初一下册一元一次不等式应用题()讲课教案
- 格式:doc
- 大小:481.78 KB
- 文档页数:55
七年级下册数学教案《一元一次不等式应用》学情分析根据教材分析和《课标》要求,确定本节课的教学重点是:正确求一元一次不等式的解集。
为突出重点,本节课让学生自主探索并掌握解一元一次不等式的解法。
从学生的知识结构来看,一方面,学生刚刚学习了不等式及其基本性质、一元一次不等式的意义及其解法,对学习列一元一次不等式解应用题提供了最基本的知识储备;另一方面,学生在七年级学习了列一元一次方程解应用题,对解这类题目的一般步骤,寻找等量关系的方法具备了一定能力。
以上两点为学生学习列一元一次不等式解应用题打下了知识基础。
教学目的1、能够根据实际问题中的数量关系,列出一元一次不等式,解决简单的实际问题。
2、初步体会一元一次不等式的应用价值,发展学生的分析问题和解决问题的能力。
教学重点列不等式解决实际问题。
教学难点正确找出非等量关系,列出不等式。
教学方法讲授法、练习法、讨论法、举例子教学法教学过程一、直接引入有些实际问题中存在非等量关系,用不等式表示这样的关系,就能把实际问题转化为数学问题,从而通过解不等式得到实际问题的答案。
本节课我们一起来学习《一元一次不等式》的应用。
二、学习新知1、某市空气质量优秀(一级以上)的天数与全年天数(365天)之比达到60%,如果明年(365天)这样的比例要超过70%,那么明年空气质量优秀的天数比去年至少要增加多少?分析:“明年这样的比例要超过70%”指出了问题中的非等量关系,转化为不等式,即:明年空气质量优秀的天数/明年天数>70%解:设明年比去年空气质量优秀的天数增加了x天。
去年有365×60%天空气质量优秀,明年有(x + 365×60%)天空气质量优秀。
(x + 365×60%)/ 365 > 70%去分母,得x + 219>255.5移项,合并同类项,得由x应为正整数,得x≥37答:明年空气质量优秀的天数比去年至少要增加37天,才能使这一年空气质量良好的天数超过全年天数的70%。
新人教版七年级数学下册实际问题与一元一次不等式教案优秀教案一、教学目标1.知识与技能目标:掌握一元一次不等式的概念、性质和解法,能够运用一元一次不等式解决实际问题。
2.过程与方法目标:培养学生的逻辑思维能力、分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生独立思考、合作交流的精神。
二、教学重点与难点1.教学重点:一元一次不等式的概念、性质和解法。
2.教学难点:运用一元一次不等式解决实际问题。
三、教学过程1.导入新课通过提问方式引导学生回顾已学过的一元一次方程的知识,如:什么是一元一次方程?一元一次方程的解法是什么?然后引出一元一次不等式的概念。
2.教学新课(1)一元一次不等式的概念(2)一元一次不等式的性质讲解一元一次不等式的性质,如:两边同时乘以或除以同一个正数,不等号方向不变;两边同时乘以或除以同一个负数,不等号方向改变。
通过例题让学生掌握这些性质。
(3)一元一次不等式的解法讲解一元一次不等式的解法,如:移项、合并同类项、系数化为1等。
通过例题让学生掌握解一元一次不等式的方法。
(4)实际问题与一元一次不等式讲解如何运用一元一次不等式解决实际问题,如:行程问题、年龄问题等。
通过例题让学生学会建立一元一次不等式模型,解决实际问题。
3.练习巩固布置一些练习题,让学生独立完成,巩固所学知识。
练习题要涵盖一元一次不等式的概念、性质、解法和实际问题应用等方面。
4.小组讨论(1)如何判断一个不等式是否为一元一次不等式?(2)一元一次不等式的解法有哪些?(3)如何运用一元一次不等式解决实际问题?四、课后作业1.完成课后练习题。
2.收集生活中的实际问题,尝试用一元一次不等式解决。
五、教学反思本节课通过讲解一元一次不等式的概念、性质、解法和实际问题应用,让学生掌握了相关知识。
在教学过程中,要注意引导学生主动参与,培养学生的逻辑思维能力、分析问题和解决问题的能力。
同时,要关注学生的学习反馈,及时调整教学方法和策略,提高教学效果。
教学计划:《一元一次不等式》一、教学目标1.知识与技能:学生能够理解一元一次不等式的概念,掌握解一元一次不等式的基本步骤,以及不等式解集的概念和表示方法。
2.过程与方法:通过具体实例的分析,引导学生观察、比较、归纳出一元一次不等式的解法,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们面对问题时耐心细致、勇于探索的精神,同时感受数学在解决实际问题中的应用价值。
二、教学重点和难点●教学重点:一元一次不等式的概念、解法以及解集的表示方法。
●教学难点:理解不等式解集的意义,特别是当解集为无限集时(如x>a,x<b等)的表示方法,以及不等式解法的灵活运用。
三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过生活中常见的比较情境(如价格比较、速度比较等),引导学生认识到不等关系在日常生活中的普遍存在,进而引出不等式的概念。
●旧知回顾:复习一元一次方程的概念和解法,为学习一元一次不等式做铺垫。
●明确目标:介绍本节课的学习内容,即一元一次不等式的概念、解法及解集表示方法。
2. 讲授新知(约15分钟)●一元一次不等式的概念:明确不等式的定义,特别是“一元一次”的含义,通过实例展示如何根据实际问题建立一元一次不等式。
●解一元一次不等式的基本步骤:详细讲解移项、合并同类项、系数化为1等步骤,强调与一元一次方程解法的异同点。
●不等式解集的概念和表示方法:介绍不等式解集的意义,通过数轴展示不同类型解集的表示方法(如x>a, x<b, a<x<b等)。
3. 示范解题(约10分钟)●例题展示:选取几道典型例题,逐步展示解题过程,强调解题步骤的规范性和准确性。
●关键点强调:在解题过程中,特别指出易错点和关键点,如移项时改变不等号的方向,系数化为1时注意不等号的方向等。
●学生尝试:让学生尝试自己解决类似的问题,教师巡回指导,及时纠正学生的错误。
一元一次不等式(组)一、知识导航图一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组二、课标要求三、知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向. 2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)0a b <⎧⎨<⎩ 的解集是x<a,即“小小取小”.(2)0a b >⎧⎨>⎩ 的解集是x>b,即“大大取大”.(3) 00a b >⎧⎨<⎩的解集是a<x<b,即“大小小大取中间”.(4)00a b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想. 4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.四、题型例析1.判断不等式是否成立例12.在数轴上表示不等式的解集例2 3.求字母的取值范围例3 4.解不等式组例45.列不等式(组)解应用题例5一元一次不等式(组)【课前热身】 【知识点链接】1.不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若a <b ,则a +c c b +;(2)若a >b ,c >0则ac bc (或c a c b ); (3)若a >b ,c <0则ac bc (或c a cb).3.