高考磁场复习题
- 格式:doc
- 大小:934.50 KB
- 文档页数:9
高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。
两个D 型盒处在匀强磁场中并接有高频交变电压。
图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。
在磁场力的作用下运动半周,再经狭缝电压加速。
如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。
已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。
每次加速的时间很短,可以忽略不计。
正离子从离子源出发时的初速度为零。
十四、磁 场1、磁场(1)磁场的来源①磁体的周围存在磁场②电流的周围存在磁场:丹麦物理学家奥斯特首先发现电流周围也存在着磁场。
把一条导线平行地放在小磁针的上方,给导线中通入电流。
当导线中通入电流,导线下方的小磁针发生转动。
(2)磁体与电流间的相互作用通过磁场来完成(3)磁场①磁场:磁体和电流周围,运动电荷周围存在的一种特殊物质,叫磁场。
②磁场的基本性质:对处于其中的磁极或电流有力的作用。
一、知识网络二、画龙点睛 概念③磁场的物质性:虽然磁场看不见摸不着,对于我们初学者感到很抽象,其实磁场和电场一样是客观存在的,是物质存在的一种特殊形式。
2、磁场的方向 磁感线(1)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。
(2)磁感线:①磁感线所谓磁感线,是在磁场中画出的一些有方向的曲线,在这些曲线上,每一点的切线方向都在该点的磁场方向上。
②磁感线的可以用实验来模拟(3)几种典型磁体周围的磁感线分布①条形磁铁磁场的磁感线②条形磁铁磁场的磁感线③直线电流磁场的磁感线直线电流磁场的磁感线是一些以导线上各点为圆心的同心圆,这些同心圆都在跟导线垂直的平面上。
直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
④环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线。
在环形导线的中心轴线上,磁感线和环形导线的平面垂直。
环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。
⑤通电螺线管磁场的磁感线通电螺线管外部的磁感线和条形磁铁外部的磁感线相似,一端相当于南极,一端相当于北极。
通电螺线管内部的磁感线和螺线管的轴线平行,方向由南极指向北极,并和外部的磁感线连接,形成一些环绕电流的闭合曲线。
2020年高考磁场专题复习卷(附答案)一、单选题(共14题;共28分)1.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动.假定两板与冰面间的动摩擦因数相同.已知甲在冰上滑行的距离比乙远,这是由于()A. 在推的过程中,甲推乙的力小于乙推甲的力B. 在推的过程中,甲推乙的时间小于乙推甲的时间C. 在刚分开时,甲的初速度大于乙的初速度D. 在分开后,甲的加速度的大小小于乙的加速度的大小2.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为﹣q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A. B>B. B<C. B>D. B<3.平面OM和平面ON之间的夹角为,其横截面纸面如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外一带电粒子的质量为m,电荷量为粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成角已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场不计重力粒子离开磁场的射点到两平面交线O的距离为A. B. C. D.4.关于电场强度、磁感应强度,下列说法中正确的是()A. 由真空中点电荷的电场强度公式E=k 可知,当r趋近于零时,其电场强度趋近于无限大B. 电场强度的定义式E= 适用于任何电场C. 由安培力公式F=BIL可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 通电导线在磁场中受力越大,说明磁场越强5.