匀速直线运动的研究
- 格式:doc
- 大小:839.50 KB
- 文档页数:10
平衡力匀速直线运动的原理平衡力是指使物体保持平衡状态的力量。
当物体处于匀速直线运动时,其受力情况需要满足平衡力的要求。
平衡力的原理涉及多个方面,包括牛顿第一定律和力的平衡条件等。
首先,根据牛顿第一定律,也称为惯性定律,当物体受到合力为零的作用时,即平衡力等于零时,物体将保持匀速直线运动。
这是因为物体具有惯性,即物体中的每一个质点都会保持其原有的速度和方向,除非受到外力的干扰。
因此,平衡力为零意味着物体处于力的平衡状态,没有外力干预运动状态。
其次,力的平衡条件也是平衡力原理的基础之一。
力的平衡条件要求物体在各个方向上合力为零。
在匀速直线运动中,物体的速度不会改变,所以合力必须为零,才能保持匀速直线运动。
根据力的平衡条件,可以得出物体所受到的合力必须为零,即物体所受的重力和外力的合力为零。
如果合力不为零,物体将受到一个加速度,导致速度和方向的变化,运动状态将不再保持稳定。
此外,受力的矢量性质也是平衡力原理的一个重要方面。
矢量具有大小和方向两个特征,所以力也具有大小和方向。
平衡力的原理要求物体受到的每一个力都必须与其他力保持平衡,也就是说,每个力的大小和方向都必须合适,以保持整个系统的平衡。
在匀速直线运动中,物体所受的力必须相互平衡,以克服摩擦力、阻力等干扰因素,保持匀速直线运动。
最后,平衡力原理还与质点受力分析和分解力的概念相关。
根据质点受力分析的原理,可以将物体所受的力分解为各个方向上的分力,然后利用力的平衡条件进行计算和分析。
例如,在水平方向上,物体所受的外力需要与摩擦力相平衡,即外力等于摩擦力,才能保持匀速直线运动。
在竖直方向上,物体所受的重力需要与支持力相平衡,即重力等于支持力,才能保持匀速直线运动。
通过这种分解和平衡的方法,可以确定物体所受力的大小和方向,从而实现运动的平衡。
总结起来,平衡力匀速直线运动的原理涉及牛顿第一定律、力的平衡条件、矢量性质、质点受力分析和分解力等多个方面。
平衡力的原理要求物体受到的合力为零,并且各个方向上的力相互平衡,以保持匀速直线运动。
高三物理第一轮复习---用打点计时器研究匀速直线运动_1.练习使用打点计时器,学习利用打上点的纸带研究物体的运动.2.掌握判断物体是否做匀变速运动的方法.3.测定匀变速直线运动的加速度.二、实验原理1.打点计时器打点计时器是一种使用交流电源的计时仪器.它每隔0.02s打一次点(交流电频率为50Hz)。
电磁打点计时器的工作电压是4~6V,电火花打点计时器的工作电压是220V。
2.纸带上打的点的意义纸带上的点就表示了和纸带相连的运动物体在不同时刻的位置.研究纸带上点之间的间隔,就可以了解物体的运动情况.3.分析纸带可判断物体运动的性质:①若相等时间内的位移相等,则物体做匀速直线运动;②若相等时间内的位移不相等,则物体做变速直线运动;③若连续相等时间内的位移差为恒量,则物体做匀变速直线运动,并可由△x=aT2求出加速度(为了减小误差常用逐差法或v-t图象法求加速度).4.求加速度的方法:①用逐差法求加速度②用v-t图象法先根据匀变速直线运动某段时间中点的瞬时速度等于这段时间的平均速度③ 平均速度法求加速度:即利用已求出的瞬时速度值,按加速度的定义式求加速度值,为了充分利用所有实验数据,减小误差,同样采用逐差法进行数据处理.三、实验器材电火花打点计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.四、实验步骤⑴、把附有滑轮的长木板平放在实验桌上并使滑轮伸出桌面。
