河北省唐山市2020年中考数学试卷(I)卷
- 格式:doc
- 大小:541.50 KB
- 文档页数:13
2020年河北省唐山市开平区中考数学一模试卷一、选择题(本大题共16小题,共42.0分)1. 下列各组运算中,其值最小的是( )A. −(−3−2)2B. (−3)×(−2)C. (−3)2÷(−2)2D. (−3)2÷(−2)2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( ) A. B. C. D.3. 若2m =8,2n =4,则2m+n =( )A. 12B. 4C. 32D. 24. 下列说法正确的是( )A. 为了解一批灯泡的使用寿命,宜采用普查方式B. 掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为12C. 掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D. 甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定5. 已知不等式组{x −3>0x +1⩾0,其解集在数轴上表示正确的是( ) A. B.C. D.6. 如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,在△ABC 中,∠A =52°,∠ABC 与∠ACB 的角平分线交于D 1,∠ABD 1与∠ACD 1的角平分线交于点D 2,依此类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A. 56°B. 60°C. 68°D. 94°8. 关于“0”,下列说法不正确的是( )A. 0有相反数B. 0有绝对值C. 0有倒数D. 0的绝对值和相反数都等于0 9. 用加减法解方程组{6x −5y =−1 ②4x+3y=7 ①时,若要求消去y ,则应( ) A. ①×3+②×2 B. ①×3−②×2 C. ①×5+②×3 D. ①×5−②×310. 用直尺和圆规作一个直角三角形斜边上的高,作图错误的是( ) A. B. C. D.11. 计算(2x y 2)3⋅(2y x )2÷(−2yx )的结果是( )A. −8x 3y 6 B. 8x 3y 6 C. −16x 2y 5 D. 16x 2y 512. 某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头出发,第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是( )A. 南偏东25°,50√2千米B. 北偏西25°,50√2千米C. 南偏东70°,100千米D. 北偏西20°,100千米 13. 在实数5,227,√3,√4中,无理数是( )A. 5B. 227C. √3D. √414. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =−4x +3图象上的两个点,且x 1<x 2<0,则y 1与y 2的大小关系是( )A. y 2<y 1<3B. y 1>y 2>3C. y 1<y 2=3D. y 1=y 2>315. 如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,DE ⊥AB ,垂足为E ,则图中与△ADE 相似的三角形个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中有二次函数y =x 2+2x −3,点A(x 1,y 1),B(x 2,y 2)是该二次函数图象上的两点,其中−3≤x 1<x 2≤0,则下列结论正确的是( )A. y 1<y 2B. y 1>y 2 C. y 的最小值是−3D. y 的最小值是−4二、填空题(本大题共3小题,共11.0分)17. 分解因式4ab 2−9a 3=______. 18. 一根长为2020厘米的塑料管,第1次截去全长的12,第2次截去剩下的13,第3次截去剩下的14,如此下去,直到第2019次截去剩下的12020,则最后剩下的塑料管长为_________厘米.19. 若菱形的两条对角线分别为10和24,则该菱形的边长是_________,菱形的面积是______,菱形的高是___________.三、解答题(本大题共7小题,共67.0分)20. 读下列材料,解决材料后的问题:【材料1】最小公倍数(Least Common Multiple)是一种数学概念,是指两个或多个整数公有的倍数中,除0以外最小的一个公倍数.【材料2】最小公倍数的计算方法:利用短除法,借助最大公约数来计算:例如:求96和132的最小公倍数.【应用】(1)试着模仿【材料2】用短除法求16和24的最小公倍数;(2)小文的爸爸和妈妈都是医务工作者,在疫情期间他们都参与到抗疫工作中,都不能按双休日休息.其中爸爸每工作14天休息一天,妈妈每工作8天休息一天,2020年2月1日这天,爸爸和妈妈恰好同时休息,那么下次两人同时休息是在_____年_____月____日.(友情提示:2020年2月有29天)21.为了发展乡村旅游,建设美丽从化,某中学七年级一班同学都积极参加了植树活动,今年四月份该班同学的植树情况部分如图所示,且植树2株的人数占32%.(1)求该班的总人数、植树株数的众数,并把条形统计图补充完整;(2)若将该班同学的植树人数所占比例绘制成扇形统计图时,求“植树3株”对应扇形的圆心角的度数;(3)求从该班参加植树的学生中任意抽取一名,其植树株数超过该班植树株数的平均数的概率.22.观察不等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4…(1)用含有字母n(n≥1且为整数)的等式表示这一规律;(2)请用所学知识验证这个规律的正确性;(3)借助你发现的规律把400写成两个正整数的平方差的形式:400=(______ )2−(______ )2.23.在平面直角坐标系中,点O是坐标原点,矩形OABC的边OA、OC分别在x轴和y轴上,OA=8,OC=4;点D是BC的四等(x>0)的图象经过点D,交分点,且CD<BD.反比例函数y=kxAB于点E.连接OE、OB.(1)求反比例函数的解析式;(2)求△BOE的面积.24.如图,M、N是边长为6的正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF.(1)求证:DE=BE;(2)判断DE与AM的位置关系,并证明;(3)判断线段CF是否存在最小值?若存在,求出来,若不存在,说明理由.25.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.26.如图1,点O和矩形CDEF的边CD都在直线l上,以点O为圆心,以24为半径作半圆,分别交直线l于A,B两点.已知:CD=18,CF=24,矩形自右向左在直线l上平移,当点D到达点A时,矩形停止运动.在平移过程中,设矩形对角线DF与半圆AB⏜的交点为P(点P为半圆上远离点B的交点).(1)如图2,若FD与半圆AB⏜相切,求OD的值;(2)如图3,当DF与半圆AB⏜有两个交点时,求线段PD的取值范围;(3)若线段PD的长为20,直接写出此时OD的值.【答案与解析】1.答案:A解析:本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.也考查了有理数大小比较.根据有理数的运算法则分别计算,再比较大小即可求解.解:A.原式=−(−5)2=−25,B.原式=6,C.原式=9÷4=9,4D.原式=9÷(−2)=−4.5,<6,∴−25<−4.5<94∴最小的值为−25.故选A.2.答案:D解析:解:如图所示的几何体的主视图是.故选:D.从正面看:共有2列,从左往右分别有1,2个小正方形;据此可画出图形.考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.答案:C解析:本题主要考查了同底数幂的乘法法则,解决问题的关键是逆用同底数幂的乘法法则.同底数幂相乘,底数不变,指数相加.依据同底数幂的乘法法则进行计算即可.解:∵2m =8,2n =4,∴2m+n =2m ·2n =8×4=32.故选C .4.答案:D解析:解:A 、为了解一批灯泡的使用寿命,宜采用抽样调查的方式,所以A 选项错误; B 、利用树状图得到共有正正、正反、反正、反反四种可能的结果数,所以两枚硬币都是正面朝上这一事件发生的概率为14,所以B 选项错误;C 、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是随机事件,所以C 选项错误;D 、因为S 甲2=0.4,S 乙2=0.6,所以甲的方差小于乙的方差,所以甲的射击成绩较稳定,所以D 选项正确.故选:D .根据全面调查与抽样调查的特点对A 进行判断;利用画树状图求概率可对B 进行判断;根据必然事件和随机事件的定义对C 进行判断;根据方差的意义对D 进行判断.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计的有关概念.5.答案:B解析:解:{x −3>0 ①x +1≥0 ②∵解不等式①得:x >3,解不等式②得:x ≥−1,∴不等式组的解集为:x >3,在数轴上表示不等式组的解集为:故选:B .求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.6.答案:D解析:本题考查平行线的性质,主要利用两直线平行,同位角相等以及同旁内角互补作答.解:如图知∠A和∠B的关系是相等或互补.故选D.7.答案:A解析:此题主要考查角平分线的定义和三角形的内角和定理.根据三角形的内角和定理可得∠ABC+∠ACB=180°−52°=128°,再根据角平分线的定义和三角形的内角和定理表示出∠BD1C,∠BD2C,找到规律可求得∠BD5C.解:∵∠A=52°,∴∠ABC+∠ACB=180°−52°=128°,又∠ABC与∠ACB的角平分线交于D1,∴∠ABD1=∠CBD1=12∠ABC,∠ACD1=∠BCD1=12∠ACB,∴∠CBD1+∠BCD1=12(∠ABC+∠ACB)=12×128°=64°,∴∠BD1C=180°−12(∠ABC+∠ACB)=180°−64°=116°,同理∠BD2C=180°−34(∠ABC+∠ACB)=180°−96°=84°,依此类推,∠BD5C=180°−3132(∠ABC+∠ACB)=180°−124°=56°.故选A.8.答案:C解析:本题考查了倒数:a的倒数为1a(a≠0),也考查了相反数与绝对值.分别根据相反数、绝对值和倒数的定义判断.解:A、0的相反数为0,所以A选项的说法正确;B、0的绝对值为0,所以B选项的说法正确;C、0没有倒数,所以C选项的说法错误;D、0的绝对值和相反数都等于0,所以D选项的说法正确.故选C.9.答案:C解析:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.利用加减消元法消去y即可.解:用加减法解方程组{4x+3y=7①6x−5y=−1②时,若要求消去y,则应①×5+②×3,故选C.10.答案:B解析:本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).根据基本作图对A、B、D进行判断;根据圆周角定理对C进行判断.解:A选项通过作线段的垂直平分线得到斜边上的高,C选项通过作90度的圆周角得到斜边上的高,D选项通过画图得到菱形,即可得到斜边上的高,B选项无法保证斜边所对的顶点在所画线段的垂直平分线上,故选:B.11.答案:C解析:本题考查分式的混合运算,在进行分式乘方运算时,先确定运算结果的符号,同时要注意运算顺序,先乘方,后乘除.分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.根据分式的混合运算法则计算即可.解:(2x y2)3⋅(2y x)2÷(−2y x)=8x3y6⋅4y2x2⋅(−x2y)=−16x2y5;故选C.12.答案:B解析:解:∵第一艘快艇沿北偏西70°方向,第二艘快艇沿南偏西20°方向,∴∠BOA=90°,∵BO=AO=50km,∴AB=50√2km,∠B=∠OAB=45°,∵第二艘快艇沿南偏西20°方向,∴∠1=∠CAO=20°,∴∠2=45°−20°=25°,∴第二艘快艇航行的方向和距离分别是:北偏西25°,50√2千米.故选:B.根据题意得出AO=BO以及∠BOA=90°,进而得出第二艘快艇航行的方向和距离.此题主要考查了方向角以及勾股定理,正确把握方向角的定义是解题关键.13.