3.10梯度法与共轭梯度法
- 格式:ppt
- 大小:703.50 KB
- 文档页数:2
共轭梯度法公式
共轭梯度法是一种用于求解线性方程组的迭代算法。
其主要思想是通过利用前一次迭代的信息来加速当前迭代的速度,从而减少迭代次数和计算量。
共轭梯度法公式包括以下几个步骤:
1. 初始化:设初始解为x0,残量b0为Ax0-b,共轭方向d0=b0。
2. 迭代求解:对于第k次迭代,计算步长αk,使得xk+1=xk+αkd,其中d是共轭方向,满足dTkAd=0,即d是A的共轭向量。
3. 更新残量:计算新的残量bk+1=Axk+1-b,如果bk+1小于预设精度,则停止迭代。
4. 更新共轭方向:计算新的共轭方向dk+1=bk+1+βkdk,其中βk=(bk+1)Tbk+1/(bk)Tbk,保证dk+1与之前的共轭方向都是A的共轭向量。
5. 重复迭代,直到满足收敛条件,返回最终解xk+1。
共轭梯度法是一种高效的求解大型线性方程组的方法,尤其适用于稀疏矩阵和对称正定矩阵。
公式简单易懂,容易实现,且具有较快的收敛速度。
- 1 -。
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。
以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。
其中,A为系数矩阵,b为常数向量。
步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。
步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。
α0表示迭代过程中每个方向向量的步进长度。
步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。
步骤5:计算新残量令r1=r0-α0Ad0。
步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。
否则,进入下一次迭代。
步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。
步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。
步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。
步骤10:更新解向量令x2=x1+α1d1。
步骤11:更新残量令r2=r1-α1Ad1。
步骤12:重复步骤6至11,直至满足终止条件。
总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。
该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。
最优化问题的算法迭代格式最优化问题的算法迭代格式最优化问题是指在一定的条件下,寻找使某个目标函数取得极值(最大值或最小值)的变量取值。
解决最优化问题的方法有很多种,其中较为常见的是迭代法。
本文将介绍几种常用的最优化问题迭代算法及其格式。
一、梯度下降法梯度下降法是一种基于负梯度方向进行搜索的迭代算法,它通过不断地沿着目标函数的负梯度方向进行搜索,逐步接近极值点。
该方法具有收敛速度快、易于实现等优点,在许多应用领域中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和学习率 $\alpha$,梯度下降算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 更新当前点 $x_k$ 为 $x_{k+1}=x_k-\alpha\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则返回第 1 步。
2. 算法特点- 沿着负梯度方向进行搜索,能够快速收敛;- 学习率的选择对算法效果有重要影响;- 可能会陷入局部极小值。
二、共轭梯度法共轭梯度法是一种基于线性方程组求解的迭代算法,它通过不断地搜索与当前搜索方向共轭的新搜索方向,并在该方向上进行一维搜索,逐步接近极值点。
该方法具有收敛速度快、内存占用少等优点,在大规模问题中被广泛使用。
1. 算法描述对于目标函数 $f(x)$,初始点 $x_0$ 和初始搜索方向 $d_0$,共轭梯度算法可以描述为以下步骤:- 计算当前点 $x_k$ 的梯度 $\nabla f(x_k)$;- 如果满足停止条件,则输出结果;否则进行下一步;- 计算当前搜索方向 $d_k$;- 在当前搜索方向上进行一维搜索,得到最优步长 $\alpha_k$;- 更新当前点为 $x_{k+1}=x_k+\alpha_k d_k$;- 计算新的搜索方向 $d_{k+1}$;- 返回第 2 步。
