氧化硅氮化硅碳化硅
- 格式:docx
- 大小:70.40 KB
- 文档页数:9
陶瓷材料分类陶瓷材料是一种非金属材料,具有耐高温、耐腐蚀、绝缘、硬度高等特点,因此在工业生产和日常生活中有着广泛的应用。
根据其成分和性质的不同,陶瓷材料可以分为多种类型,下面将对其进行分类介绍。
一、氧化物陶瓷。
氧化物陶瓷是指以金属氧化物为主要成分的陶瓷材料,如氧化铝、氧化锆、氧化硅等。
这类陶瓷具有高熔点、高硬度、耐磨损、耐腐蚀等特点,广泛应用于制陶、陶瓷工业、电子工业等领域。
二、非氧化物陶瓷。
非氧化物陶瓷是指以氮化硅、碳化硅、碳化硼等为主要成分的陶瓷材料。
这类陶瓷具有高硬度、高熔点、耐腐蚀、耐高温等特点,被广泛应用于航空航天、光电子、冶金等高新技术领域。
三、复合陶瓷。
复合陶瓷是指将两种或两种以上的陶瓷材料按一定比例混合而成的新型陶瓷材料,如氧化铝和氧化锆的复合陶瓷、氮化硅和碳化硅的复合陶瓷等。
这类陶瓷综合了各种陶瓷材料的优点,具有高强度、高硬度、耐磨损、耐腐蚀等特点,被广泛应用于机械制造、航空航天等领域。
四、结构陶瓷。
结构陶瓷是指以氧化铝、氧化锆、碳化硅等为主要成分的陶瓷材料,具有高强度、高硬度、耐磨损、耐高温等特点,被广泛应用于建筑、冶金、化工等领域。
五、生物陶瓷。
生物陶瓷是指以氧化铝、氧化锆、氮化硅等为主要成分的陶瓷材料,具有生物相容性好、不易引起排异反应等特点,被广泛应用于医疗器械、人工关节、牙科等领域。
六、其他陶瓷。
除了以上几种主要类型的陶瓷材料外,还有一些特殊用途的陶瓷材料,如电子陶瓷、磁性陶瓷、光学陶瓷等。
这些陶瓷材料在电子、通讯、光学等领域有着重要的应用价值。
总结。
综上所述,陶瓷材料根据其成分和性质的不同可以分为氧化物陶瓷、非氧化物陶瓷、复合陶瓷、结构陶瓷、生物陶瓷以及其他特殊用途的陶瓷。
每种类型的陶瓷材料都具有其独特的特点和应用领域,对于促进工业生产和提升生活质量都具有重要意义。
希望本文的介绍能够帮助大家更好地了解陶瓷材料的分类及应用。
氮化硅碳化硅差异氮化硅与碳化硅:特性、应用与差异氮化硅 (Si3N4) 和碳化硅 (SiC) 都是晶体陶瓷材料,具有优异的机械和热学性能,在广泛的工业应用中得到广泛应用。
了解它们的特性和差异对于优化其在特定领域的用途至关重要。
特性:氮化硅高硬度和韧性优异的耐磨性和耐腐蚀性良好的热稳定性和抗氧化性电绝缘性好密度低碳化硅超高硬度和韧性极好的耐磨性和耐腐蚀性出色的导热性高强度和刚度密度比氮化硅高应用:氮化硅切削刀具和磨料耐高温部件(如涡轮叶片和喷嘴)轴承和密封圈电子封装材料生物医学植入物碳化硅切割工具和加工刀具半导体器件(如功率晶体管和二极管)高温结构材料(如航空航天应用)摩擦材料(如制动器和离合器)高性能陶瓷基复合材料差异:硬度和韧性碳化硅的硬度和韧性远高于氮化硅,使其成为需要超高耐磨性的应用的理想选择。
导热性碳化硅具有比氮化硅更高的导热性,使其适用于需要有效散热的应用,例如半导体和电子设备。
氧化稳定性氮化硅在高温下的抗氧化性优于碳化硅,使其在暴露于氧化环境的应用领域更具优势。
密度碳化硅的密度比氮化硅高,在某些涉及重量至关重要的应用中可能是一个考虑因素。