如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A. B. C. D.6.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1或U2的变化情况为(不计重力,不考虑边缘效应)()A. 仅增大U1d将增大B. 仅增大U1 d将减小C. 仅增大U2 d将增大D. 仅增大U2 d将减小7.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到A、B 所需时间分别为t1、t2,则t1∶t2为(重力不计)( )A. 1∶3B. 4∶3C. 1∶1D. 3∶28.如图所示,竖直悬挂的金属棒AB原来处于静止状态.金属棒CD棒竖直放置在水平磁场中,CD与AB通过导线连接组成回路,由于CD棒的运动,导致AB棒向右摆动,则CD棒的运动可能为()A. 水平向右平动B. 水平向左平动C. 垂直纸面向里平动D. 垂直纸面向外平动9.如图5所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下再一次通过O点( )A. B. C. D.10.下列说法中正确的是()A. 磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F与该导线的长度L、通过的电流I乘积的比值.即B=B. 通电导线放在磁场中的某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就为零C. 磁感应强度B= 只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D. 通电导线所受磁场力的方向就是磁场的方向11.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出()A. 带电粒子带正电,是从B点射入的B. 带电粒子带负电,是从B点射入的C. 带电粒子带负电,是从A点射入的D. 带电粒子带正电,是从A点射入的12.春天,水边上的湿地是很松软的,人在这些湿地上行走时容易下陷,在人下陷时()A. 人对湿地地面的压力大小等于湿地地面对他的支持力大小B. 人对湿地地面的压力大于湿地地面对他的支持力C. 人对湿地地面的压力小于湿地地面对他的支持力D. 下陷的加速度方向未知,不能确定以上说法哪一个正确13.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A. 2cosθB. sinθC. cosθD. tanθ14.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是()A. 质子在匀强磁场每运动一周被加速一次B. 质子被加速后的最大速度与加速电场的电压大小有关C. 质子被加速后的最大速度不可能超过2πfRD. 不改变B和f,该回旋加速器也能用于加速α粒子二、多选题(共4题;共12分)15.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
高考物理专题复习:磁场与磁感线一、单项选择题(共8小题)1.关于铁块和磁体之间作用力的理解正确的是()A.仅磁体能对铁块产生作用力B.仅铁块能对磁体产生作用力C.两者相互接触时才有作用力D.两者没接触时也有作用力2.图甲为地球周围地磁场的磁感线分布示意图,地磁轴与地轴之间约成11.5°的交角。
假想在地球赤道上方存在半径略大于地球半径的圆形单匝线圈,如图乙所示。
在线圈中通以图示的电流,则它所受地磁场的安培力方向最接近于()A.垂直地面向上B.垂直地面向下C.向南D.向北3.下列说法不正确的是()A.磁场是一种物质B.磁感线真实存在C.磁体之间通过磁场相互作用D.磁感线的疏密可以描述磁场的强弱4.下列关于场的说法正确的是()A.磁场最基本的性质是对处于其中的磁体和通电导体有力的作用B.场是看不见、摸不着、实际不存在的,是人们假想出来的一种物质C.电场线都是闭合的D.磁感线都是不闭合的5.下列关于磁场的说法正确的是()A.沿着磁感线的方向磁场越来越弱B.磁感线从极出发到极终止C.不论在什么情况下,磁感线都不会相交D.只有磁体周围才会产生磁场6.一根钢条靠近磁针的磁极,磁针被吸引过来,则()A.钢条一定具有磁性B.钢条一定没有磁性C.钢条可能有磁性,也可能没有磁性D.条件不足,无法判断7.在磁场中某区域的磁感线如图所示,则()A.a、b两处的磁感应强度的大小不等,且B a>B bB.同一电流元放在a处受力一定比放在b处受力大C.电荷有可能仅在磁场作用下由a沿纸面运动到bD.某正电荷在磁场和其他外力作用下从a到b,磁场对电荷做负功8.如图为条形磁铁周围的磁感线,磁场中有a、b两点。
