提分细目表
- 格式:xlsx
- 大小:17.35 KB
- 文档页数:2
小学数学试题双向细目表小学数学试题双向细目表是一种用于指导小学数学教育评估的工具,它可以帮助教师根据学生的不同学习水平和能力,设计出更加精准、有效的数学试题。
本文将详细介绍小学数学试题双向细目表,并探讨其在小学数学教育评估中的应用。
一、小学数学试题双向细目表概述小学数学试题双向细目表是一种以表格形式呈现的评估工具,它根据数学课程的目标和内容,列出了不同层次和能力的学生在完成数学试题时应该掌握的知识点和技能。
通常,双向细目表包括三个维度:认知目标、知识点和难度等级。
认知目标维度指出了学生应该达到的认知水平,如理解、应用、分析等;知识点维度列出了试题中涉及到的数学知识点;难度等级维度则指出了试题的难易程度,以便教师根据学生的实际情况进行评估。
二、小学数学试题双向细目表的应用1、确定评估目标在进行数学评估时,教师需要明确评估的目标,即学生应该掌握的数学知识和技能。
双向细目表可以帮助教师确定评估目标,使其更加明确和具体。
在细目表中,教师可以根据知识点维度,列出学生需要掌握的数学概念、方法和技能,进而设计出相应的试题。
2、制定评估计划评估计划是教师进行数学评估的基础,它可以指导教师设计出更加全面、系统的数学试题。
在制定评估计划时,教师可以根据双向细目表,将知识点和难度等级进行分类和排序,然后根据学生的实际情况,制定出适合不同层次和能力学生的评估计划。
3、设计数学试题在设计数学试题时,教师需要根据双向细目表中的知识点和难度等级,结合学生的实际情况,设计出更加精准、有效的试题。
例如,教师可以根据知识点维度,设计出涵盖不同数学概念的试题;可以根据难度等级维度,设计出适合不同能力学生的试题。
4、进行评估和反馈在进行数学评估时,教师需要根据双向细目表对学生的表现进行评估,并根据评估结果进行反馈和指导。
通过双向细目表的指导,教师可以更加准确地了解学生的学习情况和问题,进而提出更加精准的建议和指导。
三、总结小学数学试题双向细目表是一种非常实用的评估工具,它可以帮助教师根据学生的实际情况,设计出更加精准、有效的数学试题。
双向细目表介绍一、认识双向细目表双向细目表是由考试考查及目标检测命题过程中,为了保证命题题目在内容上全面、准确,在能力目标分配上得当,而根据考查内容、时间及能力权重要求制定的一个测量认识目标达成度的命题蓝图设计;同时也分析测量结果的一个重要工具。
1、测量目标分类我们认识双向细目表是八十年代目标教学实验时,用于测量达成度的工具之一。
测试就要知道在认知行为上要达到的水平,通常采用识记、理解、应用、分析、综合、评价六个等级。
这就是美国教育家布鲁姆(B.Bloom)目标分类划分的,是从最简单的、基本的到复杂的、高级的认知能力。
每前一目标都是后面目标的基础。
即没有识记,就不能有理解,没有识记与理解,就难以应用。
(1)识记:是对知识的回忆。
其中包括对具体事物、普遍原理、方法、过程、模式、结构等方面的回忆。
(2)理解:是最低层次的理解。
它与完全理解并不是同意词,与完全掌握信息也不是一回事。
领会是指对交流内容中所含的文字信息的理解。
(3)运用:是在特定的情况下,对抽象概念的使用。
这些抽象概念可能是一般的观念、程序的规则、概括化的方法,也可能是专门性的原理、观念和理论。
(4 )分析:是将交流的内容分解成几个要素或组成部分,以便分清一个事物中各要素或各部分的层次关系。
(5)综合:是将所分解的各个要素或组成部分组合成一个整体。
是对各个要素或各个组成部分进行加工的过程和进行排列组合以构成一个比较清楚的模式或结构的过程。
(6)评价:是为了特定的目的对材料和方法的价值所作出的判断。
也就是说,对材料和方法符合标准的程度所作出的定量或定性的判断。
认知领域教育目标的这六个层次是从学习过程的理解能力来划分的,它适应于任何一门学科,而且有很高的实用价值。
2、双向细目表双向细目表是一种测量目标(能力)和考查内容之间的关联表。
一般地,表的纵向列出的各项是要考查的内容即知识点,横向列出的各项是要考查的能力,或说是在认知行为上要达到的水平,在知识与能力共同确定的方格内是考题分数所占的比例。
