信号与系统实验五信号的采样与还原.
- 格式:docx
- 大小:11.54 MB
- 文档页数:9
信号与系统实验报告【实验原理】1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S⁄称抽样频率。
图1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。
而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。
当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
因此即使f s =2B ,恢复后的信号失真还是难免的。
图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。
(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图2抽样过程中出现的两种情况4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。
信号与系统课程设计题目:信号的抽样与恢复学生姓名:院(系、部):机电工程学院指导教师:2012年12月24日至2012年12月28日摘 要本设计是运用MATLAB 编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。
目的在于能够熟练的应用MATLAB 软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。
本设计通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对抽样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。
信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。
通过MATLAB 软件中的信号分析的方法来验证抽样定理的正确性。
关键词:抽样与恢复;滤波器 ;MATLAB1 设计任务与要求(1)用MATLAB 实现常用连续信号 (2)用MATLAB 实现常用离散信号(3)根据以下三种情况用MATLAB 实现)(t Sa 的信号及恢复并求出两者误差,分析三种情况下的结果。
由于函数)(t Sa 不是严格的带限信号,其带宽m ω可根据一定的精度要求做一近似。
①)(t Sa 的临界抽样及恢复:,1=m ω,m c ωω=,m i s p T ω/4.2=; ②)(t Sa 的过抽样及恢复: 1=m ω,m c ωω1.1=,m i s p T ω/5.2=③)(t Sa 的欠抽样及恢复: 1=m ω,m c ωω=,m i s p T ω/5.2=。
2 原理分析和设计图1 总框架图2.1连续信号的抽样定理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。
严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当抽样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
实验三 信号的采样与恢复一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
3、理解信号的抽样及抽样定理以及抽样信号的频谱分析;掌握和理解信号抽样以及信号重建的原理,验证抽样定理。
二、实验设备1、信号与系统实验箱(参考型号:TKSS —B 型)2、双踪示波器三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号)(t f s 可以看成连续信号)(t f 和一组开关函数)(t s 的乘积。
)(t s 是一组周期性的窄脉冲,如下图所示。
s T 为抽样周期,其倒数s s T f /1=称抽样频率。
图1 矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3┅┅。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按x x /sin 规律衰减。
抽样信号的频谱是原信号频谱的周期延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号的频谱中最高频率n f 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样频率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使B f s 2=,恢复后的信号失真还中难免的。
下图画出了当抽样频率B f s 2>(不混叠时)及B f s 2<(混叠时)两种情况下冲激抽样信号的频谱。
信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
实验一信号的采样与恢复(采样定理)一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验设备1、Dais-XTB信号与系统实验箱一台2、双踪示波器一台3、任意函数发生器一台三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s(t)可以看成连续信号x(t)和一组开关函数s(t)的乘积。
s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s及其谐波频率2f s、3f s……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s≥2f max,f s为采样频率,f max为原信号的最高频率。
当fs <2f max时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s=2 f max,恢复后的信号失真还是难免的。
实验中选用f s<2 f max、f s=2 f max、f s>2 f max三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
除选用足够高的采样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成采样后信号频谱的混迭,但这也会造成失真。
深圳大学实验报告课程名称:信号与系统实验实验项目名称:信号的采样和恢复学院:信息工程学院专业:通信工程指导教师:张坤华报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。
2、观察抽样过程中,发生混叠和非混叠时的波形。
