB 5(3+\r(3))·sin 45°5. 在∆ABC 中,若cos B =a ,则△ABC 是()A. 等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形6. 在∆ABC 中, AB =, AC = 1 , ∠A = 30︒ ,则∆ABC 面积为() ∴DB =sin ∠ADB = sin 105°5(3+\r(3))·sin 45°=sin 45°cos 60°+cos 45°sin 60°=2=10 3(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =20 3(海里), 在△DBC 中,由余弦定理,得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBCA.B.C.或 D .或 12424 2=300+1 200-2×10 3×20 3×2=900, 7. 已知∆ABC 的三边长a = 3, b = 5, c = 6 ,则∆ABC 的面积为() ∴CD =30(海里),A .B . 2C .D . 2 30∴需要的时间 t =30=1(小时).故救援船到达 D 点需要 1 小时.8. 在锐角中∆ABC ,角 A , B 所对的边长分别为a , b .若2a sin B = 3b ,则角等于 ()三、高考真题赏析A.B.C.D.1.(2016 年ft 东)在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,已知tan A tan B126 4 3 2(tan A + tan B ) = + cos B .cos A9.在△ABC 中,若 a =18,b =24,A =45°,则此三角形有 ( )(Ⅰ)证明:a +b =2c ;(Ⅱ)求 cos C 的最小值.A .无解B .两解C .一解D .解的个数不确定1【解析】(Ⅰ)由2(tanA + tanB) = tanA tanB+ 得10. 在∆ABC ,内角 A , B , C 所对的边长分别为a , b , c . a sin B cos C + c sin B cos A = ∠B = ()b , 且a > b ,则2 2 ⨯ sinC =sinA cosB+ sinB cosA, A.B.C. 2D. 5cosAcosB cosAcosB cosAcosB 2sin C = sin B + sin C a + b = 2c633 6所以,由正弦定理,得.a 2 +b 2 -c 2 (a + b )2 - 2ab - c32c 3c 23 1(Ⅱ)由cos C == = - 1 ≥ - 1 = - 1 = .11. 如图:A ,B 是海面上位于东西方向相距5(3 + 3 )海里的两个观测点,现位于 A 点北偏东45︒ ,B 点2ab2ab2ab 2( a + b )2 2 2 2北偏西60︒ 的 D 点有一艘轮船发出求救信号,位于 B 点南偏西60︒ 且与 B 点相距20 船立即前往营救,其航行速度为每小时 30 海里,该救援船到达 D 点需要多长时间?解 由题意知 AB =5(3+ 3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,1海里的 C 点的救援所以cos C 的最小值为 .22.(2016 年四川)在△ABC 中,角 A ,B ,C 所对的边分别是 a ,b ,c ,且cos A + cos B = sin C. a b c3 3 5 3(\r(3)+1)3+1 考点五:正余弦定理实际应用问题(I)证明:sin A sin B sin C ;3 3 Ctan tan tan 5(II )若b 2 + c 2 - a 2 = 6bc ,求tan B .5∆ABC 中, D 是 BC 上的点, AD 平分∠BAC , ∆ABD 面积是∆ADC 面积的 2 倍.a =b =c (Ⅰ) 求sin ∠B ;(Ⅱ)若 AD = 1 , DC =2 ,求 BD 和 AC 的长.【解析】(I )证明:由正弦定理 sin A sin Bsin C 可知sin ∠C2cos A + cos B = sin C = 1原式可以化解为 sin A sin B sin C∵ A 和 B 为三角形s i 内n A 角sin , B ∴sin A sin B ≠ 0 则,两边同时乘以,可得sin B cos A + sin A cos B = sin A sin B 由和角公式可知, sin B cos A + sin A cos B = sin (A + B )= sin (- C )= sin C原式得证。
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。
c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。
(1)三角形内角和:A+B+C=π。
(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。
c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。
利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。
②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
剖析:已知两角与一边,用正弦定理,有解时,只有一解。
已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。
3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。
解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒. 2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.(2) 二倍角公式 sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+==(3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边夹一角).6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). (3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.(4)2sin 2cos ,2cos 2sinCB AC B A =+=+. 二、典型例题题型1、计算问题(边角互换)例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。