答案:C解析:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:√3是无理数,故选C.14.答案:B解析:解:∵y=−4x+3中−4<0,∴函数图象中y随x的增大而减小,∵点P1(x1,y1),点P2(x2,y2),(0,3)是一次函数y=−4x+3图象上的三个点,且x1<x2<0,∴y1>y2>3,故选:B.先根据函数解析式和函数的性质得出函数图象中y随x的增大而减小,图象经过一、二、四象限,再得出答案即可.本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能熟记一次函数的性质是解此题的关键.15.答案:D解析:本题考查了相似三角形的判定,是基础知识,要熟练掌握.根据题意得DE//AC,则∠ADE=∠DAC,从而得出△ADE∽△CAD,则∠DAE=∠C,即可证明△ADE∽△DBE,△ADE∽△CBA,△ADE∽△ABD.解:∵AD⊥BC,DE⊥BA,∴∠ADC=∠AED=90°,∵∠BAC=90°,∴DE//AC,∴∠ADE=∠DAC,∴△ADE∽△CAD,∴∠DAE=∠C,∴△ADE∽△CBA,∵DE//AC,∴∠BDE=∠C=∠DAE,∴△ADE∽△DBE.∵∠AED=∠ADB=90°,∠EAD=∠DAB,∴△ADE∽△ABD.综上,图中与△ADE相似的三角形有4个.故选D.16.答案:D解析:本题考查了二次函数图象上点的坐标特征,二次函数的最值,解题时,利用了“数形结合”的数学思想.根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.解:y=x2+2x−3=(x+3)(x−1),则该抛物线与x轴的两交点横坐标分别是−3、1,又y=x2+2x−3=(x+1)2−4,∴该抛物线的顶点坐标是(−1,−4),对称轴为x=−1.A.无法确定点A、B离对称轴x=−1的远近,故无法判断y1与y2的大小,故本选项错误;B.无法确定点A、B离对称轴x=−1的远近,故无法判断y1与y2的大小,故本选项错误;C.y的最小值是−4,故本选项错误;D.y的最小值是−4,故本选项正确.故选D.17.答案:a(2b+3a)(2b−3a)解析:解:原式=a(4b2−9a2)=a(2b+3a)(2b−3a).故答案为:a(2b+3a)(2b−3a).首先提取公因式a,再利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.18.答案:1解析:本题考查了有理数的混合运算,正确列式是难点,掌握运算法则是解题的关键.根据题意得到算式2020×(1−12)×(1−13)×…×(1−12020),先计算括号里面的减法,再约分计算即可求解. 解:根据题意得,2020×(1−12)×(1−13)×…×(1−12020)=2020×12×23×…×20192020=1(厘米).即剩下的塑料管长为1厘米.故答案为1.19.答案:13;120;12013解析:本题主要考查的是菱形的性质,勾股定理的有关知识,由菱形的性质以及两条对角线长可求出其边长;根据菱形的面积等于对角线乘积的一半即可求出该菱形的面积;继而求得菱形的高. 解:∵菱形的两条对角线长分别为10和24,∴该菱形的面积是:12×10×24=120;∴该菱形的边长为:√(102)2+(242)2=13, ∴菱形的高=12013.故答案为13,120,12013.20.答案:解:(1)∵,∴16,24的最小公倍数为4×2×2×3=48,(2)2020;3;17解析:本题主要考查了有理数的运算,解答此题的关键是读懂材料,知道找最小公倍数的方法.(1)结合材料,用短除法求出最小公倍数即可;(2)先找出15和9的最小公倍数为45,可得45天后为共同休息的时间,然后结合日历找出2月1日后的第45天的日期即可.解:(1)见答案;(2)14+1=15(天),8+1=9(天),15和9的最小公倍数是:45,即再经过45天,爸爸、妈妈再次同时休息.∵2020年2月份共29天,故2月还有28天,45−28=17(天)故3月份第17天,爸爸和妈妈同时休息,即2020年3月17日,故答案为2020;3;17.21.答案:解:(1)该班的总人数:16÷32%=50(人);因为植3株的人数为50−9−16−7−4=14,数据2出现了16次,出现次数最多,所以植树株数的众数是2;条形统计图补充如图所示.(2)因为植3株的人数为50−9−16−7−4=14(人),且所占总人数比例:14÷50=28%,∴“植树3株”对应扇形的圆心角的度数为:28%×360=100.8(度);(3)∵该班植树株数的平均数=(9×1+16×2+14×3+7×4+4×5)÷50=2.62,植树株数超过该班植树株数平均数的人数有:14+7+4=25(人),=0.5.∴概率=2550答:植树株数超过该班植树株数平均数的概率是0.5.解析:(1)植2株的有16人,所占百分比为32%,则可求出其总人数,根据计算结果结合图表找出众数;结合(1)的数据将条形统计图补充完整;(2)先根据“植树3株”的人数为50−9−16−7−4=14(人),且所占总人数比例:14÷50=28%,即可得到“植树3株”对应扇形的圆心角的度数;(3)根据题意,求得其平均数为2.62,超过平均数的为25人,根据概率公式进行计算即可.本题主要考查了条形统计图以及概率的计算,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.解题时注意:一组数据按顺序排列后,中间的那两个数的平均数或中间的那个数叫做中位数;概率=所求情况数与总情况数之比.22.答案:解:(1)用含有字母n(n≥1且为整数)的等式表示这一规律:(2n+1)2−(2n−1)2=8n(n≥1且为整数);(2)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n;(3)101;99解析:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键规律是:(2n+1)2−(2n−1)2=8n.(1)通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2−(2n−1)2=8n;(2)根据平方差公式即可求解;(3)400=8×50=(2×50+1)2−(2×50−1)2=1012−992.故答案为:101,99.23.答案:解:(1)∵四边形ABCO是矩形,∴BC=AO=8,∵点D是BC的四等分点,且CD<BD,∴CD=2,∵OC=4,∴D(2,4),得k=8,将点D(2,4)代入y=kx∴反比例函数的解析式为:y=8;x(2)∵点E在AB上,将x=8代入y=8得y=1,x∴E(8,1),∴AE=1,BE=3,∴△BOE的面积=12BE·OA=12×3×8=12.解析:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点E在函数的图象上,即可得出结论.24.答案:(1)证明:在正方形ABCD中,AD=AB,∠DAE=BAE,又AE为公共边,∴△DAE≌△BAE(SAS),∴DE=BE.(2)解:结论:互相垂直.理由::在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD=90°,∵AM=BN,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN由(1)知DE=BE,又CD=CB,CE为公共边,∴△DCE≌△BCE(SSS),∴∠CDE=∠CBE∵∠ADF+∠CDE=∠ADC=90°∴∠DAF+∠ADF=90°∴∠DFA=180°−90°=90°即DE⊥AM.(3)存在最小值.如图,取AD的中点O,连接OF、OC,AD=3,则OF=DO=12在Rt△OCD中,OC=√DO2+DC2=√32+62=3√5,根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值为OC−OF=3√5−3.解析:本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用三角形三边关系解决最值问题,属于中考压轴题.(1)证明△DAE≌△BAE(SAS)即可解决问题.(2)想办法证明∠DAM=∠EDC即可.(3)存在最小值.如图,取AD的中点O,连接OF、OC,利用三角形三边关系解决问题即可.25.答案:解:(1)v=at2的图象经过点(1,2),∴a=2.∴二次函数的解析式为:v=2t2,(0≤t≤2);设反比例函数的解析式为v=k,t由题意知,图象经过点(2,8),∴k=16,(2<t≤5);∴反比例函数的解析式为v=16t(2)由图可知弹珠在轨道上行驶的最大速度在2秒末,为8米/分.解析:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;(2)(2)把t=2代入(1)中二次函数解析式即可.26.答案:解:(1)如图2,连接OP,∵DF与半圆相切,∴OP⊥FD,∴∠OPD=90°,在矩形CDEF中,∠FCD=90°,∵CD=18,CF=24,则FD=√242+182=30,∵∠OPD=∠FCD=90°,∠ODP=∠FDC,PO=CF=24,∴△OPD≌△FCD(AAS),∴OD=DF=30;(2)如图3,当点B、D重合时,过点O作OH⊥DF与点H,则DP=2HD,∵cos∠ODP=DHOD =CDFD,而CD=18,OD=23,由(1)知DF=30,∴DH24=1830,∴HD=725,则DP=2HD=1445,DF与半圆相切,由(1)知:PD=CD=18,∴18<PD≤1445;(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,则PG =GH ,tan∠FDC =2418=43=tanα,则cosα=35,设:PG =GH =m ,则:OG =√242−m 2,DG =20−m ,tan∠FDC =OG DG =43=√242−m 220−m ,整理得:25m2−640m +1216=0,解得:m =64±24√55, OD =DG cosα=20−m 35=8√5±12.解析:(1)如图2,连接OP ,则DF 与半圆相切,利用△OPD≌△FCD(AAS),可得:OD =DF =30;(2)利用cos∠ODP =DH OD =CD FD ,求出HD =725,则DP =2HD =1445;DF 与半圆相切,由(1)知:PD =CD =18,即可求解;(3)设:PG =GH =m ,则:OG =√242−m 2,DG =20−m ,tan∠FDC =OG DG =43=√242−m 220−m ,求出m =64±24√55,利用OD =DG cosα,即可求解.本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH 的高OG ,是本题的关键.。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=42,则△CEF的面积是()A.22B2C.32D.2解析:A【解析】【详解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=2,22,AB BG∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.2.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m<32B.1≤m<32C.1<m≤32D.1≤m≤32解析:B【解析】【分析】根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴230 10 mm<-⎧⎨-+≥⎩,解得1≤m<32.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.3.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .解析:C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .4.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体解析:A【解析】【分析】 根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.5.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟解析:C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.6.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2解析:C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.7.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A .aB .bC .1aD .1b解析:D【解析】【详解】 ∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a <a <b <1b ,故选D .8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x-b>0恰有两个负整数解,可得x 的负整数解为-1和-2 0x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则BDAD 的值为()A .1B .22 C 2-1 D 2+1解析:C【解析】。