三、实验仪器1、信号与系统实验箱一台(主板)。
2、系统时域与频域分析模块一块。
3、20M 双踪示波器一台。
四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。
()t s 是一组周期性窄脉冲,见图5-1,T S图 5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。
而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。
当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
实验五1实验五信号的抽样与恢复————————————————————————————————作者:————————————————————————————————日期:实验五 信号的抽样与恢复一、实验目的(1) 验证抽样定理;(2) 熟悉信号的抽样与恢复过程;(3) 通过实验观察欠采样时信号频谱的混迭现象;(4) 掌握采样前后信号频谱的变化,加深对采样定理的理解; (5) 掌握采样频率的确定方法.二、 实验内容和原理信号的抽样与恢复示意图如图4.1所示。
图5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。
)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。
一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率.当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。
)(t f 的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF .如图4。
1所示。
观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。
信号抽样与恢复的原理框图如图4。
2所示。
图 5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t f 。
实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。
2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。
3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。
4.熟悉DDS-3X25虚拟信号发生器的使用方法。
二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。
2.有混叠条件下正弦信号的取样与恢复测试分析。
3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。
三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。
该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。
)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。
在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。
取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。
电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。
其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。
信号的采样与恢复实验报告信号的采样与恢复实验报告引言:信号是信息传递的基本形式,而信号的采样与恢复是数字通信系统中的重要环节。
本实验旨在通过实际操作,探究信号的采样过程以及采样后的信号如何恢复。
一、实验目的1. 了解信号的采样原理和采样定理;2. 理解采样频率对信号重构的影响;3. 掌握信号采样与恢复的实验操作。
二、实验仪器1. 示波器;2. 函数信号发生器;3. 低通滤波器。
三、实验步骤1. 连接实验仪器,将函数信号发生器的输出接入示波器的输入端;2. 设置函数信号发生器的频率和幅度,观察信号在示波器上的波形;3. 调节函数信号发生器的频率,使其接近采样频率的一半,记录观察到的波形;4. 逐渐增加函数信号发生器的频率,观察信号的变化;5. 将示波器的输出接入低通滤波器的输入端,调节滤波器的截止频率,观察信号的恢复情况;6. 重复以上步骤,记录实验数据。
四、实验结果与分析1. 在采样频率小于信号频率的情况下,观察到信号在示波器上的波形出现了混叠现象,即采样失真。
这是因为采样频率不足以捕捉到信号的全部信息,导致信号的高频成分被误认为低频成分,从而产生了混叠现象。
2. 当采样频率接近信号频率的一半时,观察到信号的波形开始变形,但仍能较好地还原原始信号。
这是因为根据采样定理,采样频率应大于信号频率的两倍,此时信号的高频成分能够被有效采样,从而准确地恢复出原始信号。
3. 当采样频率大于信号频率的两倍时,观察到信号在示波器上的波形与原始信号基本一致,没有明显的失真现象。
这是因为采样频率足够高,能够准确地采样信号的全部信息,从而实现信号的完美恢复。
4. 在将示波器的输出信号经过低通滤波器后,观察到信号的恢复情况得到改善。
低通滤波器能够去除信号中的高频成分,从而减少混叠现象,使得信号的恢复更加准确。
五、实验总结通过本次实验,我们深入了解了信号的采样与恢复原理,并通过实际操作验证了采样定理的有效性。
实验结果表明,在采样频率满足采样定理的条件下,能够准确地恢复原始信号。
实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。
2.验证采样定理。
二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。
2.用采样定理分析实验结果。
四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。
采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。
S(t)是一组周期性窄脉冲。
由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。
平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。
