CBTC 无线信道规划中信道间干扰因子的研究
- 格式:pdf
- 大小:312.04 KB
- 文档页数:3
CBTC数据通信子系统的无线干扰提纲:1. CBTC数据通信子系统的基本原理和工作流程2. CBTC数据通信子系统的无线干扰与现有无线技术的关系3. CBTC数据通信子系统的无线干扰的成因和特点4. 针对CBTC数据通信子系统的无线干扰的解决方案5. CBTC数据通信子系统的无线干扰案例分析一、CBTC数据通信子系统的基本原理和工作流程CBTC(Communication-Based Train Control)是基于数据通信技术的地铁列车自动驾驶系统,由列车设备、地面设备、通信系统和控制系统组成,其中通信系统是CBTC系统的重要组成部分。
CBTC数据通信子系统采用Wi-Fi、LTE等现有的无线通信技术,实现列车和地面设备之间的信息交换和数据传输。
CBTC数据通信子系统通过与列车设备之间的无线通信,实现列车位置、速度、状态等信息的传输,并提供控制指令。
地面设备接收并处理这些信息,并发送控制指令给列车。
这一过程为列车的自动控制提供了可靠的技术支持。
然而CBTC数据通信子系统在使用Wi-Fi、LTE等通信技术的同时,也面临着无线干扰的等问题,影响着其工作效果与安全性。
二、CBTC数据通信子系统的无线干扰与现有无线技术的关系CBTC数据通信子系统采用的是Wi-Fi、LTE等通信技术。
而这些通信技术本身也存在着一定的无线干扰问题。
因此,CBTC数据通信子系统的无线干扰与现有无线技术是密切相关的。
Wi-Fi技术的无线干扰:Wi-Fi技术采用的是2.4GHz和5GHz频率的无线信号,这些频率段的信号易受到建筑物、障碍物、天气等因素的影响,出现抖动、衰减等问题,从而导致Wi-Fi的数据传输速率降低,数据传输质量下降,该问题称为Wi-Fi的无线干扰。
LTE技术的无线干扰: LTE通信技术采用的是更高频率的无线信号,高频率的无线信号功率较低,穿透能力较差,同时也容易被建筑物、地下隧道等环境干扰,导致LTE信号覆盖范围减小、信号质量不稳定、数据传输速率降低等问题,称为LTE的无线干扰。
城市轨道交通CBTC干扰处理方法研究报告摘要:随着无线技术的迅猛发展,基于通信的列车控制技术CBTC已成为轨道交通信号系统的关键技术。
但是,由于列车控制信号的传输是基于自由空间无线信道为传输通道的,因此,如何在当前开放的无线环境下,保证无线CBTC 系统安全、有效和可靠地运行,是我们必须要面对和解决的问题。
本文对CBTC 系统的干扰源进行分析,并从频段选择、设备选用及运营维护等几方面分析,重点提出了一些解决CBTC无线干扰的思路和策略,本文是对当今城市轨道交通信号系统无线安全领域的一次探索,具有深刻现实的意义。
关键词:信号系统;CBTC;抗干扰1.CBTC的应用随着计算机技术(computer)、通信技术(communication)和控制技术(control)的飞跃发展,传统的以轨道电路作为信息载体的列车控制系统逐步以利用3C技术为基础的“基于通信的列车控制系统”——CBTC所取代。
CBTC比之于传统的基于轨道电路的列车控制系统,有两个基本特点:连续的、大容量的列车---轨旁双向数据通信技术。
不以轨道电路作为信息传输媒介,以应答器、计轴或其他形式能传送无线信号的装置作为降级的处理。
通信技术与控制技术的结合重新规划了城市轨道交通信号系统的结构与组成,为列车运行控制的未来发展开辟新的空间。
目前国内CBTC的无线通信系统使用的2.4GHz ( 2.4 GHz~ 2.4835 GHz) 工作频段是国家规定的公用频段。
此频段内,在限定发射功率指标下,无需申请批准就能使用,因此造成该频段应用业务和用户大量集中,潜在无线干扰普遍存在。
CBTC系统干扰源分析便携式Wi-Fi在信息高速发展的今天,利用移动终端随时随地实现无线上网(Wi-Fi)已逐渐成为人们生活中的必需品。
通信运营商推出便携Wi-Fi设备(3G便携式段利用便携Wi-Fi实现无线上网)Wi-Fi无线上网亦采用2.4GHz开放频段,一旦引入地铁很可能会对CBTC无线传输系统带来干扰,从而严重影响地铁运营的安全性。
城市轨道交通CBTC信号系统无线通信抗干扰技术的思考城市轨道列车急刹车事件的频繁发生,引起了人们对轨道交通CBTC信号系统无线通信受干扰问题的重视。
基于这种情况,本文在分析城市轨道交通CBTC信号系统无线通信及其干扰问题的基础上,对DSSS技术、FHSS技术、CSS技术这三种无线通信抗干扰技术展开了分析。
标签:城市轨道交通CBTC信号系统;DSSS技术;FHSS技术;CSS技术引言:城市轨道交通CBTC信号系统拥有较好的兼容性,所以在城市轨道交通建设中得到了广泛应用。
但就目前来看,随着无线通信技术的发展,CBTC 系统容易受乘客携带电子设备、相同频段非WiFi设备等多种因素的干扰。
能否增强CBTC信号系统的通信抗干扰能力,直接关系到系统能否取得平稳运转,进而将对城市轨道列车的运营产生影响。
因此,还应加强城市轨道交通CBTC 信号系统无线通信抗干扰技术的研究,从而为列车运行提供保障。