2020年河北省中考数学压轴卷(1)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下如图所示为某市2020年1月7日的天气预报图,则这天的温差是()A.﹣12°C B.8°CC.﹣8°C D.12°C2. “V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V“字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角α的度数为()A.25° B.35° C.45°D.55°3.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm (纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10114.下列四位同学的说法正确的是()A.小明B.小红C.小英D.小聪5. 如图所示,用量角器度量一些角的度数,下列结论中错误的是()A.OA⊥OC B.∠AOD=135°C.∠AOB=∠COD D.∠BOC与∠AOD互补6.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.﹣2B.(﹣1)﹣2C.0D.(﹣1)20197.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A.30B.20C.60D.408. 图,已知A(﹣3,3),B(﹣1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x>0)的图象上,则k等于()A.3B.4C.5D.69. 如图,△ABC的面积为12,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.6B.8C.10D.1210. 下列四个图形:从中任取一个是中心对称图形的概率是()A.B.1C.D.11.今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A.3种B.4种C.5种D.6种12.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD是正方形;乙:如图2,盒子底面的四边形ABCD是正方形;丙:如图3,盒子底面的四边形ABCD是长方形,AB=2AD.将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是()A.甲>乙>丙B.甲>丙>乙C.丙>甲>乙D.丙>乙>甲13.下面是黑板上出示的尺规作图题,横线上符号代表的内容,正确的是()如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法;(1)以点O为圆心,①为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,②为半径画弧交EG于点D;(3)以③为圆心,④长为半径画弧交第(2)步中所画弧于点F;(4)作射线EF,∠DEF即为所求作的角.C.③表示Q D.④表示任意长14. 观察图中给出的直线y=k1x+b和反比例函数y=的图象,下列结论中错误的是()A.k2>b>k1>0B.当﹣6<x<2时,有k1x+b>C.直线y=k1x+b与坐标轴围成的△ABO的面积是4D.直线y=k1x+b与反比例函数y=的图象的交点坐标为(﹣6,﹣1),(2,3)15. 如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A'B'CD'的边A'B'与⊙O相切,切点为E,边CD'与⊙O相交于点F,则CF的长为()A.2.5B.1.5C.3D.416.老师设计了接力游戏,用合作的方式完成“求抛物线y=2x2+4x﹣4的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁B.乙和丁C.乙和丙D.甲和丁二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.计算:=.18. 设代数式A=代数式B=,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):x…123…A…456…当x=1时,B=;若A=B,则x=.19.如图,△ABC中,AC=8,∠A=30°,∠B=50°,点P为AB边上任意一点,(P不与点B、A重合),I为△BPC的内心则CP的最小值=;∠CIB的取值范围是.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分8分)数学谋上,者师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一﹣张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).21. (本题满分9分)暑假期间,为激发同学们的学习热情,王华所在的学校组织全校三好学生分别到A,B,C,D四所全国重点学校参观(每个学生只能去一处),王华很高兴她也能够前往,学校按定额购买了前往四地的车票.如图是未制作完成的车票种类和数量的条形统计图和扇形统计图.请根据以上信息回答:(1)本次参加参观的学生有100人,将条形统计图补充完整;(2)若学校采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么王华抽到去B地的概率是多少?(3)已知A,B,C三地车票的价格如下表,去D地花费的车票总款数占全部车票总款数的,试求D地每张车票的价格.地点票价(元/张)A60B80C5022. (本题满分9分)如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,……称为“三角形数“;把1,4,9,16,25,……称为“正方形数“.同样,可以把数1,5,12,22,……,称为“五边形数”,将三角形、正方形、五边形都整齐的由左到右填在所示表格里:=,=,=;(2)观察表中规律,第n个“五边形数”是.23. (本题满分9分)某江水总磷污染严重.当地政府提出五条整改措施,力求在60天以内使总磷含量达标(即总磷浓度低于0.2mg/L).整改过程中,总磷浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前5天的变化规律,且线段AB所在直线的表达式为:y=﹣x+4,从第5天起,该江水总磷浓度y与时间x成反比例关系.(1)求整改全过程中总磷浓度y与时间x的函数表达式;(2)该江水中总磷的浓度能否在60天以内达标?说明理由.24. (本题满分10分)如图,在矩形ABCD中,AB=8,BC=6,E是AB上一点,现将该矩形沿CE翻折,得到△CEF.(1)作FM⊥AD,FN⊥CD,记矩形FNDM的面积为S,BE的长度为x,当x=3时,求S的值.(2)在翻折时,若点F恰好落在AD的垂直平分线上,求x的值.(3)连接AF,在整个翻折过程中,求线段AF的最小值,并求出此时x的值.25. (本题满分10分)已知抛物线y n=﹣(x﹣a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n﹣1(b n﹣1,0)和A n(b n,0),当n=1时,第1条抛物线y1=﹣(x﹣a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系式是;(3)探究下列结论:若用A n﹣1A n表示第n条抛物线被x轴截得的线段长,直接写出A0A1的值,并求出A n﹣1A n.26. (本题满分12分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.2020年河北省中考数学压轴卷(1)参考答案一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)每空2分,把答案写在题中横线上)17. 3 18. 1,4 19. 4 105°<∠CIB<155°三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;…………………………3分(2)丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1. (8)分21.解:(1)C种类的数量为100﹣(30+10+40)=20(张),补全条形图如下:…………………………3分(2)王华抽到去B地的概率是=.…………………………6分(3)设D地每张车票的价格为x元,根据题意,得(60×30+80×10+50×20+40x)=40x,解得x=40.答:D地每张车票的价格为40元.…………………………9分22.解:(1)a=28.b=36.c=35.…………………………5分(2).…………………………9分23.解:(1)分情况讨论:当x>5时,设y=,把(5,2)代入得:m=10,所以y=;当0≤x≤5时,y=﹣x+4,所以整改全过程中总磷浓度y与时间x的函数表达式为:y=;…………………………7分(2)能,理由如下:当y=0.2时,有=0.2,则x=50<60,故该支流中总磷的浓度能在60天以内达标.…………………………9分24.解:(1)如图,连接BF交CE于点O,延长MF交BC于H,∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∵MF⊥AD,∴FH⊥BC,∵将该矩形沿CE翻折,得到△CEF.∴BE=EF=3,CF=BC=6,∴EC垂直平分BF,∴BO=FO,BF⊥EC,在Rt△BEC中,EC===3,∵S△BEC=×EB×BC=EC×BO∴BO=,∴BF=,∵FH2=BF2﹣BH2=FC2﹣CH2,∴﹣(6﹣CH)2=36﹣CH2,∴CH=,∴MD=∴FH===,∴DN=∴S=MD•DN=×=;…………………………4分(2)如图,连接BF,∵将该矩形沿CE翻折,得到△CEF.∴BE=EF,CF=BC=6,∠BCE=∠ECF,∵点F恰好落在AD的垂直平分线上,∴点F在BC的垂直平分线上,∴BF=BC,∴BF=BC=CF,∴△BFC是等边三角形,∴∠BCF=60°,∴∠BCE=30°,∵tan∠BCE=,∴BE=x=2;…………………………7分(3)如图,连接AC,在Rt△ABC中,AC===10,在△AFC中,AF≥AC﹣CF,∴当点F在AC上时,AF有最小值为AC﹣CF=10﹣6=4,此时,∠AFE=90°,BE=EF=x,∵AE2=EF2+AF2,∴(8﹣BE)2=BE2+16,∴BE=3=x.…………………………10分25.解:(1)∵当n=1时,第1条抛物线y1=﹣(x﹣a1)2+a1与x轴的交点为A0(0,0),∴0=﹣(0﹣a1)2+a1,解得a1=1或a1=0.由已知a1>0,∴a1=1,∴y1=﹣(x﹣1)2+1.令y1=0,即﹣(x﹣1)2+1=0,解得x=0或x=2,∴A1(2,0),b1=2.由题意,当n=2时,第2条抛物线y2=﹣(x﹣a2)2+a2经过点A1(2,0),∴0=﹣(2﹣a2)2+a2,解得a2=1或a2=4,∵a1=1,且已知a2>a1,∴a2=4,∴y2=﹣(x﹣4)2+4.∴a1=1,b1=2,y2=﹣(x﹣4)2+4.…………………………4分(2(9,9),(n2,n2).y=x.…………………………7分(3)∵A0(0,0),A1(2,0),∴A0A1=2.y n=﹣(x﹣n2)2+n2,令y n=0,即﹣(x﹣n2)2+n2=0,解得x=n2+n或x=n2﹣n,∴A n﹣1(n2﹣n,0),A n(n2+n,0),即A n﹣1A n=(n2+n)﹣(n2﹣n)=2n.…………………………10分26.解:(1)30,6;…………………………4分(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;…………………………8分②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q 作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+HP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.…………………………12分。