加工性碳化硅的加工难度高于氮化硅,需要专门的工具和技术。
成本碳化硅的生产成本通常高于氮化硅,这可能会影响其在某些应用中的可行性。
选择标准:选择氮化硅或碳化硅取决于具体应用的特定要求。
考虑的主要因素包括:所需的硬度和韧性导热性化学和氧化稳定性密度加工性成本通过仔细评估这些因素,工程师和设计师可以优化氮化硅和碳化硅在各种行业中的应用,从制造业到电子和航空航天。
陶瓷粉体成分
陶瓷粉体是制作陶瓷制品的重要原材料,其成分对于制品的性能和质量有着至关重要的影响。
陶瓷粉体的成分主要包括氧化物、非氧化物和添加剂等。
氧化物是陶瓷粉体中最主要的成分,包括氧化铝、氧化硅、氧化钙、氧化镁等。
其中,氧化铝是陶瓷粉体中最常见的成分之一,其具有高硬度、高耐磨性、高耐腐蚀性等优良性能,被广泛应用于制作高档陶瓷制品。
氧化硅则是制作陶瓷制品的基础材料,其具有高强度、高耐热性、高耐腐蚀性等优良性能,被广泛应用于制作陶瓷制品的基础材料。
非氧化物是陶瓷粉体中的另一个重要成分,包括碳化硅、氮化硅、氮化铝等。
这些非氧化物具有高硬度、高耐热性、高耐腐蚀性等优良性能,被广泛应用于制作高档陶瓷制品。
除了氧化物和非氧化物之外,陶瓷粉体中还需要添加一些特殊的添加剂,以调节其性能和质量。
这些添加剂包括增塑剂、增稠剂、抗氧化剂、防腐剂等。
这些添加剂可以改善陶瓷粉体的流动性、增加其粘度、提高其耐热性和耐腐蚀性等性能。
陶瓷粉体的成分对于制品的性能和质量有着至关重要的影响。
在制作陶瓷制品时,需要根据不同的用途和要求选择不同的陶瓷粉体成分,以确保制品具有优良的性能和质量。
碳化硅是一种具有高温稳定性和优异机械性能的陶瓷材料,常用于制备高温结构材料、电子器件、耐磨材料等。
在高温下,碳化硅可以发生多种化学反应,下面列举几种常见的碳化硅高温反应:
1. 热分解反应:碳化硅在高温下会发生热分解反应,生成二氧化硅和碳。
反应式如下:SiC + O2 →SiO2 + C
2. 氧化反应:碳化硅在高温下可以与氧气发生氧化反应,生成二氧化硅和碳。
反应式如下:SiC + O2 →SiO2 + C
3. 碳化反应:碳化硅在高温下可以与碳或一氧化碳发生碳化反应,生成碳化硅和二氧化碳。
反应式如下:
SiC + C →2SiC
SiC + CO →SiC + CO2
4. 氮化反应:碳化硅在高温下可以与氮气发生氮化反应,生成氮化硅。
反应式如下:
SiC + N2 →SiCN
5. 氧化氮反应:碳化硅在高温下可以与氧气和氮气发生氧化氮反应,生成氮化硅和二氧化碳。
反应式如下:
SiC + N2 + O2 →SiCN + CO2
这些高温反应对碳化硅的性质和结构都会产生影响,因此在碳化硅的制备和应用过程中需要对其高温反应进行深入研究。
陶瓷材料材质密度一、陶瓷材料的定义及其种类陶瓷(ceramic)是指那些非金属、无机材料制成的坚硬、脆性材料。
它们主要是由土(硅酸盐)、粘土和其他天然材料制成,然后在高温烘烤成型而成。
陶瓷一种常用的工程材料,在电子、光学、医疗、航天等领域得到了广泛应用。
