目录
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.