解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。
解三角形题型分类解析类型一:正弦定理1、计算问题: 例1、(2013•北京)在△ABC 中,a=3,b=5,sinA=,则sinB=_________例2、已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C ++++=.例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b . 求角A 的大小;2、三角形形状问题例3、在ABC ∆中,已知,,a b c 分别为角A ,B ,C 的对边,1)B A b cos cos a =试确定ABC ∆形状。
2)若cos cos a B b A=,试确定ABC ∆形状。
4)在ABC ∆中,已知A b B a tan tan 22=,试判断三角形的形状。
5)已知在ABC ∆中,C c B b sin sin =,且C B A 222sin sin sin +=,试判断三角形的形状。
例4、(2016年上海)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于______类型二:余弦定理1、 判断三角形形状:锐角、直角、钝角在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角.例 1、在△ABC 中,若a =9,b =10,c =12,则△ABC 的形状是_________。
2、求角或者边例2、(2016年天津高考)在△ABC 中,若AB ,120C ∠= ,则AC =.例 3、在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.例 4、在△ABC 中,已知a=7,b=3,c=5,求最大的角和sinC?3、余弦公式直接应用例 5、:在∆ABC 中,若222a b c bc =++,求角A .例 6、:(2013重庆理20)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2ab =c 2.(1)求C ;例7、设△的内角,,所对的边分别为,,. 若,则角例8、(2016年北京高考) 在ABC 中,.(1)求 的大小;(2的最大值.类型三:正弦、余弦定理基本应用例1.【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b =. 例2.1)(22=-+acb c a ,则B 等于。
解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b2=c 2。
(勾股定理) (2)锐角之间的关系:A +B=90°; (3)边角之间的关系:(锐角三角函数定义) s inA =cos B =c a ,cos A =sin B =c b ,tan A=ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C为其内角,a 、b 、c 分别表示A 、B 、C的对边。
(1)三角形内角和:A+B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b 2+c 2-2bccos A; b 2=c2+a 2-2c acos B ; c 2=a 2+b2-2ab c osC 。
3.三角形的面积公式:(1)∆S =21ah a=21bh b =21ch c (ha、h b 、h c 分别表示a、b 、c 上的高); (2)∆S =21ab s inC =21bc si nA =21ac s inB;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。
中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
板块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形.二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳:cba CBA⑴ 三边之间的关系:222a b c += (勾股定理); ⑵ 锐角之间的关系:90A B ∠+∠=︒; ⑶ 边角之间的关系:sin a A c =,cos b A c =,tan a A b =,cot b A a=. 三、 解直角三角形的四种基本类型⑴ 已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; ⑵ 已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =;⑶ 已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,cot b a A =,sin ac A=;⑷ 已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠.具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin ac A =等.四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 直角三角形两锐角间的三角函数关系(五)解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故s in c o s (90)c o s A A B =︒-=,cos sin A B =,tan cot A B =,cot tan A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.(六)如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化解直角三角形为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是: ①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.【例1】 在三角形ABC 中,903010C A AB ∠=︒∠=︒=,,,则AC 的长度为( )A. B. C. D.【例2】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,4b =;【例3】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:60A ∠=︒,6a b +=;【例4】 已知Rt ABC ∆中,90C ∠=︒,根据下列条件解直角三角形:45A ∠=︒,12S ∆=.