⑵、把打点计时器固定在木板上无滑轮的一端,如右图。
⑶、把一条细绳拴在小车上,细绳跨过定滑轮,下边吊着适当的数量钩码。
点拨:吊适当数量的钩码是为小车的加速度适当大些,减小长度测量的相对误差,并能在纸带上长约50厘米的范围内取出7-8个计数点为宜。
⑷、把穿过打点计时器的纸带固定在小车后面。
⑸、先使小车依靠在打点计时器处,接通电源后再释放小车让其运动。
⑹、断开电源取下纸带。
⑺、换上新纸带再做两次。
点拨:再做两次的目的是为了在点子已打出的纸带中选出两条无漏点、无双点,点距正常清晰的纸带,一条作逐差法用,一条作图象法用。
高一物理必修第一册第二章匀速变直线运动的研究知识梳理核心练习卷含答案解析有一根长L =15m 的铁链悬挂在某楼顶,楼中有一巨大的窗口,窗口上沿离铁链的最低点H =5m 。
当铁链从静止开始下落后始终保持竖直,不计空气阻力。
(g =10m/s 2)求:(1)铁链下端A 下落到窗口的上沿B 时,铁链的速度大小 (2)铁链通过窗口上沿的时间 【答案】(1)10m/s ;(2)1s 【详解】(1)设铁链下端A 下落到窗口的上沿B 时,铁链的速度大小为v 12102v gH -=解得110m/s v =(2) 铁链通过窗口上沿的时间为2112L v t gt =+解得1s t =92.一辆汽车以36km/h 的速度匀速行驶10s ,然后又以1.5m/s 2的加速度匀加速行驶10s 。
求: (1)汽车在20s 内的位移; (2)汽车在15s 末的瞬时速度; (3)汽车在20s 内的平均速度。
【答案】(1)275m ;(2)17.5m/s ;(3)13.75m/s 【详解】(1)汽车的初速度v 0=36km/h=10m/s ,汽车在20s 内的位移分为匀速运动位移和匀加速运动位移,前10s 内匀速运动的位移x 1=v 0t =10×10m=100m后10s 内做匀加速运动的位移2220111010m 1.510m 22x v t at =+=⨯+⨯⨯=175m故汽车在前20s 内的总位移x =x 1+x 2=100m +175m=275m(2)由题意知汽车运动前10s 做匀速运动,故15s 末是汽车做匀加速运动5s 末的瞬时速度,根据速度时间关系有v 1=v 0+at =10m/s +1.5×5m/s=17.5m/s(3)根据平均速度公式,汽车在前20s 内的平均速度275m /s 13.75m /s 20x v t === 93.一辆值勤的警车停在公路边,当警员发现从他旁边以12m/s 的速度匀速行驶的货车严重超载时,立即前去追赶,以22m/s 的加速度做匀加速运动,为确保安全,警车的行驶速度必须控制在72km/h 以内。
第二章匀变速直线运动的研究匀变速直线运动位移与时间的关系情境导入舰载机在航空母舰的甲板上起飞是,在弹射系统的作用下获得一定的速度,然后在甲板上继续加速一段距离便可达到起飞的速度。
知识点一:匀速直线运动的位移1.做匀速直线运动的物体在时间t内的位移:x=vt 。
2.做匀速直线运动的物体,其v-t图象是一条平行于时间轴的直线,其位移在数值上等于v-t图线与对应的时间轴所包围的矩形的面积,如图所示:(1)当“面积”在t轴上方时,位移取正值,这表示物体的位移与规定的正方向相同;(2)当“面积”在t轴下方时,位移取负值,这表示物体的位移与规定的正方向相反。
知识点二:匀变速直线运动的位移1.微元法与极限思想的应用在匀变速直线运动中,由加速度的定义易得速度的变化量Δv=a·Δt,只要时间足够短,速度的变化量就非常小,在非常短的时间内,我们就可以用熟悉的匀速直线运动的位移公式近似计算匀变速直线运动的位移。