河北省唐山市2020版数学中考模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2020·杭州模拟) ﹣9的绝对值是()A . ﹣9B . 9C .D .2. (2分)(2019·零陵模拟) 下列运算正确的是()A .B .C .D .3. (2分)某种计算机完成一次基本运算所用的时间约为0.0000000015s,把0.0000000015用科学记数法可表示为()A . 0.15×10﹣8B . 0.15×10﹣9C . 1.5×10﹣8D . 1.5×10﹣94. (2分)(2019·甘肃) 甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲459493 5.3乙459495 4.8A . 甲、乙两班的平均水平相同B . 甲、乙两班竞赛成绩的众数相同C . 甲班的成绩比乙班的成绩稳定D . 甲班成绩优异的人数比乙班多5. (2分) (2016八下·万州期末) 已知函数y= ,自变量x的取值范围是()A . x≠3且x≠0C . x<3D . x≠36. (2分)如图,直线a∥b,直线l分别与a、b相交于A、B两点,AC⊥a于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A . 38°B . 42°C . 48°D . 58°7. (2分) (2018八下·东台期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形8. (2分)(2020·乐东模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分) (2016九下·津南期中) 等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A . 27B . 36C . 27或3610. (2分) (2019八上·禅城期末) 直线不经过的象限是A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分)如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是()A . BC=B . CD=AD•tanαC . BD=ABcosαD . AC=ADcosα12. (2分)(2017·宜城模拟) 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分) (2018九上·大冶期末) 如图,转盘中6个扇形的面积都相等,任意转动转盘一次,当转盘停止转动时,指针指向奇数的概率是________.14. (1分)点M与点N(-2,-3)关于y轴对称,则点 M 的坐标为________.15. (1分) (2016七上·黄冈期末) 如果x=1是关于x方程x+2m﹣5=0的解,则m的值是________.16. (1分) (2019八下·赛罕期末) 如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M ,则点M表示的数为________.17. (1分)圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为________ m.三、解答题 (共8题;共70分)18. (5分) (2019八上·新兴期中) 如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为多少?19. (5分)(2017·江西模拟) 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .20. (5分)先化简,再求值:,其中x=.21. (5分)(2017·高淳模拟) 图①为平地上一幢建筑物与铁塔图,图②为其示意图.建筑物AB与铁塔CD 都垂直于地面,BD=20m,在A点测得D点的俯角为45°,测得C点的仰角为58°.求铁塔CD的高度.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)22. (10分) (2018九上·泰州月考) 商场销售服装,平均每天可售出件,每件盈利元,为扩大销售量,减少库存,该商场决定采取适当的降价措施,经调查发现,一件衣服降价元,每天可多售出件.(1)设每件降价元,每天盈利元,请写出与之间的函数关系式;(2)若商场每天要盈利元,同时尽量减少库存,每件应降价多少元?(3)每件降价多少元时,商场每天盈利达到最大?最大盈利是多少元?23. (15分)已知:如图,CD=BE,CD∥BE,∠D=∠E.求证:点C是线段AB的中点.24. (10分)(2020·仙居模拟) 如图1,Rt△ABC中,∠BCA=90°,BC=3,AC=4,直线AM⊥CA,点D是AC 上的动点,过A、D、B三点的圆交纸线AM于点E,连DE。
唐山市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·江津期中) ﹣5的相反数是()A .B .C . ﹣5D . 52. (2分)(2019·永康模拟) 据开化旅游部门统计,2018年开化各景点共接待游客约为12926000人次,数据12926000用科学记数法表示为()A . 0.12926×108B . 1.2926×106C . 12.926×105D . 1.2926×1073. (2分)(2018·福州模拟) 如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A .B .C .D .4. (2分) (2019八上·盘龙镇月考) 若xa=4,xb=5,则 x3a﹣2b的值为()A .B .C . 25. (2分)若分式的值为0,则x的值为()。
A . 1B . -1C . ±1D . 26. (2分)下列运算正确的是()A . a﹣2a=aB . (﹣a2)3=﹣a6C . a6÷a2=a3D . (x+y)2=x2+y27. (2分)要得到二次函数y=-x2+2x-2的图象,需将y=-x2的图象()A . 向左平移2个单位,再向下平移2个单位B . 向右平移2个单位,再向上平移2个单位C . 向左平移1个单位,再向上平移1个单位D . 向右平移1个单位,再向下平移1个单位8. (2分) (2018九上·永定期中) 若关于x的一元二次方程(k﹣1)x2+6 x +3=0有实数根,则实数k的取值范围为()A . k<4B . k<4,且k≠1C . k≤4D . k≤4,且k≠19. (2分) (2018八上·长春月考) 如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC 的度数为A . 90°B . 60°C . 45°10. (2分) (2018七上·武昌期末) 在数轴上表示有理数a ,﹣a ,﹣b-1的点如图所示,则()A . ﹣b<﹣aB . <C . >D . b-1<a11. (2分) (2017八下·三门期末) 如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深间的函数关系的图象可能是()A .B .C .D .12. (2分)如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1 ,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2 ,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3 ,…,如此继续,可以依次得到点D4 , D5 ,…,Dn ,分别记△BD1E1 ,△BD2E2 ,△BD3E3 ,…,△BDnEn的面积为S1 ,S2 , S3 ,…Sn .则Sn为()A .B .C .D .二、填空题 (共5题;共6分)13. (1分)(2012·宿迁) 分解因式:ax2﹣ay2=________.14. (1分)(2017·阜康模拟) 若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.15. (1分)(2017·淄博) 运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是________.16. (1分)如图,在△ABC中,∠ACB=90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________ .17. (2分) (2017七下·延庆期末) 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…,按照这样的规律排列下去,则第9个图形由________个圆组成,第n个图形由________个圆组成.三、解答题 (共7题;共63分)18. (5分)解不等式:≥x-2并把解集在数轴上表示出来。
2021年河北省唐山市中考数学一模试卷一、选择题1.以下图形中,只有一条对称轴的是〔〕A.B.C.D.2.如图某用户微信支付情况,3月28日显示+150的意思〔〕A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包3.三角形的三边长为3,x,5.如果x是整数,那么x的值不可能是〔〕A.3B.4C.6D.84.一辆匀速行驶的汽车在8点20分的时候距离某地60km,假设汽车需要在9点以前经过某地,设汽车在这段路上的速度为x〔km/小时〕,列式表示正确的选项是〔〕A.x>60B.40x>60C.20x<60D.x>605.如图四边形ABCD是菱形,∠ACD=30°,那么∠BAD=〔〕A.30°B.45°C.60°D.120°6.三位同学在计算:〔+﹣〕×12,用了不同的方法:小小说:12的,,分别是3,2和6,所以结果应该是3+2﹣6=﹣1;聪聪说:先计算括号里面的数,+﹣=﹣,再乘以12得到﹣1;明明说:利用分配律,把12与,,﹣分别相乘得到结果是﹣1对于三个同学的计算方式,下面描述正确的选项是〔〕A.三个同学都用了运算律B.聪聪使用了加法结合律C.明明使用了分配律D.小小使用了乘法交换律7.去年年末,武汉市发生新型冠状病毒引起的传染病,这种病毒非常的小,直径约为125nm〔纳米〕,1nm=10﹣9m,那么2021新冠病毒直径大小用科学记数法表示为〔〕A.1.25×10﹣7m B.1.25×10﹣11mC.1.25×10﹣10m D.1.25×10﹣6m8.如图,直线a和直线b被直线c所截,且a∥b,∠2=110°,那么∠3=70°,下面推理过程错误的选项是〔〕A.∵a∥b,∴∠2=∠6=110°,又∠3+∠6=180°〔邻补角定义〕,∴∠3=180°﹣∠6=180°﹣110°=70°B.∵a∥b,∴∠1=∠3,又∠1+∠2=180°〔邻补角定义〕,∴∠1=180°﹣∠2=180°﹣110°=70°,∴∠3=∠1=70°C.∵a∥b,∴∠2=∠5,又∠3+∠5=180°〔邻补角定义〕,∴∠3=180°﹣∠5=180°﹣∠2=180°﹣110°=70°D.∵a∥b,∴∠2=∠4=110°,∵∠3+∠4=180°〔邻补角定义〕,∴∠3=180°﹣∠4=180°﹣110°=70°9.如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,那么∠1=〔〕A.72°B.108°C.144°D.120°10.小王和小李两名同学研究本班女同学的身高情况,两人分别统计了一组数据:小王163164164165165166166167小李161162164165166166168168经过计算得到两组数据的方差,小王一组的方差为1.5,小李一组的方差为2.5,那么以下说法正确的〔〕A.小王统计的一组数据比拟稳定B.小李统计的一组数据比拟稳定C.两组数据一样稳定D.不能比拟稳定性11.