2. 算法特点- 搜索方向与前面所有搜索方向都正交,能够快速收敛;- 需要存储和计算大量中间变量,内存占用较大;- 可以用于非线性问题的求解。
最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。
对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。
因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。
2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。
(2)计算搜索方向d = -▽f(x(k))。
(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。
共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。
以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。
设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。
共轭梯度法公式推导一、问题的提出与预备知识。
1. 二次函数的极小化问题。
- 考虑二次函数f(x)=(1)/(2)x^TAx - b^Tx + c,其中A是n× n对称正定矩阵,x,b∈ R^n,c∈ R。
- 对f(x)求梯度∇ f(x)=Ax - b。
- 求f(x)的极小值点,即求解Ax = b。
2. 共轭方向的概念。
- 设A是对称正定矩阵,若对于非零向量d_1,d_2∈ R^n,满足d_1^TAd_2 = 0,则称d_1和d_2是A - 共轭的(或A - 正交的)。
二、共轭梯度法的基本思想。
1. 迭代格式。
- 共轭梯度法是一种迭代算法,其基本迭代格式为x_k + 1=x_k+α_kd_k,其中x_k是第k次迭代的近似解,α_k是步长,d_k是搜索方向。
2. 确定步长α_k- 为了使f(x_k+1)最小,将x_k + 1=x_k+α_kd_k代入f(x)中,得到f(x_k+α_kd_k)=(1)/(2)(x_k+α_kd_k)^TA(x_k+α_kd_k)-b^T(x_k+α_kd_k)+c。
- 对α_k求导并令其为0,可得α_k=((r_k)^Td_k)/((d_k)^TAd_k),其中r_k = b - Ax_k=∇ f(x_k)。
三、搜索方向d_k的确定。
1. 初始搜索方向。
- 取d_0=-r_0,其中r_0 = b - Ax_0,x_0是初始近似解。
2. 后续搜索方向。
- 对于k≥1,d_k=-r_k+β_k - 1d_k - 1,其中β_k-1=frac{(r_k)^TAd_k - 1}{(d_k - 1)^TAd_k - 1}。
- 下面推导β_k - 1的表达式:- 因为d_k - 1和d_k是A - 共轭的,所以d_k - 1^TAd_k = 0。
- 将d_k=-r_k+β_k - 1d_k - 1代入d_k - 1^TAd_k = 0,得到d_k - 1^TAd_k=-d_k - 1^TAr_k+β_k - 1d_k - 1^TAd_k - 1=0。
共轭梯度法详细解读
嘿,朋友们!今天咱就来好好唠唠共轭梯度法。
你想想啊,咱平常解决问题就像走迷宫似的,有时候会在里面转来转去找不到出路,而共轭梯度法呀,就像是在迷宫里给咱指了一条明路!比如说你想找一条最快从山这头到那头的路,共轭梯度法就能帮上大忙啦!
它可不是随随便便就出现的哦,那可是数学家们绞尽脑汁研究出来的宝贝呢!就好比一个超级英雄,专门来打救我们这些在复杂问题里苦苦挣扎的人。
在实际应用里,它可厉害着呢!比如说在工程计算中,要设计一个最完美的结构,共轭梯度法就能迅速算出最优解。
哇塞,这不就相当于有个超厉害的军师在帮咱出谋划策嘛!
你再想想,我们日常生活中很多事情都可以类比成用共轭梯度法来解决问题呀。
比如说你要规划一次旅行,怎么安排路线最合理,不就是在找那个最优的旅行路径嘛,这时候共轭梯度法的思路就能派上用场啦!它就像一个隐藏在幕后的高手,默默地为我们排忧解难。
而且哦,一旦你掌握了它,那种感觉就像是你突然掌握了一种绝世武功,能在各种难题面前游刃有余。
这可太酷了吧!