初中语文中考双向细目表20 年月日A4打印/ 可编辑双向细目表简介双向细目表(two-way checklist)是一个测量的内容材料维度和行为技能所构成的表格,它能帮助成就测量工具的编制者决定应该选择哪些方面的题目以及各类型题目应占的比例。
双向细目表(Table of specifications)考试命题双向细目表是一种考查目标(能力)和考查内容之间的关联表。
双向细目表的制作应该同课程大纲及考试大纲的相关规定具有一致性。
考核知识内容的选择,要依照教学大纲(考试大纲)的要求,试题范围应覆盖课程的全部内容,既要注意覆盖面,又要选择重点内容,时间以中等学生120分钟能答完为限。
制作双向细目表时,试卷中拟对学生进行考核的“考核知识点”须按章次进行编排;双向细目表中考核知识点的个数须与试卷中涉及的知识点个数相一致。
双向细目表中的能力层次采用“识记”、“ 理解”、“ 应用”、“分析”、“ 综合”、“评价”等作目标分类,体现了对学生从最简单的、基本的到复杂的、高级的认知能力的考核。
每前一目标都是后续目标的基础,即没有识记,就不能有理解;没有识记与理解,就难以应用。
所以一个考核知识点在同一试卷中对应一种题型,原则上只能对应一种能力层次。
特点按照《考试规范》要求,识记、理解类试题须控制在60%以内,并应尽量避免单纯考核记忆水平的题目。
试题的题目类型应根据考试课程的特点和考试目标合理选择,例如填空题、选择题、判断题、名词解释、辨析题、简答题、证明题、计算题、案例分析等。
一份试卷中主观性试题和客观性试题的搭配应合理,且题型种类数应适中。
在双向细目表中不同“能力层次”和不同“题型”下面对应的各列中,应填写各考核知识点在试卷中所占的分值。
不能简单的划“∨”,也不能填写题号和题目个数如何编制双向细目表?一、什么是双向细目表?简单来说,双向细目表是测验编制的计划书、蓝图和命题的依据。
它是以能力层次和学习内容为两个轴,分别说明各项测评目标。
考试命题双向细目表(1)(2009-12-13 09:00:55)双向细目表(Table of specifications)考试命题双向细目表是一种考查目标(能力)和考查内容之间的关联表。
1.中等学生120分钟能答完2.“识记”、“理解”、“应用”、“综合”;识记、理解类试题须控制在60%以内3.“学时比例”既是教学时间、精力分配的比例,也是测验试题数量、考试时间、分数分配的依据。
考试命题双向细目表考试命题双向细目表是一种考查目标(能力)和考查内容之间的列联表。
制作考试命题双向细目表,是命题工作的一个重要环节。
双向细目表可以使命题工作避免盲目性而具有计划性;使命题者明确测验的目标,把握试题的比例与份量,提高命题的效率和质量。
同时,它对于审查试题的效度也有重要的指导意义。
双向细目表是包括两个维度(双向)的表格,细目表也可以是多维的,一般用双向细目表。
较常见的有四种:(1(2该表是上一个表的改进,增加了题型。
(3该表可以体现题型数量、难易度、测验内容的分配问题。
优点是试题取样代表性高,试题难易程度也可以作适当控制,表中数据容易分配。
局限性是未能反映测验目标。
(4)反映题型与难度、测验目标之间关系的双向细目表。
难易度:A.较易 B.中等 C.较难 D.难度较大认知度:Ⅰ识记Ⅱ理解Ⅲ简单应用Ⅳ综合运用下面主要说明反映测验内容与测验目标(学习水平)和题型分数的双向细目表。
即把要考查的知识内容与学习水平(能力)、试题的类型和分数呈现在一张表上,这样命题时,一目了然,便于操作。
该表是由一张概括程度比较高的知识内容和分类比较细的学习水平构成,在表中,纵、横两表头双向决定的每个点(交叉的格)为一个考察点,每个考察点要体现题型、题量、得分点三个参数。
这样对试卷结构、对考查的主要内容就具有了明确的指向性。
举例,假设每一个得分点的分数值定为2分,以100分为满分,则整个试卷可以有50个得分点。
再假定每个得分点考生平均能以一分钟时间答完题,并考虑考生复核、检查时间,那么这次测验时间可定为60分钟。