某地为了促进旅游业的开展,要在如下图的三条公路a,b,c围成的一块地上修建一个度假村,要使这个度假村到a,b两条公路的距离相等,且到B,C两地的距离相等,以下选址方法绘图描述正确的选项是〔〕A.画∠CAB的平分线,再画线段BC的垂直平分线,两线的交点符合选址条件B.先画∠CAB和∠BCA的平分线,再画线段BC的垂直平分线,三线的交点符合选址条件C.画三个角∠CAB,∠BCA和∠ABC三个角的平分线,交点即为所求D.画AB,BC,CA三条线段的垂直平分线,交点即为所求12.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,那么以下说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有〔〕A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确13.使分式和分式相等的x值是〔〕A.﹣5B.﹣4C.﹣3D.﹣114.一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α〔∠CBE=α,如图1所示〕.如图1,液面刚好过棱CD,并与棱BB'交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示,那么此时BQ的长为〔〕A.5dm B.4dm C.1dm D.3dm15.如下图的直角坐标系内,双曲线的解析式为y=,假设将原坐标系的x轴向上平移两个单位,那么双曲线y=在新坐标系内的解析式为〔〕A.y﹣2=B.y+2=C.y=D.y=16.如图,课外小组的同学们,在校内准备测量墙外一发射塔的高度,小组的同学们首先在校内宽敞处选定一点M,在M点测得到塔顶H的仰角为45°,然后他们沿与M和塔底O 连线MO垂直的方向走了60米到达N点,在N点观测塔顶H的仰角为30°,小组根据这些数据计算出发射塔的高度最接近的数值是〔〕A.40B.45C.30D.42二、填空题〔本大题共3个小题,17小题3分,18-19小题有两个空每空2分,共11分.把答案写在题中横线上〕17.当m≠0时,如果m0×m﹣5m n=1,那么n=.18.在实数范围内定义一种新运算m@n=﹣m+3n〔加减乘除是普通的运算〕,例如:1@2=﹣1+3×2=5,计算﹣1@2=,假设2x@〔﹣3x﹣1〕=8,那么x=.19.有一边长为10m的等边△ABC游乐场,某人从边AB中点P出发,先由点P沿平行于BC 的方向运动到AC边上的点P1,再由P1沿平行于AB方向运动到BC边上的点P2,又由点P2沿平行于AC方向运动到AB边上的点P3,那么此人至少要运动m,才能回到点P.如果此人从AB边上任意一点出发,根据上面的规律运动,那么此人至少走m,就能回到起点.三、解做题〔本大题共7个小题,共67分.解容许写出文字说明、证实过程〕20.小盛和丽丽在学完了有理数后做起了数学游戏.〔1〕规定用四个不重复〔绝对值小于10〕的正整数通过加法运算后结果等于12.小盛:1+2+3+6=12;丽丽:1+2+4+5=12.问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由;〔2〕规定用四个不重复〔绝对值小于10〕的整数通过加法运算后结果等于12.小盛:﹣2﹣3+8+9=12;丽丽:﹣3+0+8+7=12;请根据要求再写出一个与他们不同的算式.〔3〕用〔2〕中小盛和丽丽的算式继续排列下去组成一个数列,使相邻的四个数的和都等于12,小盛:﹣2,﹣3,8,9,x…,丽丽:﹣3,0,8,7,y…,那么x=,y=.求丽丽写出的数列的前19项的和.21.在一个不透明的口袋中放入4个大小形状几乎完全相同实验用的鸡蛋,鸡蛋的质量有微小的差距〔用手感觉不到差异〕,质量分别为49、50、51克,随机的摸出一个鸡蛋,摸到49克和51克的鸡蛋的概率是相等的.〔1〕求这四个鸡蛋质量的众数和中位数;〔2〕小明做实验需要拿走一个鸡蛋,芳芳在小明拿走后从剩下的三个鸡蛋中随机的拿走一个.①通过计算分析小明拿走一个鸡蛋后,剩下的三个鸡蛋质量的中位数是多少?②假设小明拿走的鸡蛋质量为49克,芳芳随机的拿出一个鸡蛋后又放回,之后再随机的拿出一个鸡蛋,请用树状图求芳芳两次拿到都是50克的鸡蛋的概率?22.完全平方公式是初中数学的重要公式之一:〔a+b〕2=a2+2ab+b2,完全平方公式既可以用来进行整式计算又可以用来进行分解因式.发现:3+2=2+2+1=〔〕2+2+12=〔+1〕2;应用:〔1〕写出一个能用上面方法进行因式分解的式子,并进行因式分解;〔2〕假设a+b=〔m+n〕2,请用m,n表示a,b.拓展:如图在Rt△ABC中,BC=1,AC=,∠C=90°,延长CA至点D,使AD=AB,求BD 的长.〔参考上面提供的方法把结果进行化简〕23.有甲,乙两个电子团队整理一批电脑数据,整理电脑的台数为y〔台〕与整理需要的时间x之间关系如下图,请依据图象提供的信息解答以下问题:〔1〕乙队工作2小时整理台电脑,工作6h时两队一共整理了台;〔2〕求甲、乙两队y与x的关系式.〔3〕甲、乙两队整理电脑台数相等时,直接写出x的值.24.如图,△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A按逆时针方向旋转α°.得到△ADE,连接BD,CE交于点F.〔1〕求证:△ABD≌△ACE;〔2〕用α表示∠ACE的度数;〔3〕假设使四边形ABFE是菱形,求α的度数.25.如图,二次函数L:y=mx2+2mx+k〔其中m,k是常数,k为正整数〕.〔1〕假设L经过点〔1,k+6〕,求m的值.〔2〕当m=2,假设L与x轴有公共点时且公共点的横坐标为非零的整数,确定k的值;〔3〕在〔2〕的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;〔4〕将M的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象N,请结合新的图象解答问题,假设直线y=x+b与N有两个公共点时,请直接写出b 的取值范围.26.如图1,点E在矩形ABCD的边AD上,AD=6,tan∠ACD=,连接CE,线段CE绕点C 旋转90°,得到线段CF,以线段EF为直径做⊙O.〔1〕请说明点C一定在⊙O上的理由;〔2〕点M在⊙O上,如图2,MC为⊙O的直径,求证:点M到AD的距离等于线段DE的长;〔3〕当△AEM面积取得最大值时,求⊙O半径的长;〔4〕当⊙O与矩形ABCD的边相切时,计算扇形OCF的面积.参考答案一、选择题〔本大题共16个小题,1~10小题,每题3分;11~16小题,每题3分,共42分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.以下图形中,只有一条对称轴的是〔〕A.B.C.D.【分析】根据轴对称图形的概念,分别分析四个选项的对称轴,再作答.解:A、等腰三角形只有一条对称轴,故此选项符合题意;B、菱形有2条对称轴,故此选项不符合题意;C、正五边形有5条对称轴,故此选项不符合题意;D、矩形有2条对称轴,故此选项不符合题意;应选:A.2.如图某用户微信支付情况,3月28日显示+150的意思〔〕A.转出了150元B.收入了150元C.转入151.39元D.抢了20元红包【分析】根据用正负数表示两种具有相反意义的量解答即可.解:如图某用户微信支付情况,3月28日显示+150的意思是收入了150元应选:B.3.三角形的三边长为3,x,5.如果x是整数,那么x的值不可能是〔〕A.3B.4C.6D.8【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,求解即可.解:∵三角形的三边长分别为3,x,5,∴第三边的取值范围为:2<x<8∵x为整数,∴x的值不可能是8.应选:D.4.一辆匀速行驶的汽车在8点20分的时候距离某地60km,假设汽车需要在9点以前经过某地,设汽车在这段路上的速度为x〔km/小时〕,列式表示正确的选项是〔〕A.x>60B.40x>60C.20x<60D.x>60【分析】直接利用8点20分到9点,一共40分钟,那么需要行驶至少60km,进而得出不等式.解:设汽车在这段路上的速度为x〔km/小时〕,根据题意可得:x>60,即x>60,应选:D.5.如图四边形ABCD是菱形,∠ACD=30°,那么∠BAD=〔〕A.30°B.45°C.60°D.120°【分析】根据菱形的对角相等、每一条对角线平分一组对角,即可得出答案.解:∵四边形ABCD是菱形,∴∠BAD=∠BCD,∠BCD=2∠ACD=60°,∴∠BAD=60°;应选:C.6.三位同学在计算:〔+﹣〕×12,用了不同的方法:小小说:12的,,分别是3,2和6,所以结果应该是3+2﹣6=﹣1;聪聪说:先计算括号里面的数,+﹣=﹣,再乘以12得到﹣1;明明说:利用分配律,把12与,,﹣分别相乘得到结果是﹣1对于三个同学的计算方式,下面描述正确的选项是〔〕A.三个同学都用了运算律B.聪聪使用了加法结合律C.明明使用了分配律D.小小使用了乘法交换律【分析】根据题意和各个选项中的说法可以判断哪个选项中的描述是正确的,此题得以解决.解:由题意可得,只有明明的方法是使用了乘法分配律,应选项C正确,选项A、B、D描述错误;应选:C.7.去年年末,武汉市发生新型冠状病毒引起的传染病,这种病毒非常的小,直径约为125nm〔纳米〕,1nm=10﹣9m,那么2021新冠病毒直径大小用科学记数法表示为〔〕A.1.25×10﹣7m B.1.25×10﹣11mC.1.25×10﹣10m D.1.25×10﹣6m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:125nm=125×10﹣9m=1.25×10﹣7m.应选:A.8.如图,直线a和直线b被直线c所截,且a∥b,∠2=110°,那么∠3=70°,下面推理过程错误的选项是〔〕A.∵a∥b,∴∠2=∠6=110°,又∠3+∠6=180°〔邻补角定义〕,∴∠3=180°﹣∠6=180°﹣110°=70°B.∵a∥b,∴∠1=∠3,又∠1+∠2=180°〔邻补角定义〕,∴∠1=180°﹣∠2=180°﹣110°=70°,∴∠3=∠1=70°C.∵a∥b,∴∠2=∠5,又∠3+∠5=180°〔邻补角定义〕,∴∠3=180°﹣∠5=180°﹣∠2=180°﹣110°=70°D.∵a∥b,∴∠2=∠4=110°,∵∠3+∠4=180°〔邻补角定义〕,∴∠3=180°﹣∠4=180°﹣110°=70°【分析】根据平行线的性质解答即可.解:A、∵a∥b,∴∠2=∠6=110°,又∠3+∠6=180°〔邻补角定义〕,∴∠3=180°﹣∠6=180°﹣110°=70°,选项正确,不符合题意;B、∵a∥b,∴∠1=∠3,又∠1+∠2=180°〔邻补角定义〕,∴∠1=180°﹣∠2=180°﹣110°=70°,∴∠3=∠1=70°,选项正确,不符合题意;C、∵a∥b,∴∠2=∠5,又∠3+∠5=180°〔邻补角定义〕,∴∠3=180°﹣∠5=180°﹣∠2=180°﹣110°=70°,选项正确,不符合题意;D、∵a∥b,∴∠2+∠4=180°,∵∠3=∠4〔对顶角定义〕,∴∠3=180°﹣∠2=180°﹣110°=70°,选项错误,符合题意;应选:D.9.如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,那么∠1=〔〕A.72°B.108°C.144°D.120°【分析】根据旋转的性质以及补角的定义解答即可.解:如下图:由旋转的性质可得∠2=α=36°,∴∠1=180°﹣∠2=144°.应选:C.10.小王和小李两名同学研究本班女同学的身高情况,两人分别统计了一组数据:小王163164164165165166166167小李161162164165166166168168经过计算得到两组数据的方差,小王一组的方差为1.5,小李一组的方差为2.5,那么以下说法正确的〔〕A.小王统计的一组数据比拟稳定B.小李统计的一组数据比拟稳定C.两组数据一样稳定D.不能比拟稳定性【分析】根据方差的意义求解可得.解:∵小王一组的方差为1.5,小李一组的方差为2.5,1.5<2.5,∴小王统计的一组数据比拟稳定,应选:A.11.某地为了促进旅游业的开展,要在如下图的三条公路a,b,c围成的一块地上修建一个度假村,要使这个度假村到a,b两条公路的距离相等,且到B,C两地的距离相等,以下选址方法绘图描述正确的选项是〔〕A.画∠CAB的平分线,再画线段BC的垂直平分线,两线的交点符合选址条件B.先画∠CAB和∠BCA的平分线,再画线段BC的垂直平分线,三线的交点符合选址条件C.画三个角∠CAB,∠BCA和∠ABC三个角的平分线,交点即为所求D.画AB,BC,CA三条线段的垂直平分线,交点即为所求【分析】根据题意,可以得到这个度假村应该在∠CAB的平分线与线段BC的垂直平分线的交点处,从而可以解答此题.