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.4.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组. 一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”;x ax b >⎧⎨>⎩的解集是x b >,即“大大取大”;x ax b>⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”;x ax b <⎧⎨>⎩的解集是空集,即“大大小小取不了”. 6.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义. (2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或bx a <) 当0a <时,b x a <(或bx a >)当0a <时,b x a <(或bx a>)【典例精析】例1 例2 例3【中考演练】一元一次不等式(组)及其应用【知识点链接】1.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 2.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为x ;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).3.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质. 【典例精析】例1 例2例3 【中考演练】基础达标验收卷一、选择题二、填空题三、解答题能力提高练习一、 学科内综合题二、跨学科应用题.三、分类讨论问题四、实际应用题 答案:基础达标验收卷 能 力提高练习三年中考数学不等式与不等式组及不等式应用精选类型一:不等式性质1(2009柳州)3.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33b a >C . b a -<-D . bc ac < 2(2009宜昌)如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0 D. a <0,b >0或a >0,b <0 3(2008肇庆)下列式子正确的是( )A.>0 B.≥0 C.a+1>1 D.a―1>14(2008黄石)若,则的大小关系为()A.B.C .D .不能确定 5 (2008恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.<1 D.a-b<06(2009临沂)若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->-C .32x y +>+D .33x y>类型二:比较大小1(2009牡丹江)若01x <<,则21x x x,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x<<2(2008盐城)实数在数轴上对应的点如图所示,则,,的大小关系正确的是()A.B.C.D.3(2008永州)如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b4(2008广州)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()图3A BC D类型四:解一元一次不等式1(2008沈阳)不等式的解集为 .2(2008宜昌)解不等式:2(x +)-1≤-x +9类型:不等式中字母的取值范围1(2009泸州)关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 2(2009厦门)已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.3 (2008烟台) 关于不等式的解集如图所示,的值是()A、0B、2C、-2D、-44(2007天门)关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是()。
A、0B、-3C、-2D、-1(图2)类型:利用不等式的解求最值1(2008潍坊)已知3x+4≤6+2(x-2),则的最小值等于________.类型五:解一元一次不等式组1(2009包头)不等式组3(2)4 121. 3x xxx--⎧⎪+⎨>-⎪⎩≥,的解集是.2(2008厦门)不等式组的解集是.类型:解一元一次不等式组及解集在数轴上的表示1(2007黄冈)将不等式84113822x xx x+<-⎧⎪⎨≤-⎪⎩的解集在数轴上表示出来,正确的是()2(2009梧州)不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B .C .D .3(2009济南)不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )类型:不等式组的整数解1(2007德州)不等式组2752312x x x x-<-⎧⎪⎨++>⎪⎩的整数解是.2(2009深圳)不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,2类型:已知不等式组的整数解,求字母的取值范围 1(2009长沙)已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .1 2A .B .1 2C . 1 2D .1 22 (2008聊城)已知关于的不等式组的整数解共有3个,则的取值范围是 .3(2007天门)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
4(2008黄石)若不等式组有实数解,则实数的取值范围是()A.B.C.D.5(2008临沂)若不等式组的解集为,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =4 6(2009恩施)如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <7(2009荆门)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <类型:利用不等式组的解集求值 1(2009孝感)关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = ▲ .2(2009烟台)如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .3(2009凉山)若不等式组220x ab x->⎧⎨->⎩的解集是11x-<<,则2009()a b+=.4 (2008天门)已知不等式组的解集为-1<x<2,则(m+n)2008=_______________.一.填空题一、选择题解答题类型:解不等式组1(2008芜湖)解不等式组2(2009黄冈)13.解不等式组3(2)8,1.23x xx x++⎧⎪-⎨⎪⎩<≤3(2009青岛)(1)解不等式组:322 1317. 22 x xx x->+⎧⎪⎨--⎪⎩,≤类型:求不等式组的整数解1(2009安顺)解不等式组20537xx x-<⎧⎨+≤+⎩;并写出它的整数解。