如图所示,甲图中与Δt对应的每个小矩形的面积就可以看做Δt时间内的位移。
如果把每一小段Δt内的运动看做匀速直线运动,则各小矩形面积之和等于各段Δt时间内做匀速直线运动的位移之和。
时间Δt越短,速度变化量Δv 就越小,我们这样计算的误差也就越小。
当Δt →0时,各矩形面积之和趋近于v -t 图象与时间轴所围成的面积。
由梯形面积公式得x =(v 0+v )·t2在任何运动中都有x =·t因此=v 0+v 2(适用匀变速直线运动)把v =v 0+at 代入x =(v 0+v )·t2得x =v 0t +12at 22.x =v 0t +12at 2的理解公式的意义 反应了位移随时间的变化规律,不是路程随时间的变化规律 适用条件 仅适用于匀变速直线运动矢量性公式中x 、v 0、a 都是矢量,应用时必须选取统一的正方向,一般选v 0方向为正方向 特殊形式(1)当a =0时,x =v 0t (匀速直线运动)。
物体的匀速直线运动实验研究物体的运动是物理学中的一个重要研究对象,而匀速直线运动是其中的一个基本模型。
本文将通过实验来研究物体的匀速直线运动特征,并探讨相关的物理原理。
实验目的:通过对物体在匀速直线运动过程中的位置和时间的测量,确定物体的速度,并研究物体在匀速直线运动中的位移与时间的关系。
实验材料和仪器:1. 直线轨道:用来保证物体的运动轨迹是直线且无摩擦的;2. 滑块:用来模拟物体在轨道上的运动;3. 计时器:用来测量物体运动的时间;4. 标尺:用来测量物体在轨道上不同位置的位移。
实验步骤:1. 将直线轨道平放在水平桌面上,并确保其固定不动;2. 将滑块放在轨道上,并确保其能够顺畅地运动;3. 将滑块推送到轨道上的一个起始位置,并用计时器记录下时间t1;4. 通过标尺测量滑块在起始位置的位移 x1;5. 接着将滑块推送到轨道上的另一个位置,并用计时器记录下时间t2;6. 通过标尺测量滑块在另一个位置的位移 x2;7. 重复步骤5和步骤6,记录不同位置的位移和时间,直至滑块到达终点位置;8. 根据实验数据计算物体在不同时间间隔内的平均速度,并将结果记录下来;9. 绘制位移-时间图,并根据数据点拟合出直线;10. 分析实验数据,探讨物体匀速直线运动的特征和物理原理。
实验结果:通过实验得到的位移-时间图是一条直线,表明物体的直线运动是匀速的。
而根据实验数据计算得到的物体平均速度是恒定的,符合匀速运动的特征。
讨论与结论:物体的匀速直线运动是指物体在相等时间间隔内,位移相等的运动。
实验结果表明,在无外力作用下,物体的匀速直线运动中速度是恒定的,位移与时间成正比,且运动轨迹是一条直线。
物理原理解释:物体的匀速直线运动符合牛顿第一定律,即当合外力为零时,物体将保持匀速直线运动,速度和方向都不会改变。
在实验中,由于轨道的设计保证了无摩擦,因此外力可以忽略不计,这样物体就会保持匀速直线运动。
该实验还可以进一步扩展,通过改变轨道倾角、引入摩擦力等因素,研究物体运动的变化规律。
第二章匀变速直线运动的研究第一节匀变速直线运动的基本规律【学习目标】1、熟练掌握匀变速直线运动速度、位移的规律2、能熟练地应用匀变速直线运动速度、位移的规律解题。
【自主学习】一、匀速直线运动:1、定义:2、特征:速度的大小和方向都,加速度为。