解:∵这个度假村到a,b两条公路的距离相等,∴度假村在∠CAB的角平分线上,∵这个度假村到B,C两地的距离相等,∴度假村在线段BC的垂直平分线,由上可得,画∠CAB的平分线,再画线段BC的垂直平分线,两线的交点符合选址条件,应选:A.12.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,那么以下说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有〔〕A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确【分析】a,b,c,d,e表示连续的五个整数,且a+e=0,由他们在数轴上的位置可知,a=﹣2,b =﹣1,c=0,d=1,e=2,然后进行判断即可.解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,∴a=﹣2,b=﹣1,c=0,d=1,e=2,于是①②④正确,而③不正确,应选:D.13.使分式和分式相等的x值是〔〕A.﹣5B.﹣4C.﹣3D.﹣1【分析】根据题意列出分式方程,求出分式方程的解即可得到x的值.解:根据题意得:=,去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.应选:C.14.一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α〔∠CBE=α,如图1所示〕.如图1,液面刚好过棱CD,并与棱BB'交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示,那么此时BQ的长为〔〕A.5dm B.4dm C.1dm D.3dm【分析】由题意得∠CBQ=90°,CQ=5dm,BC=AB=4dm,利用勾股定理即可求得BQ的长.解:由题意得:∠CBQ=90°,CQ=5dm,BC=AB=4dm,∴BQ==3〔dm〕;应选:D.15.如下图的直角坐标系内,双曲线的解析式为y=,假设将原坐标系的x轴向上平移两个单位,那么双曲线y=在新坐标系内的解析式为〔〕A.y﹣2=B.y+2=C.y=D.y=【分析】将坐标系向上平移2个单位相当于将图象向下平移2个单位,据此求解即可.解:∵将坐标系向上平移两个单位相当于将图象向下平移2个单位,∴y=向下平移2个单位的解析式为y=﹣2,即:y+2=,应选:B.16.如图,课外小组的同学们,在校内准备测量墙外一发射塔的高度,小组的同学们首先在校内宽敞处选定一点M,在M点测得到塔顶H的仰角为45°,然后他们沿与M和塔底O 连线MO垂直的方向走了60米到达N点,在N点观测塔顶H的仰角为30°,小组根据这些数据计算出发射塔的高度最接近的数值是〔〕A.40B.45C.30D.42【分析】在Rt△OHM中,设OH=x,那么OM=x,在Rt△OHN中,那么ON=x,可得出关于x的方程,解方程即可得出答案.解:在Rt△OHM中,设OH=x米,那么∵∠OMH=45°,∴OM=OH=x,在Rt△OHN中,∵∠HNO=30°,∴ON==x,在Rt△MON中,∠NMO=90°,MN=60,∴,解得x=30≈42〔米〕.应选:D.二、填空题〔本大题共3个小题,17小题3分,18-19小题有两个空每空2分,共11分.把答案写在题中横线上〕17.当m≠0时,如果m0×m﹣5m n=1,那么n=5.【分析】根据同底数幂相乘,底数不变,指数相加解答即可.解:当m≠0时,由m0×m﹣5m n=1,可得:m0﹣5+n=m0=1,可得:0﹣5+n=0,解得:n=5,故答案为:5.18.在实数范围内定义一种新运算m@n=﹣m+3n〔加减乘除是普通的运算〕,例如:1@2=﹣1+3×2=5,计算﹣1@2=7,假设2x@〔﹣3x﹣1〕=8,那么x=﹣1.【分析】直接利用m@n=﹣m+3n,进而计算得出答案.解:∵1@2=﹣1+3×2=5,∴﹣1@2=1+3×2=7,∵2x@〔﹣3x﹣1〕=8,∴﹣2x+3〔﹣3x﹣1〕=8,解得:x=﹣1.故答案为:7,﹣1.19.有一边长为10m的等边△ABC游乐场,某人从边AB中点P出发,先由点P沿平行于BC 的方向运动到AC边上的点P1,再由P1沿平行于AB方向运动到BC边上的点P2,又由点P2沿平行于AC方向运动到AB边上的点P3,那么此人至少要运动15m,才能回到点P.如果此人从AB边上任意一点出发,根据上面的规律运动,那么此人至少走30m,就能回到起点.【分析】假设某人从边AB中点P出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,由平行四边形的性质可得PP1=BP2=P2C=5m,即可求解;假设某人从边AB边上任意一点出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,由平行四边形的性质可求解.解:假设某人从边AB中点P出发,∵P是AB中点,AB=10m,∴AP=BP=5m,∵PP1∥BC,P1P2∥AB,PP2∥AC,∴四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,∴PP1=BP2=P2C,∴PP1=BP2=P2C=5m,同理可求P2P1=5m,P2P=5m,∴PP1+P2P1+P2P=15m,∴此人至少要运动15m,才能回到点P;假设某人从边AB边上任意一点出发,同理可证:四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,∴PP1=BP2,P1P2=BP,PP5=P1C,P4P5=AP,P2P3=AP1,P3P4=P2C,∵PP1+P1P2+P2P3+P3P4+P4P5+P5P=BP2+BP+AP1+P2C+AP+P1C=AB+AC+BC=30m,故答案为:15,30.三、解做题〔本大题共7个小题,共67分.解容许写出文字说明、证实过程〕20.小盛和丽丽在学完了有理数后做起了数学游戏.〔1〕规定用四个不重复〔绝对值小于10〕的正整数通过加法运算后结果等于12.小盛:1+2+3+6=12;丽丽:1+2+4+5=12.问是否还有其他的算式,如果有请写出来一个,如果没有,请简单说明理由;〔2〕规定用四个不重复〔绝对值小于10〕的整数通过加法运算后结果等于12.小盛:﹣2﹣3+8+9=12;丽丽:﹣3+0+8+7=12;请根据要求再写出一个与他们不同的算式.〔3〕用〔2〕中小盛和丽丽的算式继续排列下去组成一个数列,使相邻的四个数的和都等于12,小盛:﹣2,﹣3,8,9,x…,丽丽:﹣3,0,8,7,y…,那么x=﹣2,y=﹣3.求丽丽写出的数列的前19项的和.【分析】〔1〕由于1+2+3+4=10,要和为12,在此根底上加2,由此思考得出结论;〔2〕可在﹣2﹣3+8+9=12上变化两个数试试;〔3〕能过和为12计算,便可得x,y,丽丽写出的数每4个数为一组依次重复出现,按此规律得前4驵数有16项其和为12×4,再加上第5组的前3个数便可得前19项的和.解:〔1〕没有其他算式了.4个小于10不同的正整数最小的和为1+2+3+4=10,要想得到和为12,需要加上2,那么任何两个数加1或者任意一个数加2,又由于数字不能重复,所以只能在3+1或4+1或3+2或4+2,故符合条件的算式只有1+2+4+5,1+2+3+6,只有两个;〔2〕根据题意得,﹣1﹣3+7+9=12;〔3〕由题意得,x=12﹣〔﹣3+8+9〕=﹣2;y=12﹣〔0+8+7〕=﹣3;由题意知,丽丽写出的数每4个数〔﹣3,0,8,7〕为一组依次重复出现,∵19÷4=4…3,∴丽丽写出的数列的前19项的和=12×4+〔﹣3+0+8〕=53.21.在一个不透明的口袋中放入4个大小形状几乎完全相同实验用的鸡蛋,鸡蛋的质量有微小的差距〔用手感觉不到差异〕,质量分别为49、50、51克,随机的摸出一个鸡蛋,摸到49克和51克的鸡蛋的概率是相等的.〔1〕求这四个鸡蛋质量的众数和中位数;〔2〕小明做实验需要拿走一个鸡蛋,芳芳在小明拿走后从剩下的三个鸡蛋中随机的拿走一个.①通过计算分析小明拿走一个鸡蛋后,剩下的三个鸡蛋质量的中位数是多少?②假设小明拿走的鸡蛋质量为49克,芳芳随机的拿出一个鸡蛋后又放回,之后再随机的拿出一个鸡蛋,请用树状图求芳芳两次拿到都是50克的鸡蛋的概率?【分析】〔1〕根据题意得出四个鸡蛋的质量可能为49、49、50、51;49、50、50、51;49、50、51、51,再根据摸到49克和51克的鸡蛋的概率是相等的,得出四个鸡蛋的质量分别是49、50、50、51,最后根据中位数和众数的定义即可得出答案;〔2〕①根据中位数的定义直接得出答案;②根据题意画出树状图得出所有等情况数和两次拿到都是50克的鸡蛋的情况数,然后根据概率公式即可得出答案.解:〔1〕由于4个鸡蛋有三个质量数,所以必然有两个鸡蛋的质量是相等的,所以四个鸡蛋的质量可能为49、49、50、51;49、50、50、51;49、50、51、51,又根据摸到摸到49克和51克的鸡蛋的概率是相等的,我们从前面的数据分析可知,摸到鸡蛋的概率分别是、、,所以我们知道四个鸡蛋的质量分别是49、50、50、51,因此鸡蛋质量的众数为50,中位数也是50;〔2〕①小明拿走一个鸡蛋后,不管小明拿走的鸡蛋质量是多少,剩下的三个鸡蛋质量的中位数是50;②根据题意画图如下:共有9种等情况数,其中两次拿到都是50克的鸡蛋的有4种,那么两次拿到都是50克的鸡蛋的概率是.22.完全平方公式是初中数学的重要公式之一:〔a+b〕2=a2+2ab+b2,完全平方公式既可以用来进行整式计算又可以用来进行分解因式.发现:3+2=2+2+1=〔〕2+2+12=〔+1〕2;应用:〔1〕写出一个能用上面方法进行因式分解的式子,并进行因式分解;〔2〕假设a+b=〔m+n〕2,请用m,n表示a,b.拓展:如图在Rt△ABC中,BC=1,AC=,∠C=90°,延长CA至点D,使AD=AB,求BD 的长.〔参考上面提供的方法把结果进行化简〕【分析】〔1〕依照样例进行解答便可;〔2〕对等式右边按完全平方公式进行计算,再根据无理数相等的性质解答便可;拓展:先根据勾股定理求得AB,再求由勾股定理,结合上面因式分解方法求得BD.解:〔1〕4+2=3+2+1=;〔2〕∵a+b=〔m+n〕2,∴a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn;拓展:由题意得,AB=,∴AD=AB=2,∴CD=+2,∴BD2=BC2+CD2=1+=6+4+2==,∴BD=.23.有甲,乙两个电子团队整理一批电脑数据,整理电脑的台数为y〔台〕与整理需要的时间x之间关系如下图,请依据图象提供的信息解答以下问题:〔1〕乙队工作2小时整理30台电脑,工作6h时两队一共整理了110台;〔2〕求甲、乙两队y与x的关系式.〔3〕甲、乙两队整理电脑台数相等时,直接写出x的值.【分析】〔1〕此题只要认真读图,可从中找到甲、乙两队各组数据;〔2〕根据图中的信息利用待定系数法即可确定函数关系式;〔3〕利用〔2〕中的函数关系式可以解决问题.解:〔1〕依题意得乙队工作2小时整理30台电脑,工作6h时两队一共整理了110台;故答案为:30、110.〔2〕设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲=k1x,由图可知,函数图象过点〔6,60〕,∴6k1=60,解得k1=10,∴y甲=10x,当0≤x≤2时,设乙队y与x之间的函数关系式为y乙=k2x,由图可知,函数图象过点〔2,30〕,∴2k2=30,解得k2=15,∴y乙=15x;当2<x≤6,设乙队y与x之间的函数关系式为y乙=mx+n,由图可知,函数图象过点〔2,30〕,〔6,50〕,∴,解得,∴y乙=5x+20,∴.〔3〕根据题意得:10x=5x+20,解得x=4.∴甲、乙两队整理电脑台数相等时,x=4.24.如图,△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A按逆时针方向旋转α°.得到△ADE,连接BD,CE交于点F.〔1〕求证:△ABD≌△ACE;〔2〕用α表示∠ACE的度数;〔3〕假设使四边形ABFE是菱形,求α的度数.【分析】〔1〕根据旋转角求出∠BAD=∠CAE,然后利用“边角边〞证实△ABD和△ACE 全等;〔2〕根据等腰三角形的性质得到结论;〔3〕根据等腰三角形的性质得到∠ABD=∠ADB=∠ACE=∠AEC=90°﹣,求得∠BFE=150°,假设使四边形ABFE是菱形,只要四边形ABFE是平行四边形即可,得到∠BAE=∠BFE,于是得到结论.