【例5】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果40BCD ∠=︒,求AC 的长度D C BA【例6】 如图,在Rt ABC ∆中,已知1CD AB BC ⊥=,,如果1tan 3BCD ∠=,求CD 的长度D C BA【例7】 如图所示,在ABC ∆中,90C ∠=︒,D 是AC 边上的一点,且53AD DB CD ===,,求t a n CBD ∠和sin A 的值.DCB A【例8】 如图,在凯里市某广场上空飘着一只汽球P ,A B ,是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角45PAB ∠=︒,仰角30PBA ∠=︒,求汽球P 的高度(精确到0.1米,3=1.732)PACPBA【例9】 在Rt ABC ∆中,90C ∠=︒,若sin tan A B =,求cos A 的值.【例10】 在Rt ABC ∆中,90C ∠=︒,若cos cot A B =,求sin A 的值.【例11】 在三角形ABC 中,90C ∠=︒,a b c ,,分别是A B C ∠∠∠,,的对边,已知603B a b ∠=︒+=+,求a b ,【例12】 如图,在ABC ∆中,已知20AB AC BC ===,ABC ∆中各内角的度数 DCBA【例13】 如图,已知:ABC ∆是等腰直角三角形,90ACB ∠=︒,过BC 的中点D 作DE AB ⊥,垂足为E ,连接CE ,求sin ACE ∠的值.FED CBA【例14】 如图所示,天空中有一静止的广告气球C ,从地面A 点测得C 的仰角为45°,从地面B 点测得C 的仰角为60°.已知20AB =米,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度CD (结果保留根号).DCBA【例16】 已知:如图,ABC ∆中,45B AB ∠=︒=,,D 是BC 上一点,53AD CD ==,,求ADC ∠的度数及AC 的长.C BA板块二 解直角三角形应用(七)直角三角形中其他重要概念⑴ 仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.⑵ 坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为hi l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. ⑶ 方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线2. 解直角三角形应用题的解题步骤及应注意的问题:⑴ 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;⑵ 找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);⑶ 根据已知条件,选择合适的边角关系式解直角三角形;⑷ 按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.(一)、仰角俯角【例17】 如图,一艘核潜艇在海面下500米A 点处测得俯角为30︒正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60︒正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(精确到米)海面60°30°D CBA【例18】 亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C D N 、、在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?M【例19】 某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=︒,在B 处测得A 的仰角40ABC ∠=︒,在D 处测得A 的仰角85ADF ∠=︒,过D 点作地面BE 的垂线,垂足为C . ⑴ 求ADB ∠的度数; ⑵ 求索道AB 的长.(结果保留根号)【例20】 如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=︒,量得树干倾斜角38BAC ∠=︒,大树被折断部分和坡面所成的角604m ADC AD ∠=︒=,. ⑴求CAE ∠的度数;⑵求这棵大树折断前的高度.1.4 1.72.4==).A CDE FBGACDEFB【例21】 一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米( 1.732≈ 1.414≈供计算时选用)DPGCO A【例22】 如图,某公园入口处原有三级台阶,每级台阶高20cm ,深为30cm ,为方便残疾人士,拟将台阶改为斜坡,斜坡的坡角BCA ∠为12︒,设台阶的起点为A ,斜坡的起点为C ,求AC 的长度(精确到1cm )DC BA【例23】 课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15︒,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30︒,求旗杆EG 的高度.C60°38°BDE23°AF【例24】 在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A 处观测到河对岸水边有一点 C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:3tan315︒≈,1sin312︒≈)【例25】 如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.A⑴ 请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n …表示,角用α,β…表示,测倾器高度忽略不计);⑵ 根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).【例26】 如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45︒和60︒,且A 、B 、E三点在一条直线上,若15BE =米,求这块广告牌的高度.