1 城市軌道交通CBTC信号系统的无线通信及其干扰分析目前,城市轨道交通CBTC信号系统为能够实现车-地通信的列车自动控制系统,其采用的无线通信技术主要为2.4GHz频段的WLAN技术,即利用无线局域网的公共频段实现无线传输。
而WLAN网络的2.4GHz为免费开放频段,具有较强的扩展性和可移动性,能够为用户随时随地接入宽带网络提供便利,因此得到了各个行业的应用。
目前,该频段带宽为83.5MHz,共拥有14个频点。
国内城市轨道交通CBTC信号系统多采用1#和11#(6#)为主备信道,系统视频传输主要利用6#信道[1]。
为实现车-地无线通信,除了进行车载无线终端的布置,还要沿着轨道旁完成AP布置。
而车载终端和轨道旁的AP均采用IEEE802.11x 协议,因此CBTC系统的无线通信网络为典型无线局域网。
随着互联网的发展,WiFi无线已经得到了广泛覆盖,并被引入到了地铁上。
而WiFi无线采用的通信协议为IEEE802.11x,容易给CBTC信号系统的无线通信带来干扰。
- 93 -CHINA RAILWAY 2016/060 引言无线通信是基于通信的列车控制(CBTC)系统中各功能子系统信息交换的桥梁[1]。
一旦通信频段出现外来有害干扰,并且干扰时间超过车-地双向通信允许的最长时延,列车自动保护(ATP)系统将触发紧急制动,这将严重影响行车效率,甚至可能造成乘客人身伤害。
考虑到城市轨道交通列控无线通信系统(简称无线CBTC系统)的功能和承载的业务特征,在实际部署中除应避免系统内部的自干扰外,还必须预防系统外部的干扰。
系统内部的自干扰一般可通过无线覆盖区设计、网络优化等措施避免[2]。
而系统外部的干扰主要来自与其同频、邻频的其他无线电系统,干扰场景比较复杂,处理相对困难,潜在危害也最大。
城市轨道交通线路通常分为地下、地面和高架3部分。
地下部分由于地层的天然屏蔽,使得地上干扰信号很难进入,电磁环境相对干净。
地面和高架部分通常位于城市楼宇之间或郊区空旷地带,这些区域无线发射设备数量多,存在较大的受干扰风险。
无线CBTC系统的服役年限一般为15~20年,随着社会发展,各种新的无线电应用大量出现,而频谱资源是有限的,为提高频谱利用效率,多个系统共享频谱资源是发展的趋势,客观上也会造成无线CBTC系统所处电磁环境更加复杂。
2012年,深圳地铁蛇口线受便携移动Wi-Fi热点(MiFi)设备干扰之后,大量文献从MiFi干扰机制及应对策略、既有系统的抗干扰能力、未来系统的可用频率等方面进行了讨论。
在此,立足于我国(以下均指内地)无线电频率规划、分配现状,分析无线CBTC系统的同频和邻频频段的使用情况,以及将来可能出现的干扰问题,并给出干扰防护建议。
由于干扰的发生是信号功率、发射时间与传播距离等多条件综合作用的结果,因此认为某系统会产生对CBTC系统的干扰是指产生干扰的条件比较容易满足。
这里既考虑目前在用的无线CBTC系统,也兼顾未来可能在规划频段部署的系统。
由于文中多处引用我国无线电频率规划分配文件,为行文简洁,在不出现歧义的情况下,只标出发文机构的简称和文号。
CBTC系统中WLAN干扰分析与优化研究CBTC系统中WLAN干扰分析与优化研究一、引言随着城市轨道交通的快速发展,CBTC(无线列车控制系统)作为一种先进的列车控制系统得到了广泛的应用。
CBTC系统通过使用无线通信技术,实现了列车与基础设施之间的全时、双向的信息传输,为实现高效、安全的列车运营提供了有力的支持。
然而,在现实应用中,CBTC系统往往会面临WLAN(无线局域网)干扰问题。
WLAN作为一种常见的无线通信技术,其频段也与CBTC系统所使用的通信频段有一定的重叠。
因此,合理分析和优化WLAN干扰对CBTC系统的影响,对于确保CBTC系统的可靠性和稳定性至关重要。
二、WLAN干扰对CBTC系统的影响1. 通信质量下降:WLAN干扰会使CBTC系统的通信质量下降,导致数据传输的可靠性降低。
这可能会导致列车运行信息的延迟或丢失,从而影响列车的运行安全和运行效率。
2. 信号干扰:WLAN干扰会导致CBTC系统中的信号干扰,干扰信号的接收和解码,甚至可能引发误解码,造成误操作或误判断。
3. 系统故障:由于WLAN干扰,CBTC系统可能会遭受系统故障,引发重要数据的丢失或损坏,甚至导致系统崩溃,造成服务中断。
三、CBTC系统中WLAN干扰分析1. 干扰源分析:首先,需要对CBTC系统中存在的WLAN干扰源进行分析。
包括查明WLAN信号源的类型、功率以及传输范围等关键信息。
可以通过频谱分析仪等设备来收集和分析干扰源的参数信息。
2. 干扰特性分析:对干扰源的特性进行深入分析,包括干扰信号的频率、幅度、持续时间等。
通过对干扰特性的分析,可以判断WLAN干扰对CBTC系统的影响程度,并为后续的优化措施提供参考。
3. CBTC系统性能测试:利用专业的测试设备对CBTC系统的性能进行测试,包括数据传输延迟、信号强度、信噪比等指标。
通过测试数据的收集和分析,可以进一步了解WLAN干扰对CBTC系统的影响,并辅助优化研究的进行。