【解答】〔1〕证实:∵ABC绕点A按逆时针方向旋转α°,∴∠BAC=∠DAE=30°,∴∠BAD=∠CAE=α°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE〔SAS〕;〔2〕解:∵∠CAE=α°,AC=AE,∴∠ACE=〔180°﹣∠CAE〕=〔180°﹣α°〕=90°﹣;〔3〕解:∵∠BAD=∠CAE=α°,AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=90°﹣,∵∠BAE=∠BAD+∠DAE=α°+30°=〔α+30〕°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=360°﹣〔α+30〕°﹣2〔90°﹣α°〕=150°,∵AB=AE,∴假设使四边形ABFE是菱形,只要四边形ABFE是平行四边形即可,∵∠ABD=∠AEC,∴只要∠BAE=∠BFE,即〔30+α〕°=150°,解得:α°=120°,即当α°=120°时,四边形ABFE是菱形.25.如图,二次函数L:y=mx2+2mx+k〔其中m,k是常数,k为正整数〕.〔1〕假设L经过点〔1,k+6〕,求m的值.〔2〕当m=2,假设L与x轴有公共点时且公共点的横坐标为非零的整数,确定k的值;〔3〕在〔2〕的条件下将L:y=mx2+2mx+k的图象向下平移8个单位,得到函数图象M,求M的解析式;〔4〕将M的图象在x轴下方的局部沿x轴翻折,图象的其余局部保持不变,得到一个新的图象N,请结合新的图象解答问题,假设直线y=x+b与N有两个公共点时,请直接写出b 的取值范围.【分析】〔1〕将点〔1,k+6〕代入y=mx2+2mx+k,即可求解;〔2〕由题意得:△=16﹣8k≥0,即可求解;〔3〕根据平移的公式即可求解;〔4〕确定点H、A、B三个临界点,求出临界点时b的值,即可求解.解:〔1〕将点〔1,k+6〕代入y=mx2+2mx+k并解得:m=2;〔2〕y=mx2+2mx+k=2x2+4x+k,由题意得:△=16﹣8k≥0,解得:k≤2,∵k为正整数,当k=1时,方程没有整数解,故舍去,那么k=2;〔3〕在m=2,k=2时,y=2x2+4x+2,向下平移8个单位,平移后的表达式为:y=2x2+4x+2﹣8=2x2+4x﹣6;〔4〕由〔3〕知,M的表达式为:y=2x2+4x﹣6①,那么翻折后抛物线的表达式为:y′=﹣2x2﹣4x+6②,设直线m为:y=x+b③,①当直线m与翻折后的图象有一个交点〔点H〕时,如以下图,联立②③并整理得:2x2+x+b﹣6=0,那么△=﹣8〔b﹣6〕=0,解得:b=;②当直线m过点A〔﹣3,0〕时,将点A的坐标代入③式得,0=×〔﹣3〕+b,解得:b=;③当直线m过点B时,同理可得:b=﹣;故直线y=x+b与N有两个公共点时,b的取值范围为:﹣<b<或b>.26.如图1,点E在矩形ABCD的边AD上,AD=6,tan∠ACD=,连接CE,线段CE绕点C 旋转90°,得到线段CF,以线段EF为直径做⊙O.〔1〕请说明点C一定在⊙O上的理由;〔2〕点M在⊙O上,如图2,MC为⊙O的直径,求证:点M到AD的距离等于线段DE的长;〔3〕当△AEM面积取得最大值时,求⊙O半径的长;〔4〕当⊙O与矩形ABCD的边相切时,计算扇形OCF的面积.【分析】〔1〕连接OC,由旋转的性质得出∠ECF=90°,由直角三角形斜边的中线的性质得出OC=OE=OF,即可得出点C一定在⊙O上;〔2〕易证EM=CE,过点M作MN⊥AD于N,由AAS证得△MEN≌△CED,得出MN=DE,即可得出结论;〔3〕设AE=x,那么DE=6﹣x,由〔2〕得点M到AD的距离等于线段DE的长,那么S△AEM=×x×〔6﹣x〕=﹣〔x﹣3〕2+,当x=3时,△AEM面积取得最大值,此时,DE =3,由tan∠ACD==,得出CD=4,由勾股定理得CE2=DE2+CD2,求出CE=5,易证∠CEF=45°,在Rt△CEF中,由EF=,即可得出结果;〔4〕当⊙O与矩形ABCD的边相切时,只有点O与点D重合时存在,此时⊙O半径r=CD =4,∠COF=90°,由扇形面积公式即可得出结果.【解答】〔1〕解:点C一定在⊙O上的理由如下:连接OC,如图1所示:由旋转的性质得:∠ECF=90°,∵EF是⊙O的直径,O为圆心,∴OE=OF,∴OC=OE=OF,∴点C一定在⊙O上;〔2〕证实:由旋转的性质得:∠ECF=90°,CE=CF,∵OE=OF,∴CO⊥EF,∵MC为⊙O的直径,∴CM⊥EF,OC=OM,∠MEC=90°,∴EM=CE,过点M作MN⊥AD于N,如图2所示:∵∠DEC+∠DCE=90°,∠DEC+∠DEM=90°,∴∠DEM=∠DCE,在△MEN和△CED中,,∴△MEN≌△CED〔AAS〕,∴MN=DE,即点M到AD的距离等于线段DE的长;。
河北省唐山市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015七上·广饶期末) ﹣的倒数是()A .B . 3C . ﹣3D . ﹣2. (2分)在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m,这个数据用科学记数法表示为()A . 7.8×10-7mB . 7.8×10-4mC . 7. 8×10-8mD . 78×10-8m3. (2分)下列各式计算正确的是()A . 2x•3x2=6x2B . (﹣3a2b)2=6a4b2C . ﹣a2+2a2=a2D . (a+b)(a﹣2b)=a2﹣2b24. (2分)有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程()A .B .C .D .5. (2分)(2017·泰州模拟) 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A .B .C .D .6. (2分)如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A . 18πcmB . 16πcmC . 20πcmD . 24πcm7. (2分) (2015八下·武冈期中) 一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A . 4B . 5C . 6D . 78. (2分)(2017·天河模拟) 如图,在Rt△ABC中,∠C=90°,∠B=30°,将Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小为()A . 115°B . 125°9. (2分)(2019·颍泉模拟) 如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()A .B .C .D . 210. (2分)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A . 75cm2B . (25+25)cm2C . (25+)cm2D . (25+)cm211. (2分)若m<﹣3,则下列函数:①y=(x≥﹣3),②y=﹣mx+1,③y=m(x+3)2 ,④y=(m+3)x2(x≤0)中,y的值随x的值增大而增大的函数共有()A . 1个D . 4个12. (2分)(2017·深圳模拟) 如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将 ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将 CMP沿直线MP翻折后,点C落在直线PE 上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的个数有().① CMP∽ BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2 ;⑤当ABP≌ AND时,BP=4 -4.A . ①②③B . ②③⑤C . ①④⑤D . ①②⑤二、填空题 (共5题;共5分)13. (1分)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sinE的值为________.14. (1分)如图,圆锥的母线长OA为8,底面圆的半径为4.若一只蚂蚁在底面上点A处,在相对母线OC的中点B处有一只小虫,蚂蚁要捉小虫,需要爬行的最短路程为________.15. (1分)(2011·宁波) 正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.16.(1分)(2019·武汉模拟) 抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,抛物线与x轴围成的封闭区域(不包含边界),仅有4个整数点时(整数点就是横纵坐标均为整数的点),则a的取值范围________.17. (1分)(2017·峄城模拟) 如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 ,作正方形A1B1C1B2 ,延长C1B2交直线l于点A2 ,作正方形A2B2C2B3 ,延长C2B3交直线l于点A3 ,作正方形A3B3C3B4 ,…,依此规律,则A2016A2017=________.三、解答题 (共7题;共72分)18. (10分) (2020八上·港南期末)(1)计算:(2)先化简,再求值:,其中, .19. (7分)(2013·南通) 在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:第一次第二次12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)①(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后________(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为________;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20. (10分)(2018·高安模拟) 为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.(1)求的度数;(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?21. (10分) (2016八上·阜康期中) 如图,△ABE为等腰直角三角形,∠ABE=90°,BC=BD,∠FAD=30°.(1)求证:△ABC≌△EBD;(2)求∠AFE的度数.22. (10分)(2018·济宁模拟) 某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.23. (10分)(2017·游仙模拟) 计算题(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;(2)先化简,再求值:(﹣x﹣1)÷ ,其中x是不等式组的一个整数解.24. (15分)(2017·黑龙江模拟) 在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣4a与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,点P在第二象限的抛物线上,PD⊥y轴于点D,连接PC交x轴于点E,设PD的长为n,OE的长为m.(1)如图1,求m与n的函数关系式;(2)如图1,作EQ⊥x轴,EQ交抛物线于点Q,连接CQ并延长交x轴于点F,连接PF,求证:PF∥OC;(3)如图2,在(2)的条件下,连接AC、PB、FD,PB交FD于点K,当点E为PC的中点,∠FCA+∠PKF=3∠PBF 时,求点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共72分)18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。