(取1.73≈,计算结果保留整数)EDC BA60︒45︒【例27】 由山脚下的一点A 测得山顶D 的仰角是45︒,从A 沿倾斜角为30︒的山坡前进1500米到B ,再次测得山顶D 的仰角为60︒,求山高CD .DCBA【例28】 如图,在山脚的C 处测得山顶A 的仰角为45︒,沿着坡度为30︒的斜坡前进400米到D 处(即30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【例29】 如图所示,某学校拟建两幢平行的教学楼,现设计两楼相距30米,从A 点看C 点,仰角为5︒;从A点看D 点,俯角为30,解决下列问题:⑴ 求两幢楼分别高多少米?(结果精确到1米)⑵ 若冬日上午9:00太阳光的入射角最低为30(光线与水平线的夹角),问一号楼的光照是否会有影响?请说明理由,若有,则两楼间距离应至少相距多少米时才会消除这种影响?(结果精确到1米)(参考数据:tan50.0875≈ tan300.5774≈ cos30 1.732≈)DCDCB A【例30】 若每层楼高2.2米,问在例题的第⑵问中,在一号楼中至少住在第几层光照就不会受到二号楼的影响?F 30︒ED CBA【例31】 某住宅小区有一郑南朝向的居民楼,如图,该楼底层是高为6m 的超市,超市以上是居民住房,在该楼前方15m 处准备盖一幢高20m 的新楼,已知当地冬季正午的阳光与水平线夹角为32︒ ⑴超市以上居民住房采光是否受到影响?为什么?⑵若要使居民住房采光不受影响,两楼至少应相距多少米?(精确到0.1m )新楼居民楼新楼32°BADCBA【例32】 如图,“五一”期间在某商贸大厦上从点A 到点B 悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30︒,测得条幅端点B 的俯角为45︒;小雯在三楼C 点测得条幅端点A 的仰角为45︒,测得条幅端点B 的俯角为30︒.若设楼层高度CD 为3米,请你根据小明和小雯测得的数据求出条幅AB 的长.(结果精确到个位,参考数据1.732)【例33】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD (用含a αβθ,,,的代数式表示)(二)、坡度角【例34】 为了加固一段河堤,需要运来砂石和土将堤面加宽1m ,使坡度由原来的1:2变成1:3,如图所示,已知原来背水坡长12BC m ,堤长100m ,那么需要运来砂石和土多少立方米?(参考数据3≈1.7,5≈2.7)CFEDBA【例35】 燕尾槽的横断面是等腰梯形,下图是个燕尾槽的横断面,其中燕尾角B 为55°,外口宽AD 为180 mm ,燕尾槽的深度为70 mm ,求它的里口宽BC (精确到1 mm )F EDCBA【例36】 创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.⑴请你帮助小王在下图中把图形补画完整;⑵由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中1:0.75i=是坡面CE的坡度),求r的值.【例37】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.⑴求整修后背水坡面的面积;⑵如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?DCBA【例38】城市规划期间,欲拆除一电线杆AB,如图所示,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度为2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30︒,D、E之间是宽为2m的人行道,试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心.以AB的长为半径的圆形区域为危险区域).FE人行道DCB A【例39】 如图,甲、乙两建筑物的水平距离为30m ,从乙的顶部A 测得甲的顶部C 的仰角为60︒,测得甲的底部D 的俯角为30︒,求两建筑物的高.B【例40】 在建筑楼梯时,设计者要考虑楼梯的安全程度.如图1,虚线为楼梯的斜度线,斜度线与地板的夹角为倾角θ,一般情况下,倾角θ愈小,楼梯的安全程度愈高.如图2,设计者为提高楼梯的安全程度,要把楼梯的倾角由1θ减至2θ,这样楼梯占用地板的长度由1d 增加到2d ,已知11440d m θ=∠=︒,,236θ∠=︒,求楼梯占用地板的长度增加了多少?(精确到0.01 m . 参考数据:tan36°=0.7256, tan40°=0.8391.)θ地板地板【例41】 武当山风景管理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由44︒减至32︒,已知原台阶AB 的长为5米(BC 所在地面为水平面). ⑴ 改善后的台阶会加长多少?(精确到0.01米)⑵ 改善后的台阶多占多长一段地面?(精确到0.01米)44︒32︒CBA【例42】 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC AD ∥,斜坡40AB =米,坡角60BAD ∠=︒,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)?ABD CEF G ECDBA(三)、方位角【例43】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上, 2AB km =,15DAC ∠=︒. (1)求B D ,之间的距离; (2)求C D ,之间的距离.中山路文化路和平路环城路环城路和平路文化路中山路BCD45°30°15°15°30°45°ODC BABCA44︒【例44】 如图所示,某轮船以30海里/时的速度航行,在A 点处测得海面上的哨所P 在南偏东60︒,向北航行40分钟后到达B 点,测得哨所P 在南偏东30︒,轮船改变为北偏东60︒的航向再航行2小时到达C 点,若在PC 上存在一点M ,点M 在点B 的南偏东60︒处,且在点M 的周围有方圆15海里的暗礁区,问轮船从B 点到C 点的航行中有无触礁的危险?是否需要改变航向?EDB A【例45】 为缓解“停车难”的问题,某单位拟建造地下停车库,设计师提供了车库入口设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你计算图中CE 的长(精确到0.1m )【例46】 如图所示,某船以每小时36海里的速度向正东航行,在A 点测得某岛C 在北偏东60°方向上,航行半小时后到B 点,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁. (1)试说明B 点是否在暗礁区域外.(2)若继续向东航行,有无触礁危险?请说明理由.