下列说法正确的是()A.a点的磁感应强度小于b点的磁感应强度B.磁铁的磁感线起始于磁铁的N极,终止于磁铁的S极C.图中的磁感线是真实存在的D.a、b两点的磁感应强度方向相同二、多项选择题(共4小题)9.某书上记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
高考物理一轮复习:磁场(五)一、单选题1.如图所示,两根导线与一根粗糙绝缘细杆水平平行固定且竖直共面,导线足够长。
两导线中电流I大小相同、方向相反,有一带电荷量为+q,质量为m的小球套在细杆上(小球中空部分尺寸略大于直导线直径),若给小球一水平向右的初速度v0,空气阻力不计,那么下列说法不正确的是()A.小球可能做匀速直线运动B.小球可能做匀减速直线运动C.小球可能做加速度逐渐增大的减速运动,最后停止D.导线中电流I越大,小球最终的速度可能越小2.如图所示,在充电的平行金属板间有匀强电场和方向垂直纸面向里的匀强磁场。
一带电粒子以速度v从左侧射入,方向垂直于电场方向和磁场方向,当它从右侧射出场区时,动能比射入时小,若要使带电粒子从射入到射出动能是增加的,可采取的措施有(不计重力)( )A.可使电场强度增强B.可使磁感应强度增强C.可使粒子带电性质改变(如正变负)D.可使粒子射入时的动能增大3.如图所示,在矩形ABCD内有一垂直纸面向里的圆形匀强磁场区域(磁场区域未画出),已知AB边长4L,BC边长6L,E是BC边的中点。
一质量为m,电荷量为+q的粒子从A点沿AE方向以速度v0进入矩形区域,恰能从D点沿ED方向射出矩形区域。
不计粒子的重力,则此磁场的磁感应强度最小值为()A.5mv016qL B.5mv012qLC.mv02qL D.mv03qL4.宋代沈括在公元1086年写的《梦溪笔谈》中最早记载了“方家(术士)以磁石磨针锋,则能指南,然常微偏东,不全南也”。
进一步研究表明,地球周围地磁场的磁感线分布如图所示,结合上述材料,下列说法正确的是()A.在地磁场的作用下小磁针静止时指南的磁极叫N极,指北的磁极地轴叫S极B.对垂直射向地球表面宇宙射线中的高能带电粒子,在南北极附近所受阻挡作用最弱,赤道附近最强C.形成地磁场的原因可能是带正电的地球自转引起的D.由于地磁场的影响,在奥斯特发现电流磁效应的实验中,通电导线应相对水平地面竖直放置5.空间有一圆柱形匀强磁场区域,O点为圆心.磁场方向垂直于纸面向外.一带正电的粒子从A点沿图示箭头方向以速率v射入磁场,θ=30°,粒子在纸面内运动,经过时间t离开磁场时速度方向与半径OA垂直.不计粒子重力.若粒子速率变为v2,其它条件不变,粒子在圆柱形磁场中运动的时间为()D.2tA.t2B.t C.3t26.以下说法正确的是()A.磁感线上每一点的切线方向表示该点磁场的方向B.通电导线在磁场中受力的方向就是磁场的方向C.在同一磁场中,磁感线越密的地方,通电导线受的安培力一定越大D.磁感应强度越大的地方,通电导线电流越大,所受的安培力一定越大7.用质谱仪研究两种同位素氧16和氧18。
高考物理电磁学知识点之磁场知识点复习(4)一、选择题1.如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为A.2F B.1.5F C.0.5F D.02.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
如图为直线通道推进器示意图。
推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。
空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以电流I=1.0×103A,方向如图。
