对流换热基本方程解析
- 格式:pptx
- 大小:1.65 MB
- 文档页数:17
对流换热能量方程一、概述对流换热是指通过流体的运动将热量从高温区域传递到低温区域的过程。
对流换热能量方程是描述这一过程的数学表达式。
本文将详细介绍对流换热能量方程的含义、推导过程和应用。
二、对流换热能量方程含义对流换热能量方程描述了在某一时刻,单位时间内通过流体的运动传递到单位面积上的热量。
它可以表示为:q = hA(Ts - Tf)其中,q是单位时间内通过单位面积传递的热量,h是对流换热系数,A是传热面积,Ts和Tf分别是固体表面温度和流体温度。
三、对流换热系数对于不同的情况,对流换热系数也会有所不同。
例如,在自然对流中,h通常非常小;而在强制对流中,h则会比较大。
此外,在液态介质中和气态介质中,h也会有很大差别。
四、推导过程为了得到上述公式,我们需要做出以下假设:1. 流体速度与距离无关;2. 流体温度与距离无关;3. 流体是定常的。
在这些假设下,我们可以通过质量守恒和能量守恒来推导出对流换热能量方程。
首先,考虑单位时间内通过单位面积的热量传递。
根据热传导定律,这个值可以表示为:q = -k(dT/dx)其中,k是热导率,dT/dx是温度梯度。
但是,在对流换热中,温度梯度并不是一个固定值,因为它随着流体的运动而发生变化。
因此,我们需要将上述公式进行修正。
假设在距离x处的流体速度为v(x),温度为T(x),则单位时间内通过单位面积的热量传递可以表示为:q = -k(dT/dx) + pvCp(Ts - T)其中,p是密度,Cp是比热容,Ts是固体表面温度。
第一项表示由于温度梯度引起的传热;第二项表示由于流体运动引起的传热。
接下来,我们需要确定对流换热系数h。
根据牛顿冷却定律:q = hA(Ts - Tf)我们可以将上述公式中的q和Ts替换成上述修正后的公式,得到:h = pvCp(v/x)最终,我们将上述公式代入修正后的热传导定律中,即可得到对流换热能量方程。
五、应用对流换热能量方程在工程领域中有着广泛的应用。
第八讲对流换热convection heat transfer§8-1 对流换热基本概念一、对流换热过程:对流:是指物体各部分之间发生相对位移,冷热流体相互掺混所引起的能量传递方式,必有导热。
对流换热:流体流过一物体表面时对流与导热联合作用的热量传递过程。
牛顿冷却定律Newton’s law of coolingwt ft 如:f w t t t -=∆th q ∆=hAtt Ah qA Φ1∆=∆==为对流传热热阻hA R 1=二、流动边界层1. 流动(速度)边界层:靠近壁面处流体速度发生显著变化的薄层边界层的厚度(boundary layer thickness):达到主流速度的99%处至固体壁面的垂直距离边界层的特点(1) 有层流(laminar flow),紊流(turbulent flow)之分.•分界点Re c=3X105~3X106,一般可取Re c=5X105•在湍流区,贴壁面还有一极薄的层流底层(粘性底层)(2) δ=δ(x) x↑δ(x)↑(3) δ(x) << x δ(L) << L(4) 流场分为: 主流区(undisturbed flow regime)(potential)边界层区(boundary regime)三、换热微分方程无滑移边界条件(傅里叶定律)0=∂∂-=y yt A λΦ变化率贴壁处流体的法向温度式中:→∂∂=0y y t 联立,得与牛顿冷却公式t hA ∆=Φ0=∂∂-=y y t t h ∆λ四、影响对流换热的因素⏹流动产生的原因:受迫流动,自然对流⏹流体流动情况:层流(Re<2300),紊流(Re>10000)⏹流体的物性:ρ、λ、η等⏹换热面的形状和位臵⏹流体集态的改变§8-2 对流换热基本方程组1.连续性方程(continuity equation)0=∂∂+∂∂yv x u •2.动量方程(momentum equation)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂22222222y v x v y p F y v v x v u v y u x u x p F y u v x u u u y x ητρητρ惯性力(inertial force)体积力(body force)压力梯度(pressuregradient)粘性力(viscous force)3.能量守恒方程(energy equation)⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂+∂∂2222y t x t a y t v x t u t τ能量变化对流项导热项以此五个量为分析基础。
第五章对流换热分析通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。
5.1 内容提要及要求5.1.1 对流换热概述1.定义及特性对流换热指流体与固体壁直接接触时所发生的热量传递过程。
在对流换热过程中,流体内部的导热与对流同时起作用。
牛顿冷却公式q h(t w t f ) 是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。
研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。
2.影响对流换热的因素(1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。