东【例47】 如图,公路MN 和公路PQ 在P 处交会,且30QPN ∠=︒,点A 处有一所学校,160m AP =,假设拖拉机行使时,周围100m 以内会受到噪音的影响,那么当拖拉机在公路MN 上沿PN 的方向以10m/s 的速度行使时,⑴ 学校是否会受到噪音的影响?为什么?⑵若学校会受到噪音的影响,受影响的时间是多少?【例48】 随着科学技术的发展,机器人已经能按照设计的指令完成各种动作,在坐标平面上,根据指令[s ,]α(0a ≥,0360α︒≤<︒)机器人能完成下列动作:先原地顺时针旋转角度α,再朝其面对的方向沿直线行走距离s.⑴填空:如图,若机器人在直角坐标系的原点,且面对y轴的正方向,现要使其移动到点(2A,2),则给机器人发出的指令应是_________⑵机器人在完成上述指令后,发现(6P,0)处有一小球正向坐标原点做匀速直线运动,已知小球的滚动速度与机器人行走的速度相同,若忽略机器原地旋转时间,请你给机器人发一个指令,使它能最快截住小球.(如图,点C为机器人最快截住小球的位置)(角度精确到度;参考数据:sin490.75︒≈,cos370.80︒≈,tan370.75︒≈,tan390.80︒≈)NyxPOANyxPO CBA【例49】第⑵问中,将“小球的滚动速度与机器人行走的速度相同”改为“小球速度为机器人的2”,则要在最短时间内截住小球应下的指令为.【例50】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.【例51】渔船上的渔民在A处看见灯塔M在北偏东60︒方向,这艘渔船以28海里/时的速度向正东航行,半小时到B处.在B处看见灯塔M在北偏东15︒方向,求此时灯塔M与渔船的距离.北东北15︒60︒MBA北东北60︒15︒NM BA【例52】 如图,某剧组在东海拍摄广告风光片,拍摄基地位于A 处,在其正南方向15海里处一小岛B ,在B的正东方向20海里处有一小岛C ,小岛D 位于AC 上,且距小岛A 有10海里. ⑴ 求A ∠的度数(精确到1︒)和点D 到BC 的距离;⑵ 摄制组甲从A 处乘甲船出发,沿A B C →→的方向匀速航行,摄制组乙从D 处乘乙船出发,沿南偏西方向匀速直线航行,已知甲船的速度是乙船速度的2倍,若两船同时出发并且在B 、C 间的F 处相遇,问相遇时乙船航行了多少海里?(结果精确到0.1海里)北C B北EC B【例53】 海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)【例54】 为保卫祖国的海疆,我人民解放军海军在海岸线上相距20n mile 的A B ,两地设立观测站,按国际惯例,海岸线以外12n mile 范围内均为我国领海,外国船只除特许外,不得私自进入我国领海,某日,观测员发现一外国船只行驶至P 处,在A 观测站测得P 在北偏东27︒,同时在B 观测站测得P 在北偏西56︒,问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海?(参考数据:932sin63tan632sin34tan341053︒≈︒≈︒≈︒≈,,,)56°27°PBA【例55】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. ⑴ 该城市是否会受这次台风影响?请说明理由.⑵ 若受台风影响,那么台风影响该城市的持续时间会有多长? ⑶ 该城市受台风影响的最大风力是几级?(四)其它【例56】 公园里有一块形如四边形ABCD 的草地,测得10BC CD ==米,120B C ∠=∠=︒,45A ∠=︒.请你求出这块草地的面积.DCBA【例57】 如图,不透明圆锥体DEC 放在水平面上,在A 处灯光照射下形成影子,设BP 过底面圆的直径,已知圆锥体的高为,底面半径为2m ,4BE m =⑴求B ∠的度数;⑵若2ACP B ∠=∠,求光源A 距水平面的高度PEDCBA【例58】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【例59】 如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.⑴ 求AO 与BO 的长;⑵ 若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.图1图2图3【例60】 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)图3图2B【例61】 如图,在ABC ∆中,90C ∠=︒,AB的垂直平分线MN 交AC 于点D ,连结BD ,若3cos 5BDC ∠=, 求tan A 的值.(图1)NM DCA【例62】 如图所示,已知在Rt ABC ∆中,90ACB ∠=︒,3sin 5B =,D 是BC 上一点,DE AB ⊥,垂足为E ,CD DE =,9AC CD +=.求:⑴ BC 的长;⑵ CE 的长.EDCBA【例63】 如图,某居民小区内A B ,两楼之间的距离30MN =米,两楼的高都是20米,A 楼在B 楼正南,B楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离2DN =米,窗户高 1.8CD =米.当正午时刻太阳光线与地面成30角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(1.4141.732=2.236=)【例64】 如图,水坝的横截面为梯形ABCD ,坝顶宽6m AD =,坡面CD =,AB 的坡度为,135ADC ∠=︒,求水坝的横截面积.DBA【例65】 水坝的横截面是等腰梯形ABCD ,坝顶宽6AD m =,坝高4m ,斜坡AB 的坡度为1:2,现要将水坝加高2m ,要求坝顶宽度不变,背水坡AB 改为EG 后,坡度改为1:2.5,如图,按这样的要求,加固一条长为50m 的水坝,需要多少土方?Q HR G FEDCB A【例66】 如图所示,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时的速度沿北偏西60︒方向前进,乙船以每小时15km 的速度沿东北方向前进,甲船航行2h 到达C 处,发现渔具丢在乙船上,于是甲船快速(匀速)沿北偏东75︒的方向追赶,结果两船在B 处相遇. ⑴ 甲船从C 处追上乙船用了多长时间? ⑵ 甲船追赶乙船的速度是多少?北【例67】 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,建筑物周围没有开阔平整地带,建筑物顶端宽度AD 、高度DC 都可以直接测得,从A D C ,,三点都可看到塔顶H⑴试根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案,具体要求如下:①可供使用的测量工具有皮尺、测角器;②测量数据尽可能少;③在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A D ,间距离,用m 表示,D C ,间距离,用n 表示;如果测角,用αβγ,,表示)⑵根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示,测角器高度忽略不计)DBA【例68】 如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C ,两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)。