则下列判断正确的是()A.推进器对潜艇提供向左的驱动力,大小为4.0×103NB.推进器对潜艇提供向右的驱动力,大小为5.0×103NC.超导励磁线圈中的电流方向为PQNMP方向D.通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能3.如图所示的圆形区域里匀强磁场方向垂直于纸面向里,有一束速率各不相同的质子自A 点沿半径方向射入磁场,则质子射入磁场的运动速率越大,A.其轨迹对应的圆心角越大B.其在磁场区域运动的路程越大C.其射出磁场区域时速度的偏向角越大D.其在磁场中的运动时间越长4.对磁感应强度的理解,下列说法错误的是()A.磁感应强度与磁场力F成正比,与检验电流元IL成反比B.磁感应强度的方向也就是该处磁感线的切线方向C.磁场中各点磁感应强度的大小和方向是一定的,与检验电流I无关D.磁感线越密,磁感应强度越大5.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。
当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、φ2。
该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。
高考物理磁场复习题一、选择题1. 磁场的基本性质是什么?A. 磁场对静止的电荷有力的作用B. 磁场对运动的电荷有力的作用C. 磁场对电流有力的作用D. 磁场对所有物体都有力的作用2. 以下哪项不是磁场的基本特性?A. 磁感应强度B. 磁通量C. 磁力线D. 磁矩3. 洛伦兹力的大小与以下哪些因素有关?A. 电荷量B. 电荷的速度C. 磁场的强度D. 所有以上因素4. 根据右手定则,当电流方向与磁场方向垂直时,安培力的方向如何确定?A. 与电流方向相同B. 与磁场方向相同C. 垂直于电流和磁场方向D. 与电流方向相反5. 磁通量的变化率与感应电动势的关系是什么?A. 感应电动势与磁通量的变化率成正比B. 感应电动势与磁通量成正比C. 感应电动势与磁通量的变化率成反比D. 感应电动势与磁通量无关二、填空题6. 磁场中某点的磁感应强度大小为B,方向为______。
7. 当一个带电粒子以速度v进入磁场B中时,它受到的洛伦兹力大小为F=______。
8. 根据法拉第电磁感应定律,感应电动势的大小与______成正比。
9. 一个闭合电路中的部分导体切割磁力线时,会产生______。
10. 磁通量Φ可以通过公式Φ=______来计算。
三、简答题11. 简述磁场对静止电荷的作用。
12. 描述洛伦兹力的特点,并举例说明。
13. 解释为什么在地球表面不同位置的磁感应强度不同。
14. 说明法拉第电磁感应定律的物理意义。
15. 阐述磁通量变化率与感应电动势之间的关系。
四、计算题16. 一个带正电粒子,电荷量为q=1.6×10^-19 C,以速度v=3×10^7 m/s进入一个磁感应强度B=0.5 T的匀强磁场中。
如果粒子的运动方向与磁场方向垂直,请计算粒子受到的洛伦兹力的大小。
17. 一个矩形线圈,边长分别为L=0.2 m和W=0.1 m,以角速度ω=100 rad/s绕垂直于磁场方向的轴旋转。
如果磁感应强度B=0.3 T,求线圈中产生的感应电动势。
高考物理电磁学知识点之磁场知识点总复习附答案(6)一、选择题1.如图,放射源放在铅块上的细孔中,铅块上方有匀强磁场,磁场方向垂直于纸面向外.已知放射源放出的射线有α、β、γ三种.下列判断正确的是A.甲是α射线,乙是γ射线,丙是β射线B.甲是β射线,乙是γ射线,丙是α射线C.甲是γ射线,乙是α射线,丙是β射线D.甲是α射线,乙是β射线,丙是γ射线.其核心部分是分别与高频交流电源两极相连接的两2.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离3.如图所示,边长为L的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab边中点和ac边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F2 。
已知重力加速度为g,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 4.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
线圈中a 、b 两条导线长度均为l ,未通电流时,a 、b 处于图乙所示位置,两条导线所在处的磁感应强度大小均为B 。