2023年初中数学中考考点一、代数1. 一元一次方程与一元一次不等式 1.1 解一元一次方程1.2 解一元一次不等式2. 整式2.1 整式的加减2.2 整式的乘除3. 因式分解3.1 提公因式法3.2 积因式分解4. 分式4.1 分式的加减4.2 分式的乘除二、几何1. 相似三角形1.1 判定相似三角形 1.2 相似三角形的性质2. 平行线与三角形2.1 平行线的性质2.2 三角形内角和3. 圆3.1 圆的性质3.2 圆内接四边形4. 三角形4.1 三角形的外角性质 4.2 三角形的面积计算三、函数与图像1. 一次函数1.1 一次函数的性质 1.2 一次函数图像2. 二次函数2.1 二次函数的性质2.2 二次函数图像3. 绝对值函数3.1 绝对值函数的性质 3.2 绝对值函数图像四、统计与概率1. 统计1.1 统计量的计算1.2 统计图的绘制2. 概率2.1 基本概率事件2.2 条件概率的计算五、解析几何1. 直线与圆1.1 直线与圆的位置关系 1.2 直线与圆的性质2. 空间图形2.1 空间图形的投影2.2 空间图形的体积计算六、实际问题1. 实际问题的解决方法1.1 将实际问题转化为数学问题1.2 利用数学方法解决实际问题2. 实际问题的综合运用2.1 结合多种数学知识解决实际问题 2.2 实际问题综合运用的技巧七、综合练习1. 综合练习题1.1 完形填空题1.2 阅读理解题2. 综合练习题解析2.1 完形填空题解析2.2 阅读理解题解析以上便是2023年初中数学中考的考点归纳双向细目表,同学们在备考中可根据此表进行有针对性的复习和练习,以取得更好的考试成绩。
2023年初中数学中考考点归纳双向细目表随着2023年初中数学中考的逐渐临近,同学们将面临着对数学知识的系统复习和全面梳理。
为了帮助同学们更好地备战数学中考,以下将就上文所述的考点进行更加详细的探讨和扩充。
一、代数代数是数学中的重要分支,它涵盖了一元一次方程与一元一次不等式、整式、因式分解和分式等内容。
试卷分析双向细目表试卷分析双向细目表篇一:自编小学数学期末测试题(内含期末试卷、双向细目表、试卷分析表、参考答案和评分意见)附一:人教版小学五年级数学(下册)期末测试双向细目表姓名:谢xx 专业:xxxx学号:xxxx附二:2011年度上学期五年级数学期末试卷参考答案及评分意见一、填空题1、1 42 45 3132、551893、9994、40 8 13680 9125、÷24 0.75 1216576、347、10 12 14 (注意,此题答案位置不可颠倒,题干中已经说明)8、50.24 9、>10、78二、选择题1、 D2、C3、A4、B5、C三、判断题1、×2、×3、×4、√5、×四、计算题1、102、335315(注意:本题只需写出最后结果)45981263725 (注意:本体需有一些解题过程)42095713此题需按照方程的标准求解步骤求解)207105 (注意:五、作图题1、注:该题比较开放,答案并不唯一教师视情况,可酌情给分。
2、注意:该题需要步骤,学生不能直接做出最后图形,须有过程。
六、应用题11、2 2、4153、55(分钟)4、480元5、150.72平方米6、本班学生的体重,整体情况趁较集中的趋势分布,最大值和最小值差距不是特别大,整体水平稳定。
附三:2011年上学期五年级数学期末试卷试卷分析表试卷分析双向细目表篇二:四年级数学上册试卷双向细目表四年级数学期末供题考试命题双向细目表编制:毛其存2012年1月试卷分析双向细目表篇三:考试命题双向细目表考试命题双向细目表考试是检查培养教学目标实现情况的重要手段。
当前,由于考试命题缺少一套规范化程序,命题的主观顺意性较大。
为式试卷更好的体现教学目标,应该加强编拟时间的计划性、科学性。
1987年,中央教课所组织九省市专家、教授和教研人员为小学语文教材实验班编拟毕业试卷,命题前分析教学大纲具体教学要求,设计了一份考试命题双向细目表。
知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题数与代数有理数1有理数的概念√2用数轴上的点表示有理数√3相反数√√√4绝对值√√√5比较有理数的大小√√6乘方的意义√7有理数的加、减、乘、除、乘方运算√√√8有理数的混合运算√9有理数的运算律√√√10对含有较大数字的信息作出合理的解释和推断√实数11平方根、算术平方根、立方根的概念√√√√12用计算器求平方根和立方根√13无理数和实数的概念√14用有理数估计无理数的大致范围√√15近似数与有效数字的概念√16用计算器进行近似计算√17二次根式的概念√18二次根式的加、减、乘、除运算法则√√√代数式19用字母表示数的意义√20用代数式表示简单问题的数量关系√√21解释一些简单代数式的实际背景或几何意义√22求代数式的值√√方程与不等式整式与分式23整数指数幂的意义和基本性质√√24用科学记数法√√25整式的概念√26整式加、减、乘、除运算√27乘法公式:完全平方√√√28提公因式法、公式法(直接用公式不超过2次)进行因式分解√√29分式的概念√30分式的基本性质√√√√31约分和通分√√32分式加、减、乘、除运算√√√√方程与方程组33根据具体问题中的数量关系列方程√√√34用观察、画图或计算器等手段估计方程的解√35一元一次方程及相关概念√36解一元一次方程√√√37二元一次方程组及其解法√√√38分式方程的概念√√√39解可化为一元一次方程的分式方程√√40一元二次方程及其相关概念√√√41配方法√√√√42因式分解法、公式法√√√43根据具体问题的实际意义检验结果是否合理√44不等式的意义√知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题45不等式的基本性质√√√46一元一次不等式的解法√√√√√47在数轴上表示不等式(组)的解集√√48解一元一次不等式组√√√√49根据具体问题中的数量关系,列出一元一次不等式或一元一次不等式组,解决简单的问题√√√函数50具体问题中的两个变量之间的关系√√√51从表格、图象中分析某些变量之间的关系√52用表格或关系式表示某些变量之间的关系√53常量、变量的意义√54函数的概念及其表示方法√√55对简单实际问题中的函数关系进行分析√56确定函数的自变量取值范围√√57求函数值√58用适当的函数表示法刻画某些实际问题中变量之间的关系√59对变量的变化规律进行初步预测√一60一次函数的意义√√61确定一次函数表达式√√62画一次函数的图象√等式不等式与不等式组初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题63一次函数的性质√√64正比例函数√√65根据一次函数的图象求二元一次方程组的近似解√66用一次函数解决实际问题√√反比例函数67反比例函数的意义√68确定反比例函数的表达式√√69画反比例函数的图像√70反比例函数的性质√71用反比例函数解决某些实际问题√√√二次函数72二次函数的意义√73确定二次函数的表达式√√√74用描点法画出二次函数的图像√75二次函数的性质√√√76根据解析式确定图像的顶点、开口方向和对称轴√77利用二次函数的图像求一元二次方程的近似解√78利用二次函数解决简单的实际问题√√79点、线、面√角80角√81比较角的大小√82估计一个角的大小√83计算角度的和与差√84度、分、秒及其简单换算√√85角平分线及其性质√函数一次函数知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题86补角、余角、对顶角√87等角的余角相等、等角的补角相等、对顶角相等√相交线与平行线88垂线、垂线段√89垂线段最短的性质√√90点到直线距离的意义√91过一点有且仅有直线垂直于已知直线√√92用三角尺或量角器过一点画一条直线的垂线√93线段垂直平分线及其性质√94两直线平行,同位角相等√√√95过直线外一点有且仅有一条直线平行于已知直线√96用三角尺和直尺过已知直线外一点画这条直线的平行线√97两条平行直线之间距离的意义√√98度量两条平行线之间的距离√三角形99三角形有关概念(内角、外角、中线、高、角平分线)√##画任意三角形的角平分线、中线和高√√##三角形的稳定性√##三角形中位线的性质√√##全等三角形的概念√##两个三角形全等的判定√√√√##等腰三角形的有关概念√##等腰三角形性质和判定√√知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##等边三角形的概念√##等边三角形的性质√√##直角三角形的概念√##直角三角形的性质和判定√√√√##勾股定理√√√√√##用勾股定理的逆定理判定直角三角形√√四边形##多边形的内角和外角和公式√√##正多边形的概念√##平行四边形、矩形、菱形、正方形、梯形的概念和性质√√√##四边形的不稳定性√##平行四边形的性质和判定√√√##矩形、菱形、正方形的性质和判定√√√##等腰梯形及直角梯形的有关性质和判定√√√##线段、矩形、平行四边形、三角形的重心及物理意义√√##平面图形的镶嵌√##任意一个三角形、四边形或正六边形可以镶嵌平面√##简单的镶嵌设计√##圆及其有关概念√##弧、弦、圆心角的关系,√√##点与圆、直线与圆以及圆与圆的位置关系√√##圆的性质√√##圆周角与圆心角的关系√√图形的认识角形知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##直径所对圆周角的特征√##三角形的内心和外心√##切线的概念√##切线与过切点的半径之间的关系√√##切线的判定√##画圆的切线√##计算弧长及扇形的面积,√##计算圆锥的侧面积和全面积√√##圆及其有关概念√√##作一条线段等于已知线段√##作一个角等于已知角√##作角平分线√√##作线段的垂直平分线√##已知三边作三角形√尺规作图##已知两边及其夹角作三角形√##已知两角及其夹边作三角形√##已知底边及底边上的高作等腰三角形√##过一点、两点和笔在同一条直线上的三点作圆√##尺规作图的步骤√√##画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,√##能根据三视图描述基本几何体或实物原型√√##直棱柱、圆锥的侧面积展开图√圆知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##根据展开图判断立体模型制作立体模型√##基本几何体与其三视图,展开图(球除外)之间的关系及其应用√√##一些有趣的图形(如雪花曲线、莫比乌斯带)√##物体阴影的形成√##根据光线的方向辨认实物的阴影√##视点视角及盲区的含义√√##中心投影和平行投影√图形的轴对称##轴对称√√##轴对称的基本性质√√##要求作简单平面图形的轴对称关系√##简单图形之间的轴对称关系√##基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质√##利用轴对称进行图案设计√##现实生活中的轴对称图形√图形的平移##认识平移√##平移的对应点连线平行且相等的性质√√##按要求作简单平面图形平移后的图形√##利用平移进行图案设计√√视图与投影知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##平移在生活中的应用√图形的旋转##旋转√##旋转的基本性质√√##平行四边形、圆是中心对称图形√##作简单平面图形旋转后的图形√√##旋转在现实生活中的应用√##图形之间的变换关系(轴对称、平移、旋转及其组合)√√√##用轴对称、平移和旋转的组合进行图案设计√√图形的相似##比例基本性质√##线段的比、成比例线段、黄金分割√##图形的相似√##相似图形的性质√√√##三角形相似的概念√##两个三角形相似的条件√√##图形的位似√##利用位似将一个图形放大或缩小√##利用图形的相似解决实际问题√√√##锐角三角函数(sinA,cosA,tanA)√√##30°,45°,60°角的三角函数值√图形与变换形的平移知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##使用计算器求三角函数值;由已知三角函数值求它对应的锐角√##用三角函数解决与直角三角形有关的简单实际问题√√√√图形与坐标图形与坐标##平面直角坐标系√##根据坐标描点的位置、由点的位置写出它的坐标√√##在方格纸上建立适当的直角坐标系,描述物体的位置√##在同一直角坐标系中,图形变换后点的坐标的变化√√##确定物体的位置√证明的含义##证明的含义√##证明的必要性√##定义、命题、定理的含义√##命题的条件(题设)和结论√√##逆命题的概念√##互逆命题√√##反证法的含义√##综合证明法√√证明的##一条直线截两条平行直线所得的同位角相等√##两条直线被第三条直线所截,若同位角相等,那么这两条直线平行√形的相似初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##若两个三角形的两边及其夹角(或两角及其夹边或三边)对应相等,则这两个三角形全等√##全等三角形的对应边、对应角分别相等√证明命题##平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线相等√##三角形的内角和定理及推论√##直角三角形全等的判定定理√##角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)√##垂直平分线性质定理及其逆定理;三角形的三边的垂直平分线交于一点(外心)√##三角形中位线定理√##等腰三角形、等边三角形、直角三角形的性质和判定定理√##平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理√图形与证明证明的依据初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##几何的演绎体系对数学发展和人类文明的价值√统计与概率统计##收集、整理、描述和分析数据√##用计算器处理较为复杂的统计数据√##抽样的必要性√√√##总体、个体、样本√√##用条形、扇形统计图表示数据√√##计算加权平均数√√##选择合适的统计量表示数据的集中程度√##表示一组数据的离散 程度√√√##计算极差和方差√√##频数、频率的概念√##频数分布的意义和作用√##列频数分布表,画频数分布直方图和频数折线图,解决简单的实际问题√##用样本估计总体的思想√##用样本的平均数\方差来估计总体的平均数和方差√##根据统计结果作出合理的判断和预测√##统计对决策的作用√##根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法√题初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##统计在社会生活及科学领域中的应用√√√概率##概率的意义√##用列举法(包括列表\画树状图)计算简单事件发生的概率√√√##频率√##大量重复实验时频率可作为事件发生概率的估计值√##解决一些实际问题√课题学习课题学习##"问题情境--建立模型--求解--解释与应用"的基本过程√##数学知识之间的内在联系√√##一些研究问题的方法和经验√√##成功的体验和克服困难的经历√##增强应用数学的自信心√与概率初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题。
【2023高中地理命题双向细目表】一、地理基本概念1. 地理学的定义和研究对象2. 地球的形状和大小3. 地球的结构和成分4. 地球的运动和地理坐标5. 地球的地理环境及其特点二、地理信息技术1. 地图的基本知识2. 遥感技术的原理和应用3. 地理信息系统的基本原理和功能4. 全球定位系统的原理和应用5. 地理信息技术在地理研究和应用中的作用三、自然地理环境1. 区域地球表面形态特征2. 地形地貌因素及其地域差异3. 气候要素及其分布规律4. 气候变化与全球变暖5. 水文地理环境特点及其区域差异四、自然资源与环境1. 地球资源及其类型2. 产业几何与资源环境3. 水资源的利用与管理4. 土地资源的可持续利用5. 矿产资源的开发利用与环境保护五、人口与城市1. 人口数量与分布及其影响因素2. 人口结构的变化和影响3. 人口迁移与城市化4. 城市发展与城市规划5. 城市地理环境与人居环境改善六、区域可持续发展1. 区域发展的差异及其影响2. 区域发展的区位因素及其作用3. 区域经济发展与环境保护4. 区域文化多样性与传承5. 区域协调与可持续发展七、全球地理环境1. 国际比较地理:不同国家和地区的地理特点2. 全球化背景下的地缘政治与地缘经济3. 跨国公司与全球资源开发4. 气候变化与生态环境全球治理5. 全球经济与资源环境可持续发展以上所列的地理命题双向细目表可以为高中地理的学习和考试提供重要的参考,学生在备考时可以根据此表格进行有针对性的知识复习,明确要点和重点,并在考试时更好地把握命题的脉络和重点,做到有的放矢,提高应试能力。
教师也可以根据本表格指导教学,安排教学内容和重点,提高教学效果。
【完】地理是一门研究地球表层、地表和地球大气、海洋活动规律和它们之间互相作用的科学。
通过地理学习,我们可以更好地了解地球的形态、结构和成分,掌握地球的运动规律和地理坐标,认识地球的地理环境和特点,以及地球表面形态特征、气候要素、水文地理环境特点等重要内容。