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
中小学1对1课外辅导专家武汉龙文教育学科辅导教案讲义授课对象 杨文、黄银 授课教师 程锐 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课使用教具人教版教材教学目标 熟练掌握三角形六元素之间的关系,会解三角形教学重点和难点灵活解斜三角形 参考教材人教版必修5第一章教学流程及授课详案解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3)求解:正确运用正、余弦定理求解; (4)检验:检验上述所求是否符合实际意义。
二、典例解析 题型1:正、余弦定理 例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
解法一:先解三角方程,求出角A 的值。
.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180<<A , 4560,105.A A ∴-==13tan tan(4560)2313A +∴=+==--- , .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+==A S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()。
解法二:由sin cos A A +计算它的对偶关系式sin cos A A +的值。
sin cos A A +=22①21(sin cos )212sin cos 20180,sin 0,cos 0.1(sin 2)2A A A A A A A A ∴+=∴=-<<∴><=- 另解23cos sin 21)cos (sin 2=-=-A A A A , ∴-=sin cos A A 62② ①+②得sin A =+264。
①-②得cos A =-264。
从而sin 264tan 23cos 426A A A +==⨯=---。
以下解法略去。
点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。
两种解法比较起来,你认为哪一种解法比较简单呢? 题型3:三角形中的三角恒等变换问题例3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值。
分析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理。
由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cB b sin 的值。
解法一:∵a 、b 、c 成等比数列,∴b 2=ac 。
又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc 。
在△ABC 中,由余弦定理得:cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°。
在△ABC 中,由正弦定理得sin B =aA b sin ,∵b 2=ac , ∠A =60°,∴ac b c B b ︒=60sin sin 2=sin60°=23。
解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B 。
∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B 。
∴cB b sin =sin A =23。
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。
题型4:正、余弦定理判断三角形形状例4.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形答案:C解析:2sin A cos B =sin C =sin (A +B )=sinAcosB+cosAsinB ∴sin (A -B )=0,∴A =B 另解:角化边点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径题型5:三角形中求值问题例5.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。
解析:由A+B+C=π,得B+C 2=π2 -A 2,所以有cos B+C 2 =sin A2。
cosA+2cos B+C 2 =cosA+2sin A 2 =1-2sin 2A2 + 2sin A 2=-2(sin A 2 - 12)2+ 32;当sin A 2 = 12,即A=π3 时, cosA+2cos B+C 2取得最大值为32。
点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。
题型6:正余弦定理的实际应用例6.(2009辽宁卷文,理)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。
测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km 。
试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414,6≈2.449)解:在△ABC 中,∠DAC=30°, ∠ADC=60°-∠DAC=30, 所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD=BA , 在△ABC 中,,AB Csin CB C A sin ∠=∠A AB 即AB=,2062315sin ACsin60+= 因此,BD=。
km 33.020623≈+ 故B ,D 的距离约为0.33km 。
点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。
三、思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。