通电后,a 导线中电流方向垂直纸面向外,大小为I ,则( )A .该磁场是匀强磁场B .线圈平面总与磁场方向垂直C .线圈将逆时针转动D .a 导线受到的安培力大小始终为BI l5.对磁感应强度的理解,下列说法错误的是( )A .磁感应强度与磁场力F 成正比,与检验电流元IL 成反比B .磁感应强度的方向也就是该处磁感线的切线方向C .磁场中各点磁感应强度的大小和方向是一定的,与检验电流I 无关D .磁感线越密,磁感应强度越大6.如图,一带电粒子在正交的匀强电场和匀强磁场中做匀速圆周运动。
高考物理专题复习:磁场对通电导线的作用力一、单选题1.把长度为L、电流为I的相同的一小段电流元放入某磁场中的A、B两点,电流元在A 点受到的磁场力较大,则()A.A点的磁感应强度一定大于B点的磁感应强度B.A、B两点磁感应强度可能相等C.A、B两点磁感应强度一定不相等D.A点磁感应强度一定小于B点磁感应强度2.如图所示,在磁场中有一垂直于磁场放置的通电直导线,其电流方向垂直于纸面向外,图中标出的导线所受安培力F方向正确的是()A.B.C.D.3.如图所示,三根长为L平行的直线电流在空间构成以a为顶点的等腰直角三角形,其中a、b电流的方向垂直纸面向里,c电流方向垂直纸面向外,其中b、c电流大小为I,在a处产生的磁感应强度的大小均为B,导线a,则导线a受到的安培力为()A.2BIL,方向竖直向上B.BIL,方向水平向右C,方向竖直向上D.4BIL,方向水平向左4.三条长度相同的直导线a、b、c垂直于纸面固定放置,相互之间的距离均为L。
在三条直导线中均通有大小相等的电流I,其中直导线a、c中的电流方向垂直纸面向里,直导线b 中的电流方向垂直纸面向外,则直导线a与直导线b所受安培力的大小之比为()A B.C.1:1 D5.如图所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨外面紧贴导轨放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ,重力加速度为g。
现从t=0时刻起,给棒通以图示方向的电流,且电流大小与时间成正比,即I=kt,其中k为正恒量。
若金属棒与导轨始终垂直,则下列表示棒所受的摩擦力F f随时间t变化的四幅图中,正确的是()A.B.C.D.6.如图所示,甲乙丙三套装置完全一样,都放置在磁感应强度大小相等的匀强磁场中。
导电导轨、导体棒都在同一平面内,相互垂直,电源有一定内阻。
甲乙两套装置的平面水平,丙轨道平面与水平面夹角θ;磁场甲图竖直向上、乙图与水平面夹θ角、丙与导轨平面垂直。
高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速度不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。
2010届高考物理精题精练:磁场一、 选择题1.如图所示,在第二象限内有水平向右的匀强电场,电场强度为E ,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等. 有一个带电粒子以初速度v 0垂直x 轴,从x 轴上的P 点进入匀强电场,恰好与y 轴成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入下面的磁场.已知OP 之间的距离为d ,则带电粒子 ( AD )A .在电场中运动的时间为2v d B .在磁场中做圆周运动的半径为d 2 C .自进入磁场至第二次经过x 轴所用时间为47v dπ D .自进入电场至在磁场中第二次经过x 轴的时间为2)74(v dπ+2.唱卡拉OK 用的话筒,内有传感器,其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号,下列说法正确的是( BD )A. 该传感器是根据电流的磁效应工作的B. 该传感器是根据电磁感应原理工作的C.膜片振动时,穿过金属线圈的磁通量总是增加的D. 膜片振动时,金属线圈中产生感应电动势3. 如图,空间存在水平向左的匀强电场和垂直纸面向里的匀强磁场,电场和磁场相互垂直。
在电磁场区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球。
O 点为圆环的圆心,a 、b 、c 为圆环上的三个点,a 点为最高点,c 点为最低点,Ob 沿水平方向。
已知小球所受电场力与重力大小相等。
现将小球从环的顶端a 点由静止释放。