当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。
采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。
2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。
3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。
Fmin=2B 为最低采样频率。
当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。
在实际使用时,一般取fs=(5-10)B 倍。
实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。
4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。
信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。
通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。
而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。
本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。
一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。
二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。
2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。
三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。
将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。
将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。
2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。
然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。
最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。
3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。
比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。
根据实验结果,验证信号抽样与恢复的有效性。
四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。
竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告篇一:实验2:连续信号的采样和恢复电子科技大学实验报告(二)学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理:实际采样和恢复系统如图3.4-1所示。
可以证明,奈奎斯特采样定理仍然成立。
xpT(t))图3.4-1实际采样和恢复系统采样脉冲:p(t)??F?pT(j?)?T2?T???k(:信号的采样与恢复实验报告)2?ak?(??k?s)其中,?s?,ak??sin(k?s?/2)Tk?s?/2F,T。
采样后的信号:xs(t)xs(j?)?1T??x(j(?k?k?s)当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。
四、实验目的与任务:目的:1、使学生通过采样保持电路理解采样原理。
2、使学生理解采样信号的恢复。
任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。
五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。
七、实验步骤:打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。
【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。
图1观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。
按“F4”键把采样脉冲设为10khz。
3、点击ssp软件界面上的按钮,观察原始正弦波。
4、按图2的模块连线示意图连接各模块。
图2观察采样波形的模块连线示意图5、点击ssp软件界面上的按钮,观察采样后的波形。
实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。
2.验证抽样定理。
二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。
()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。
图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2.在一定条件下,从抽样信号可以恢复原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。
当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。
4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。
除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。
实验五连续信号的抽样和恢复一、实验目的理解模拟信号的抽样与重构过程,理解信号时域抽样对频域的影响,理解抽样定理。
二、实验内容设信号f(t)=Sa(t)=sin(t)/t,在抽样间隔分别为(1) T s=0.7π(令ωm=1,ωc=1.1ωm)(2)T s=1.5π(令ωm=1,ωc=1.1ωm)的两种情况下,对信号f(t)进行采样,试编写MATLAB程序代码,并绘制出抽样信号波形、由抽样信号得到的恢复信号波形。