二、匀变速直线运动:1、定义:2、特征:速度的大小随时间,加速度的大小和方向3、匀变速直线运动的基本规律:设物体的初速度为v0、t秒末的速度为v t、经过的位移为S、加速度为a,则两个基本公式:、【典型例题】例1、几个作匀变速直线运动的物体,在ts秒内位移最大的是()A.加速度最大的物体B.初速度最大的物体C.末速度最大的物体D.平均速度最大的物体例2、一物体作匀变速直线运动,某时刻速度的大小为4m/s,1s后速度的大小变为10m/s。
在这1s内该物体的( )A.位移的大小可能小于4m B.位移的大小可能大于10mC.加速度的大小可能小于4m/s2D.加速度的大小可能大于10m/s2.例3、甲、乙两个质点同时同地向同一方向做直线运动,它们的v—t图象如图所示,则()A.乙比甲运动的快B.2 s乙追上甲C.甲的平均速度大于乙的平均速度D.乙追上甲时距出发点40 m远例4、一列火车作匀变速直线运动驶来,一人在轨道旁观察火车的运动,发现在相邻的两个10s内,火车从他面前分别驶过8节车厢和6节车厢,每节车厢长8m(连接处长度不计)。
求:⑴火车的加速度a;0.16m/s2⑵人开始观察时火车速度的大小。
v0=7.2m/s1.骑自行车的人沿着直线从静止开始运动,运动后,在第1 s、2 s、3 s、4 s内,通过的路程分别为1 m、2 m、3 m、4 m,有关其运动的描述正确的是()A.4 s内的平均速度是2.5 m/sB.在第3、4 s内平均速度是3.5 m/sC.第3 s末的瞬时速度一定是3 m/sD.该运动一定是匀加速直线运动2.汽车以20 m/s的速度做匀速直线运动,刹车后的加速度为5m/s2,那么开始刹车后2 s与开始刹车后6 s汽车通过的位移之比为()A.1∶4 B.3∶5 C.3∶4 D.5∶93.作匀变速直线运动的物体,在两个连续相等的时间间隔T内的平均速度分别为V1和V2,则它的加速度为___________。
Δx =aT 2的证明及应用
在任意连续相等时间(T )内位移之差等于一个恒量,即△x =aT 2,该式是匀变速直线运动的判别式。
推广式为:x m -x n =(m -n )aT 2。
证明:设质点以0v 的初速度、a 的加速度做匀加速直线运动,自计时起有:
在第一个T 内的位移为:21012
s v T aT =+ 在第二个T 内的位移为:2220013()22
s v aT T aT v T aT =++=+ 在第三个T 内的位移为:2230015(2)22
s v a T T aT v T aT =+⋅+=+ ……
在第n 个T 内的位移为:2200121[(1)]22
n n s v a n T T aT v T aT -=+⋅-+=+ 所以有:221s s aT -=,232s s aT -=,……21n n s s aT --=
即做匀变速直线运动的质点在连续相等的时间T 内的位移差:
213221n n s s s s s s s aT -∆=-==-=-=……为恒定值。
如果相等的时间间隔不相邻,可将△x =aT 2推广。
设质点在第m 个T 内的位移为x m ,第n 个T 内的位移为x n ,则推广式为:x m -x n =(m -n )aT 2。
例1 一个物体做初速为零,加速度a =2 m/s 2的匀加速直线运动在任何两个相邻的1s 内,位移的增加量为( )
A .1m B.2m
C.4m
D.不能确定
解析 初速度为零的匀加速运动在连续相等的时间内的位移差为一常数,即 Δx =aT 2,而T =1s
所以Δx =2×12m=10m ,故答案为B 。
例2 一个做匀加速运动的物体先后通过A 、B 、C 三点,所用的时间均为2s ,它在前2 s 的位移和后2 s 的位移分别为21m 和27m 。
求物体运动的加速度和初速度。