根据陶瓷的用途和制造工艺的不同,陶瓷材料可以分为多种类型,如下:1. 氧化物陶瓷:包括氧化铝、氧化钛、氧化硅(石英)、氧化锆、氧化铥等等。
2. 非氧化物陶瓷:包括硼化硅、碳化硅、氮化硅、碳化钨等等。
3. 固溶体陶瓷:由两种或多种化合物组成,如氧化铝、氧化锆、氧化钛等的固溶体陶瓷。
4. 玻璃陶瓷:这种陶瓷通常是由玻璃和陶瓷两种材料相结合的一种材料,优点是具有玻璃的透明度和高温下的稳定性,缺点是容易破裂。
密度被定义为单位体积内包含的质量。
因此,陶瓷材料的密度是指单位体积内所包含的质量。
陶瓷材料的密度通常以克/立方厘米或千克/立方米为单位。
其中,氧化铝的密度约为3.95g/cm³,氧化钛的密度约为4.23g/cm³,石英的密度约为2.65g/cm³,氧化锆的密度约为6.0g/cm³,碳化硅的密度约为3.2g/cm³,碳化钨的密度约为18.7g/cm³。
测量陶瓷材料的密度通常使用位重法,即通过比较材料在空气中的重量和在水中的重量来确定材料的密度。
在空气中的重量由秤量,而在水中的重量则可以通过测量水的位重和材料的重量来计算。
值得注意的是,在使用位重法时,需要排除材料表面的气泡和水分对测量结果的影响。
由于陶瓷材料是非金属制成的,因此它们具有一系列特殊的性质,如高硬度、高强度、高耐热性、高耐腐蚀性等等。
并且,陶瓷材料的特点还包括良好的电绝缘性和光学透明性。
由于这些性质,陶瓷材料在现代工业、科技和其他领域中得到了广泛应用。
1. 陶瓷材料在电子领域中的应用陶瓷是一种优秀的电绝缘材料,因此在电子行业中被广泛应用,例如作为绝缘子、陶瓷电容器、电路板、微电子元器件等。
碳化硅和氮化硅硬度引言:碳化硅和氮化硅作为两种重要的陶瓷材料,具有优异的物理性能和化学稳定性,被广泛应用于工业领域。
其中,硬度是评价材料抗刮擦和耐磨损性能的重要指标。
本文将从碳化硅和氮化硅的硬度特点入手,比较它们在硬度方面的差异。
一、碳化硅硬度特点:碳化硅是一种由碳和硅元素构成的陶瓷材料,具有很高的硬度。
碳化硅的硬度主要表现在以下几个方面:1. 高硬度:碳化硅的硬度非常高,其摩氏硬度可达到9.5级,仅次于金刚石和氮化硼。
这使得碳化硅具有出色的耐磨性和抗刮擦性能。
2. 硬度均匀性:碳化硅的硬度分布均匀,没有明显的差异。
这使得碳化硅在各个方向上都具有相似的硬度特点,不易受到外力的影响。
3. 抗压性:由于碳化硅具有高硬度,其抗压性能也非常出色。
即使在高温和极端环境下,碳化硅的硬度依然能够保持稳定。
二、氮化硅硬度特点:氮化硅是一种由氮和硅元素构成的陶瓷材料,与碳化硅相比,其硬度特点有所不同。
1. 较高硬度:氮化硅的硬度较高,摩氏硬度可达到9.0级左右。
尽管比碳化硅稍低,但仍然比大部分金属和非金属材料的硬度要高。
2. 硬度均匀性:与碳化硅类似,氮化硅的硬度分布均匀,各个方向上的硬度相差不大。
3. 耐磨性:氮化硅具有较好的耐磨性能,能够在高温和恶劣环境下保持较长时间的使用寿命。
三、碳化硅和氮化硅硬度的比较:碳化硅和氮化硅在硬度方面有一些不同之处。
主要体现在以下几个方面:1. 硬度值:碳化硅的硬度略高于氮化硅。
碳化硅的摩氏硬度可达到9.5级,而氮化硅的摩氏硬度约为9.0级。
2. 硬度均匀性:