(提示:利用教材P174公式(5-10)和所附样例)(1)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=0.7*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');(2)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=1.5*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');样例:选取信号f (t)=Sa (t )=sin(t )/t 作为被抽样的信号,显然,信号的带宽ωm =1。
一、设计目的与要求1、设计目的通过本课程设计,主要训练和培养学生综合应用所学过的信号及信息处理等课程的相关知识,独立完成信号仿真及信号处理的能力。
包括:查阅资料、合理性的设计、分析和解决实际问题的能力,数学仿真软件Matlab和C语言程序设计的学习和应用,培养规范化书写说明书的能力。
2、设计要求设有一信号Xa(t)=EXP-1000|t|,计算傅立叶变换,分析其频谱,并在精度为1/1000的条件下,分别取采样频率为F=5000Hz,F=1000Hz,绘出对应的采样信号的时域信号波形频谱图。
(1)实现信号时域分析和频谱分析以及滤波器等有关Matlab函数。
(2)写好总结、程序、图表、原理、结果分析。
二、设计原理框图三、设计原理本次课程设计主要涉及采样定理、傅里叶变换、信号时域分析和频谱分析的相关内容的相关知识。
1.采样定理设连续信号)(t x a 属带限信号,最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样性信号)(t x a ∧通过一个增益为T 、截止频率为2/s Ω的理想低通滤波器,可以唯一地恢复出原连续信号)(t x a 。
否则,c s Ω<Ω2会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
对连续信号进行等间隔采样形成采样信号,对其进行傅里叶变换可以发现采样信号的频谱是原连续信号的频谱以采样频率s Ω为周期进行周期性的延拓形成的。
对模拟信号进行采样可以看做一个模拟信号通过一个电子开关S ,设电子开关每隔周期T 和上一次,每次和上的时间为τ,在电子开关的输出端得到采样信号x^a(t)。
图1 对模拟信号进行采样2、傅里叶变换(1)对于一个非周期函数f(t),如果在(-∞,+∞)满足下列条件:①、f(t)在任一有限区间上满足狄利克雷条件;②、f(t)在(-∞,+∞)上绝对可积(如下积分收敛),即:(1)则有下式的傅立叶积分成立:(2)(2)f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。
(a) 三角波频谱fE/2F(f)13f -1f -1f 13ffFs(f)fs 2fs(b) 抽样信号频谙1f图5-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
3. 抽样信号在一定条件下可以恢复出原信号,其条件是fs ≥2B f ,其中fs 为抽样频率,B f 为原信号占有频带宽度。
由于抽样信号频谱是原信号频谱的周期性延拓,因此,只要通过一截止频率为fc (fm ≤fc ≤fs-fm ,fm 是原信号频谱中的最高频率)的低通滤波器就能恢复出原信号。
如果fs <2B f ,则抽样信号的频谱将出现混迭,此时将无法通过低通滤波器获得原信号。
在实际信号中,仅含有有限频率成分的信号是极少的,大多数信号的频率成分是无限的,并且实际低通滤波器在截止频率附近频率特性曲线不够陡峭(如图4-4所示),若使fs=2Bf ,fc=fm=Bf ,恢复出的信号难免有失真。
为了减小失真,应将抽样频率fs 取高(fs >2Bf ),低通滤波器满足fm <fc <fs-fm 。
为了防止原信号的频带过宽而造成抽样后频谱混迭,实验中常采用前置低通滤波器滤除高频分量,如图5-5所示。
若实验中选用原信号频带较窄,则不必设置前置低通滤波器。
本实验采用有源低通滤波器,如图4-6所示。
若给定截止频率fc ,并取Q=12(为避免幅频特性出现峰值),R1=R2=R ,则:C1=Rf Qc π (4-1) C2=QRf 41c π (4-2)图5-5 信号抽样流程图前置低通滤波器抽样 频率低 通 滤波器抽样器F(t)F S (t)F ’(t)S(t) 图5-4 实际低通滤波器在截止频率附近频率特性曲线+-C 1+15VF ’(t)R 1R 2C 2F S (t)12367TP603TP604三、实验内容1. 观察抽样信号波形。
① 调整信号源,使DDS1输出1KHZ 的三角波,调节电位器1W1,使输出信号幅度为1V ; ② 连接DDS1与1P01,输入抽样原始信号;③ 改变抽样脉冲的频率,用示波器观察1TP03(Fs (t ))的波形,此时需把拨动开关1K1拨到“空”位置进行观察;④ 使用不同的抽样脉冲频率,观察信号的变化。
深圳大学实验报告
课程名称:信号与系统
实验名称:信号的卷积实验
学院名称:信息工程学院
专业名称:集成电路设计与集成系统
指导教师:廉德亮
报告人:学号:班级:二班
实验时间: 2015年6月04日
提交时间: 2015年6月18日
由此可见,当φ=0或是2π的整数倍时,如右图,x(t)
可以完全恢复。
当2
π
φ=-时,()sin(
)2
s
x t t ω=
该信号在采样周期2s πω整数倍点上的值都
是零;因此
在这个采样频率下所产生的信号全是零。
当这个零输入加到理想低通滤波器上时,所得输出当然也都是零。
实验步骤
1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错),并打开此模块的电源开关(S1、S2)。
2、用示波器测试H07“CLKR ”的波形,为256kHz 的方波,用导线将H07“CLKR ”和H12连接起来。
3、用示波器测试H01“2kHz ”的输出波形,为2kHz 的方波,用导线连接H01“2kHz ”和H02“输入”。
4、通过测试钩T01观察输入的方波经过截止频率为2kHz 的低通滤波器后得到2kHz 的正弦波。
抽样电路将对此正弦波进行抽样,然后经过还原电路还原出此正弦波。
5、用示波器观察测试钩T08“抽样脉冲序列”的波形。
通过按键“频率粗调”和按键“频率细调”可以改变抽样脉冲序列的频率。
抽样脉冲序列的频率的最小值为500Hz 最大值为11.5kHz 。
同样通过“占空比粗调”按键和“占空比细调”按键可以调节抽样脉冲序列的占空比。
“复位”按键可以使抽样脉冲序列的频率复位为500Hz 且占空比最小。
通过调节抽样脉冲的频率可以实现欠采样、临界采样、过采样。
6、用示波器观察T02“抽样信号”的波形。
7、观察抽样信号经低通滤波器还原后的波形T03。
8、改变抽样频率为fs<2B 和fs ≥2B ,观察抽样信号(T02)和复原后的信号(T03),比较其失真程度。
实验数据
原信号2kHz 正弦波
单通道 抽样脉冲序列
临界采样过采样抽样信号
大于4kHz 4kHz
恢复信号
大于4kHz 4kHz。