唐山市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12个小题,每小题3分,满分36分. (共12题;共34分)1. (3分)下列四个实数中,绝对值最小的数是()A . ﹣5B . -C . 1D . π2. (3分)下列计算中,错误的是()A . 3a﹣2a=aB . ﹣2a(3a﹣1)=﹣6a2﹣1C . ﹣8a2÷2a=﹣4aD . (a+3b)2=a2+6ab+9b23. (3分) (2017七上·新会期末) 用两块完全相同的长方体搭成如图所示的几何体,从正面看得到的图形是()A .B .C .D .4. (3分)据昌平交通局网上公布,地铁昌平线(一期)2011年1月4日出现上班运营高峰,各站进出站约47600人次. 将47 600用科学记数法表示为()A .B .C .D .5. (3分) (2019八上·南山期末) 如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是()A . 众数为30B . 中位数为25C . 平均数为24D . 方差为836. (3分)在一张正方形桌子的桌面上放上一块台布,台布各边垂下的长度均为5cm,台布的面积比桌面面积的2倍少50cm2 ,若设正方形桌面的边长为xcm,则可列方程为()A .B .C .D .7. (2分)(2016·聊城) (2016•聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A . 28°B . 38°C . 48°D . 88°8. (3分)(2018·黔西南模拟) 一个密码锁有五位数字组成,每一位数字都是0,1,2,3,4,5,6,7,8,9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为()A .B .C .D .9. (3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20° ,,则∠DAC的度数是()A . 70°B . 45°C . 35°D . 30°10. (2分)如图,E,F分别是矩形ABCD的边AD、AB上的点,若EF=EC,EF⊥EC,DC= ,则BE的长为()A .B .C . 4D . 211. (3分)如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现在计划在斜坡AB的中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE,若斜坡BE的坡角为30°,则平台DE的长约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A . 24.8米B . 43.3米C . 33.5米D . 16.8米12. (3分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么该矩形的周长为()A . 72cmB . 36cmC . 20cmD . 16cm二、填空题:本大题共8个小题,每小题5分,满分40分。
河北省唐山市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)我国是世界上严重缺水的国家之一,目前我国年可利用的淡水资源总量为亿米3 ,人均占有淡水量居全世界第110位,因此我们要节约用水,这个数用科学记数法表示为()A .B .C .D .2. (2分)(2017·全椒模拟) 将一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则下列选项中.不是如图所示几何体的主视图、左视图、俯视图之一的是()A .B .C .D .3. (2分) (2019八上·郑州期中) 估计 - 的值应在()A . 6和7之间B . 7和8之间C . 8和9之间D . 9和10之间4. (2分)从1到9这九个自然数中任取一个,是偶数的概率是()A .B .C .D .5. (2分)下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余.(4) 同位角相等。
其中真命题的个数()A . 1个B . 2个C . 3个D . 4个6. (2分)(2018·湘西模拟) 学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,3,4,9.则这组数据的中位数和众数分别是()A . 2和2B . 4和2C . 2和3D . 3和27. (2分)下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017七下·平定期中) 在平面直角坐标系中,点P(﹣1,5)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)有下列几种说法:①角平分线上的点到角两边的距离相等;②顺次连结矩形四边中点得到的四边形是菱形;③等腰梯形的底角相等;④平行四边形是中心对称图形。
河北省唐山市2020年中考数学试卷(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2015七上·广饶期末) ﹣的倒数是()
A .
B . 3
C . ﹣3
D . ﹣
2. (2分)在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m,这个数据用科学记数法表示为()
A . 7.8×10-7m
B . 7.8×10-4m
C . 7. 8×10-8m
D . 78×10-8m
3. (2分)下列各式计算正确的是()
A . 2x•3x2=6x2
B . (﹣3a2b)2=6a4b2
C . ﹣a2+2a2=a2
D . (a+b)(a﹣2b)=a2﹣2b2
4. (2分)有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为xkg,根据题意,可得方程()
A .
B .
C .
D .
5. (2分)(2017·泰州模拟) 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()
A .
B .
C .
D .
6. (2分)如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()
A . 18πcm
B . 16πcm
C . 20πcm
D . 24πcm
7. (2分) (2015八下·武冈期中) 一个多边形的内角和是外角和的2倍,则这个多边形的边数为()
A . 4
B . 5
C . 6
D . 7
8. (2分)(2017·天河模拟) 如图,在Rt△ABC中,∠C=90°,∠B=30°,将Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小为()
A . 115°
B . 125°
9. (2分)(2019·颍泉模拟) 如图1,矩形ABCD中,AB=4,AD=2,E、F是边AB、DC的中点,连接EF、AF,动点P从A向F运动,AP=x,y=PE+PB.图2所示的是y关于x的函数图象,点(a,b)是函数图象的最低点,则a的值为()
A .
B .
C .
D . 2
10. (2分)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()
A . 75cm2
B . (25+25)cm2
C . (25+)cm2
D . (25+)cm2
11. (2分)若m<﹣3,则下列函数:①y=(x≥﹣3),②y=﹣mx+1,③y=m(x+3)2 ,④y=(m+3)x2(x≤0)中,y的值随x的值增大而增大的函数共有()
A . 1个
D . 4个
12. (2分)(2017·深圳模拟) 如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将 ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将 CMP沿直线MP翻折后,点C落在直线PE 上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的个数有().
① CMP∽ BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2 ;
⑤当ABP≌ AND时,BP=4 -4.
A . ①②③
B . ②③⑤
C . ①④⑤
D . ①②⑤
二、填空题 (共5题;共5分)
13. (1分)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sinE的值为________.
14. (1分)如图,圆锥的母线长OA为8,底面圆的半径为4.若一只蚂蚁在底面上点A处,在相对母线OC的中点B处有一只小虫,蚂蚁要捉小虫,需要爬行的最短路程为________.
15. (1分)(2011·宁波) 正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y= (x>0)
的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.
16.
(1分)(2019·武汉模拟) 抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,抛物线与x轴围成的封闭区域(不包含边界),仅有4个整数点时(整数点就是横纵坐标均为整数的点),则a的取值范围________.
17. (1分)(2017·峄城模拟) 如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 ,作正方形A1B1C1B2 ,延长C1B2交直线l于点A2 ,作正方形A2B2C2B3 ,延长C2B3交直线l于点A3 ,作正方形A3B3C3B4 ,…,依此规律,则A2016A2017=________.
三、解答题 (共7题;共72分)
18. (10分) (2020八上·港南期末)
(1)计算:
(2)先化简,再求值:,其中, .
19. (7分)(2013·南通) 在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树状图如图所示:
小华列出表格如下:
第一次
第二次
1234
1(1,1)(2,1)(3,1)(4,1)
2(1,2)(2,2)①(4,2)
3(1,3)(2,3)(3,3)(4,3)
4(1,4)(2,4)(3,4)(4,4)
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后________(填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为________;
(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
20. (10分)(2018·高安模拟) 为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在处测得灯塔在北偏东方向上,继续航行1小时到达处,此时测得灯塔在北偏东方向上.
(1)求的度数;
(2)已知在灯塔的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
21. (10分) (2016八上·阜康期中) 如图,△ABE为等腰直角三角形,∠ABE=90°,BC=BD,∠FAD=30°.
(1)求证:△ABC≌△EBD;
(2)求∠AFE的度数.
22. (10分)(2018·济宁模拟) 某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
23. (10分)(2017·游仙模拟) 计算题
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;
(2)先化简,再求值:(﹣x﹣1)÷ ,其中x是不等式组的一个整数解.
24. (15分)(2017·黑龙江模拟) 在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣4a与x轴交于点
A、点B(点A在点B的左侧),与y轴交于点C,点P在第二象限的抛物线上,PD⊥y轴于点D,连接PC交x轴于点E,设PD的长为n,OE的长为m.
(1)如图1,求m与n的函数关系式;
(2)如图1,作EQ⊥x轴,EQ交抛物线于点Q,连接CQ并延长交x轴于点F,连接PF,求证:PF∥OC;
(3)如图2,在(2)的条件下,连接AC、PB、FD,PB交FD于点K,当点E为PC的中点,∠FCA+∠PKF=3∠PBF 时,求点P的坐标.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共5题;共5分)
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共7题;共72分)
18-1、
18-2、19-1、19-2、
19-3、20-1、
20-2、
21-1、21-2、22-1、22-2、
23-1、23-2、
24-1、24-2、
24-3、。