哎呀呀,共轭梯度法真的是太神奇、太有用啦!大家可一定要好好去了
解它、运用它呀,你绝对会被它的魅力折服的!相信我,没错的!。
共轭梯度法matlab中文:共轭梯度法(Conjugate Gradient),是一种非常有效的求解对称大型线性系统的近似解的算法。
使用共轭梯度法来求解线性系统最终收敛于最小值,它是在不构造正定矩阵时,可以快速求解系统的一个有效解法。
拉格朗日方程,线性系统通常表示为Ax = b,其中A为系数矩阵,b为常数矩阵,x 为未知标量或未知向量。
给定矩阵A和b,共轭梯度法可以用来求解x。
共轭梯度法的基本思想是,不断改变梯度的方向直到梯度收敛为零。
梯度收敛的定义是:在不同的两个迭代过程中,两个梯度的乘积的值小于一个特定的参数。
由于梯度的收敛程度越小,时间复杂度也就越低。
matlab中,我们可以使用共轭梯度法导入函数cgs来解决线性系统的代数方程。
语句形式为[x,flag,relres,iter,resvec] = cgs(A,b),其中A是系数矩阵,b为常数矩阵,x 为未知量,flag表示结束状态,relres为相对残差,iter表示迭代次数,resvec为残差向量。
若要解决Ax = b,即:A = [1 2;3 4]我们用matlab cgs 函数进行求解,可以这样写:[x,flag,relres,iter,resvec] = cgs(A,b);flag表示收敛情况,flag=0代表收敛,flag=-1代表系数矩阵A不能被处理。
relres 是收敛的相对误差,iter是迭代次数,resvec是残差向量,x为未知量。
上面的程序可以得到flag=0,relres=1.537e-14,iter=13,resvec=[1.0135e-14]。
上面的解为x=[-1;1],解析解一致,表明matlab cgs函数可以成功求解对称大型线性方程组。
最后,共轭梯度法是一种近似求解线性系统的有效算法,它的优势是具有快速的收敛性,在计算时省去构造正定矩阵的时间,并且稳定。
梯度下降法、牛顿迭代法、共轭梯度法(参见:神经网络->PGM-ANN-2009-C09性能优化)优化的目的是求出目标函数的最大值点或者最小值点,这里讨论的是迭代的方法梯度下降法首先,给定一个初始猜测值 ,然后按照等式k k k k ΡαΧ+=X +1 (1)或kk k k k P =X -X =∆X +α)(1 (2)逐步修改猜测。
这里向量 kP 代表一个搜索方向,一个大于零的纯量kα 为学习速度,它确定了学习步长。
当用 k k k k ΡαΧ+=X +1 进行最优点迭代时,函数应该在每次迭代时都减小,即)()(1k k F F X <X +考虑(3)的)(X F 在k X 的一阶泰勒级数展开:kTk k k k k g F F F ∆X +X ≈∆X +X =X +)()()(1(4)其中,Tk g 为在旧猜测值k X 处的梯度kF g k X =X X ∇≡)( (5) 要使)()(1k k F F X <X +只需要(4)中右端第二项小于0,即<P =∆X k T kk k T k g g α (6)选择较小的正数k α。
这就隐含0<k Tk P g 。
满足0<k Tk P g 的任意向量成为一个下降方向。
如果沿着此方向取足够小步长,函数一定递减。
并且,最速下降的情况发生在k T k P g 最小的时候,容易知道,当k k -g P =时k Tk P g 最小,此时,方向向量与梯度方向相反。
在(1)式中,令k k -g P =,则有k k k k g αΧ-=X +1 (7)对于式(7)中学习速率k α的选取通常有两种方法:一种是选择固定的学习速率k α,另一种方法是使基于学习速率k α的性能指数或目标函数)(1k +X F 在每次迭代中最小化,即沿着梯度反方向实现最小化:k k k k g X X α-=+1。
注意:1、对于较小的学习速度最速下降轨迹的路径总是与轮廓线正交,这是因为梯度与轮廓线总是正交的。
共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
共轭梯度法beamforming 理论说明1. 引言1.1 概述共轭梯度法(Conjugate Gradient Method)是一种常用的优化算法,广泛应用于解决线性方程组和最优化问题。