(2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。
(3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。
(4)流体的相变:冷凝和沸腾是两种最常见的相变换热。
(5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。
综上所述,可知表面传热系数是如下参数的函数h f u, t w , t f , , c p , ,,, l这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。
3.分析求解对流换热问题分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。
同时,分析求解的前提是给出正确地描述问题的数学模型。
在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数由上式可有h xtt x yW/(m 2 K)w,x其中为过余温度,h xxyW/(m 2 K)w,x对流换热问题的边界条件有两类,第一类为壁温边界条件,即壁温分布为已知,待求的是流体的壁面法向温度梯度;第二类为热流边界条件,即已知壁面热流密度,待求的是壁温。
7 对流换热7.0 本章主要内容导读本章讨论对流换热问题,首先介绍对流换热的相关基本概念——对流换热的机理、数学描述方法和主要研究方法,然后介绍两类无相变的对流换热——强制对流换热和自然对流换热,主要内容如图7-1所示。
图7-1 第七章主要内容导读7.1 对流换热基本概念7.1.1对流换热机理如前所述,实际工程中经常遇到的对流问题是对流换热问题,它是导热与热对流共同作用的结果。
由于流体的热运动强化了传热,通过对流流体的传热速率比通过静止流体导热的传热速率高得多。
并且,流体速度越快,传热速率越高。
理论上,对流换热可以通过牛顿冷却公式求解,即=αQ∆Ft与导热中的导热系数λ不同,对流换热系数α不是物性参数,因此对流换热过程和相应的对流换热系数受到许多因素的影响,这些影响因素可以分为如下五类。
(1)流体流动产生的原因。
根据流动产生的原因,对流换热可以分为强制对流换热与自然对流换热两大类。
前者由泵、风机或其它外部动力源的作用引起,后者通常由流体各个部分温度不同产生的密度差引起。
两种流动产生的原因不同,流体中的速度场、对流换热规律和换热强度均不一样。
通常强制对流换热的流速高、换热系数α大;(2)流体有无相变。
在流体没有相变时对流换热中的热量传输由流体显热的变化实现,在有相变的换热过程中(如沸腾或凝结),流体相变热(潜热)的释放或吸收常常起主要作用,流体的物性、流动特性和换热规律均与无相变时不同。
一般同一种流体在有相变时的换热强度远大于无相变时的强度;(3)流体的流动状态。
根据动量传输知识,粘性流体存在着两种不同的流态——层流和湍流。
层流时流体微团沿着主流方向作有规则的分层流动,湍流时流体各部分之间发生剧烈的混合。
因此,在其它条件相同时湍流换热的强度明显强于层流换热的强度;(4)换热表面的几何因素。
这里的几何因素指换热表面的形状、大小、换热表面与流体运动方向的相对位置以及换热表面的状态(光滑或粗糙)。
这些几何因素都将影响流体在壁面上的流动状况,从而影响到对流换热。
对流换热公式汇总与分析【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。
本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。
【关键词】对流换热类型公式适用范围对流换热的基本计算形式一一牛顿冷却公式:q=h(t w-t f) (W/m2)或Am2上热流量门二h(t w -t f) (W)上式中表面传热系数h最为关键,表面传热系数是众多因素的函数,即h = f(u,t w,t f, ■ ,C p,匚:,fl)综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表 1所示。
表1典型换热类型1.1内部流动1.1.1圆管内受迫对流换热(1)层流换热公式西德和塔特提出的常壁温层流换热关联式为Nu =1.86Re73 Pr;/3(g)1/3( -)0.14f f f Iw或写成NU f =1.86(Pe f d)1/3(>)0.14f I (J.w式中引用了几何参数准则d,以考虑进口段的影响。
[1适用范围:0.48 ::: Pr <16700,0.0044 ::(」厂:9.75。
—w定性温度取全管长流体的平均温度,定性尺寸为管内径d。
如果管子较长,以致[(Re 卩芒)1/3(土)0.14]乞 2lw则NU f可作为常数处理,采用下式计算表面传热系数。
常物性流体在热充分发展段的 Nu是NU f =4.36(q=co nsl)NU f =3.66(t w =c onst)(2)过渡流换热公式对于气体,0.6 ::: Pr f :: 1.5, 0.5 ::匚::1.5,2300 :: Re f :: 104。
0.8 0.4 d、2/3 Tf、0.45NU f =0.0214(Re f -100)Pr f [1 (一)]()l T wPr对于液体,1.5 :: Pr f ::: 500,0.05 —:: 20,2300 :: Re f :: 104。