下列判断正确的是( D )A .当小球运动的弧长为圆周长的1/4时,洛仑兹力最大B .当小球运动的弧长为圆周长的1/2时,洛仑兹力最大C .小球从a 点到b 点,重力势能减小,电势能增大D .小球从b 点运动到c 点,电势能增大,动能先增大后减小4.一个带电粒子在磁场力的作用下做匀速圆周运动,要想确定带电粒子的电荷量与质量之比,则只需要知道( B ) A .运动速度v 和磁感应强度B B .磁感应强度B 和运动周期T C .轨道半径R 和运动速度v D .轨道半径R 和磁感应强度B5.矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直。
规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示.若规定顺时针方向为感应电流i 的正方向,下列各图中正确的是 [ D ]6.如图所示,实线表示在竖直平面内的电场线,电场线与水平方向成α角,水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线L 做直线运动,L 与水平方向成β角,且α>β,则下列说法中错误的是 ( D ) A.液滴一定做匀速直线运动 B.液滴一定带正电 C.电场线方向一定斜向上AB CDD.液滴有可能做匀变速直线运动7.如图甲所示,在空间存在一个变化的电场和一个变化的磁场,电场的方向水平向右(图甲中由B 到C ),场强大小随时间变化情况如图乙所示;磁感应强度方向垂直于纸面、大小随时间变化情况如图丙所示。
在t =1s 时,从A 点沿AB 方向(垂直于BC )以初速度v 0射出第一个粒子,并在此之后,每隔2s 有一个相同的粒子沿AB 方向均以初速度v 0射出,并恰好均能击中C 点,若AB =BC=l ,且粒子由A 运动到C 的运动时间小于1s 。
不计空气阻力,对于各粒子由A 运动到C 的过程中,以下说法正确的是 ( BCD )A .电场强度E 0和磁感应强度B 0的大小之比为3 v 0:1 B .第一个粒子和第二个粒子运动的加速度大小之比为1:2C .第一个粒子和第二个粒子运动的时间之比为π:2D .第一个粒子和第二个粒子通过C 的动能之比为 1:58.如图所示,带电金属小球用绝缘丝线系住,丝线上端固定,形成一个单摆.如果在摆球经过的区域加上如图所示的磁场,不计摩擦及空气阻力,下列说法中正确的是(AD) A.单摆周期不变 B .单摆周期变大 C.单摆的振幅逐渐减小D .摆球在最大位移处所受丝线的拉力大小不变9.某匀强磁场垂直穿过一个线圈平面,磁感强度B 随时间t 变化的规律如图线所示.若在某1s 内穿过线圈中磁通量的变化量为零,则该1s 开始的时刻是 ( C )A .第1.51sB .第1.69 sC .第s 711 D .第s 35 10.如图甲所示为一个质量为m 、电荷量为q 的圆环,可在水平放置的足够长的粗糙细杆丙B B乙 E 0E甲v 0上滑动,细杆处于磁感应强度为B 的匀强磁场中,(不计空气阻力),现给圆环向右初速度o υ,在以后的运动过程中,圆环运动的速度图象可能是图乙中的( AC )二、填空题11. 如图所示,水平放置的两块带电金属板a 、b 平行正对。
极板长度为l ,板间距也为l ,板间存在着方向竖直向下的匀强电场和垂直于纸面向里磁感强度为B 的匀强磁场。
假设电场、磁场只存在于两板间的空间区域。
一质量为m 的带电荷量为q 的粒子(不计重力及空气阻力),以水平速度v 0从两极板的左端中间射入场区,恰好做匀速直线运动。
求: (1)金属板a 、b 间电压U 的大小_____(2)若仅将匀强磁场的磁感应强度变为原来的2倍,粒子将击中上极板,求粒子运动到达上极板时的动能大小(3)若撤去电场,粒子能飞出场区,求m 、v 0、q 、B 、l 满足的关系_______ (4)若满足(3)中条件,粒子在场区运动的最长时间_____ 答案: (1)U=l v 0B ;(2)E K =21m v 0221-qB l v 0;(3)m qBl v 40≤或m qBl v 450≥; (4)qBm π 12.如图所示,在xOy 平面内的第Ⅲ象限中有沿-y 方向的匀强电场,场强大小为E .在第I 和第II 象限有匀强磁场,方向垂直于坐标平面向里.有一个质量为m ,电荷量为e 的电子,从y 轴的P 点以初速度v 0垂直于电场方向进入电场(不计电子所受重力),经电场偏转后,沿着与x 轴负方向成450角进入磁场,并能返回到原出发点P . (1)简要说明电子的运动情况,并画出电子运动轨迹的示意图; (2)求P 点距坐标原点的距离______(3)电子从P 点出发经多长时间再次返回P 点_______ 答案:(1)如右图;baq l(2) eEmv s 22=;(3)eE m v t 83)34(0π+=.13.早期的电视机是用显像管来显示图像的,在显像管中需要用变化的磁场来控制电子束的偏转。