Beamforming是一种利用信号处理技术来实现指向性传输和接收的方法,在通信、雷达等领域有着广泛的应用。
本篇长文将探讨共轭梯度法在Beamforming中的理论应用。
1.2 文章结构本文将按照以下结构进行论述:首先介绍共轭梯度法的原理和基本思想,包括线性方程求解的问题、共轭梯度法的基本思想以及迭代过程与收敛性分析;然后,将详细阐述Beamforming的基本概念,包括信号传输和接收的需求、Beamforming技术在通信中的应用以及技术实现原理和方法;接着,我们将探究共轭梯度法在Beamforming中的具体应用,涵盖了优化问题表述、目标函数定义及优化过程说明以及基于共轭梯度法的Beamforming实例分析与结果讨论;最后总结主要研究发现并展望取得成果和应用前景,并提出后续研究工作的建议。
1.3 目的本文的目标是通过理论说明共轭梯度法在Beamforming中的应用,以深入探讨这一优化算法在指向性传输和接收技术中的实际效果。
通过对共轭梯度法及其在Beamforming中的应用进行分析,旨在提供有关该算法与通信技术结合方面的研究参考,为相关领域的学者和工程师提供新思路和解决问题的方法。
2. 共轭梯度法的原理2.1 线性方程求解的问题在讨论共轭梯度法的原理之前,我们首先来了解一下线性方程求解的问题。
线性方程组是由多个线性等式组成的方程组,如Ax = b,其中A为已知矩阵,x为待求解向量,b为已知向量。
线性方程求解即为找到满足该方程组的解x。
2.2 共轭梯度法的基本思想共轭梯度法是一种用于求解对称正定线性方程组Ax = b的迭代方法。
它基于以下基本思想:通过选择合适的搜索方向,将目标函数在各个搜索方向上取得最小值,并以此逼近实际的最优解。
共轭梯度法共轭梯度法(also known as Pearson-Newman gradient method)是电化学反应动力学中一种很有用的技术,主要应用于分析化学、环境工程、农药学、微生物学等领域。
用共轭梯度法时,以活性高的配体替代催化剂上的固定配体(一般为固定相),使原来的催化剂仍能发挥作用,但具有选择性更好、灵敏度更高、应用范围更广的特点,同时能降低毒性和提高催化活性,还可改善催化剂的稳定性。
共轭梯度法(reaction-coordinate density technique,缩写为coAPD),是由美国著名的电化学家S.C.R.(赫维斯特)于1976年提出的,最早是应用于考察水溶液中蛋白质在二级胺诱导下的变性行为。
后来,此方法被用于研究Cu(I)-Zn(II)氧化偶联反应,可用于测定其它一些金属离子。
它能够选择性地催化多种反应,并且操作简便,灵敏度高,催化效率高。
它与同样是基于电极过程机理的原位催化比较,在原理上具有优越性。
对于活性组分分子内部的小的不均匀结构,可以采用共轭梯度法实现更精确的测量。
在这个技术中,如果采用共轭体系,一般可以考虑将其作为一个三电子体系,而与电子得失的量子化运动相联系,即以共振状态作为激发条件。
因此,实验装置也称之为共振极限溶剂。
目前,已经开发了一些共轭体系,其中主要包括共轭二烯体系、共轭异戊二烯体系、共轭二炔体系等。
根据不同的选择性要求,又可将它们划分成几类:双齿配体系列、共轭乙炔体系列、共轭苯炔体系列、共轭乙烯体系列、共轭苯乙炔体系列、双烯类配体系列。
由于选择性较高,该技术广泛用于化学反应机理及反应产物分析。
特别是随着计算机技术的迅速发展,其应用更加广泛。
例如,在定量方面,可以在很短的时间内给出定量结果,可以很快地绘制出实验曲线或计算出数据。
在这个技术中,反应机理以原子轨道理论为基础。
根据反应机理,按照共振条件进行合理的实验设计,通过电化学反应测定反应的产物或催化剂的量,并绘制电位-时间图,即可达到定性、定量的目的。
共轭梯度法计算化学
共轭梯度法是一种常用于求解线性方程组的迭代方法,也可以用于计算化学中的一些问题。
在计算化学中,共轭梯度法常用于求解分子结构优化、能量最小化、电子结构计算等问题。
其中最常见的应用是求解非常大的线性方程组,如Hartree-Fock方程,即通过求解一个自洽的线性方程组来得到分子的基态电子结构。
共轭梯度法利用了线性方程组的特殊性质,通过迭代计算逼近线性方程组的解。
它不需要事先知道线性方程组的解的精确形式,只需要知道线性方程组的系数矩阵和右端向量。
在每一次迭代中,共轭梯度法利用之前的迭代结果和当前的残差信息来计算一个新的搜索方向,从而逼近解的位置。
通过多次迭代,共轭梯度法可以逐渐接近线性方程组的解。
在化学计算中,尤其是量子化学计算中,共轭梯度法经常用于求解大型稠密矩阵的特征值问题。
这些问题通常涉及求解特征方程,得到能量的本征值和本征函数。
共轭梯度法的迭代性质使得它非常适合处理大型稠密矩阵的特征值计算问题,因为它只需要存储和计算与当前解和残差相关的信息,而不需要存储和计算整个矩阵。
总之,共轭梯度法是一种非常有效的迭代方法,可以用于求解线性方程组以及一些涉及大型矩阵的计算化学问题。
在实际应用中,共轭梯度法经常与其他优化算法结合使用,以获得更高效、更准确的结果。
共轭梯度法最简明解释
嘿,你知道啥是共轭梯度法不?这玩意儿可神奇啦!就好比你在一
个迷宫里找出口,有好多条路可以走。
共轭梯度法呢,就是一种找到最优解的方法。
想象一下,你要去山
顶看最美的风景,但是山有很多坡,你得选择最合适的路往上爬。
比
如说你一开始随便选了一条路走,走着走着发现不太对,那咋办?这
时候共轭梯度法就发挥作用啦!它会帮你调整方向,让你更接近山顶。
我给你举个例子哈,就像你要减肥,你试过各种方法,节食啦,运
动啦。
那共轭梯度法就像是有个智慧的教练在旁边,告诉你啥时候该
多吃点,啥时候该加大运动量,让你能最快地达到减肥的目标。
它不是那种死板的方法,而是很灵活的。
比如说在解决一个复杂的
问题时,它会根据实际情况不断调整策略。
这多厉害呀!
咱再想想,要是没有共轭梯度法,那得多费劲呀!就像你在黑夜里
没有手电筒,摸黑走路,多容易摔跤呀!
共轭梯度法真的是数学和科学领域的一个大宝贝!它能让很多难题
变得简单起来,能帮我们更快地找到答案。
我觉得吧,共轭梯度法就像是一把神奇的钥匙,能打开很多知识和
技术的大门,让我们看到更广阔的世界!你说是不是?。
共轭梯度法对于任意形式的目标函数()f X ,在极值点*X 附近展开成泰勒级数,且取前三项,有()()()****2**1()...2TT f X f Xf X X X X X f X X X ⎡⎤⎡⎤⎡⎤⎡⎤≈+∇-+-∇-⎣⎦⎣⎦⎣⎦⎣⎦因在极值点*X 处()*0f X ∇=,而()2**()f X H X ∇=为()f X 在*X 的二阶偏导数矩阵,即Hessian 矩阵,故()****1().().2T f X f X X X H X X X ⎡⎤⎡⎤≈+--⎣⎦⎣⎦ 对于二次函数来说,若令()()()2*2*2*221122,,f X f X f X a b c x x x x ∂∂∂===∂∂∂∂则()**1(),a b H X f X d b c ⎡⎤==⎢⎥⎣⎦而—常数 则,得到()()()()()()()()()()()()()()11221212121122*1**112*2**12**112**1222****11122-1()+--2---1=+--2--1-2---2x x a b f X d x x x x b c x x a x x b x x d x x x x b x x c x x d a x x b x x x x c x x ⎡⎤⎡⎤⎢⎥⎡⎤≈⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎡⎤+⎢⎥⎡⎤⎣⎦⎢⎥+⎣⎦⎡⎤=+++⎢⎥⎣⎦由上式可知,当12*1**2x x X X x x ⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦时,得到目标函数的极小值()*1()f X f X d ==,当22(),,...f X d d =时,则有等值线族。
令2()f X d =,代入上式,则有()()()()112222****2111221()-2---2f X d d a x x b x x x x c x x ⎡⎤=≈+++⎢⎥⎣⎦所以目标函数()f X 在*X 点附近的等值线方程为()()()()112222****1122-2---0a x x b x x x x c x x d +++=式中,122()d d d =-=常数。