图31甲为显像管工作原理示意图,阴极K 发射的电子束(初速不计)经电压为U 的加速电场后,进入一圆形匀强磁场区,磁场方向垂直于圆面,磁场区的中心为O ,半径为r ,荧光屏MN 到磁场区中心O 的距离为L 。
当不加磁场时,电子束将通过O 点垂直打到屏幕的中心P 点,当磁场的磁感应强度随时间按图31乙所示的规律变化时,在荧光屏上得到一条长为23L 的亮线。
由于电子通过磁场区的时间很短,可以认为在每个电子通过磁场区的过程中磁场的磁感应强度不变。
已知电子的电荷量为e ,质量为m ,不计电子之间的相互作用及所受的重力。
求:(1)从进入磁场区开始计时,电子打到P 经历的时间________ (2)从进入磁场区开始计时,电子打到亮线端点经历的时间_________答案:(1)eUmr L v r L t 2)(+=+=(2)t =eU mr L 2)2(-+m eUm r 6π 三、计算题14.如图所示,在x 轴的上方(y >0的空间内)存在着垂直于纸面向里、磁感应强度为B 的匀强磁场,一个不计重力的带正电粒子从坐标原点O 处以速度v乙OB 0 -B 图31K PMN进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x 轴正方向成45°角,若粒子的质量为m ,电量为q ,求:(1)该粒子在磁场中作圆周运动的轨道半径; (2)粒子在磁场中运动的时间。
解析:(1)∵qvB =mv 2/R ∴R =mv/qB (2)∵T = 2πm /qB粒子轨迹如图示: ∴t =43T = qBm 23π15.如图所示,一矩形线圈在匀强磁场中绕OO' 轴匀速转动,磁场方向与转轴垂直.已知线圈匝数n=400,电阻r =0.1Ω,长L 1=0.05m ,宽L 2=0.04m ,角速度=l00 rad /s ,磁场的磁感应强度B =0.25T.线圈两端外接电阻R=9.9Ω的用电器和一个交流电流表(内阻不计),求: (1)线圈中产生的最大感应电动势.(2)电流表A 的读数. (3)用电器上消耗的电功率. 解析:(1)Em =nBS ω代人数据得 Em =400×0.25×0.05×0.04×l00 V =20 V (2)Im=rR E m+ 代人数据得Im =1.09.920+A=2A∵是正弦交变电流,所以电流表读数即有效值 I=22=m I A=1.41A(3)p =I 2R =()22×9.9W =19,8W .16.如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入a bO一速度方向跟ad 边夹角θ = 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间. 答案:(1)m qBL 3<v 0≤m qBL (2)qBm5π 解析:(1)若粒子速度为v 0,则qv 0B =R v m 20, 所以有R =qBm v 0,设圆心在O 1处对应圆弧与ab 边相切,相应速度为v 01,则R 1+R 1sin θ =2L, 将R 1 =qBm v 01代入上式可得,v 01 =m qBL3类似地,设圆心在O 2处对应圆弧与cd 边相切,相应速度为v 02,则R 2-R 2sin θ =2L, 将R 2 =qBm v 02代入上式可得,v 02 =m qBL所以粒子能从ab 边上射出磁场的v 0应满足m qBL 3<v 0≤mqBL(2)由t =T πα2及T =qBm2π可知,粒子在磁场中经过的弧所对的圆心角α越长,在磁场中运动的时间也越长。
由图可知,在磁场中运动的半径r ≤R 1时,运动时间最长,弧所对圆心角为(2π-2θ), 所以最长时间为t =qB m )22(θπ-=qBm5π17. 如图所示,在xoy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xoy 平面的匀强磁场,y 轴上离坐标原点4 L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )。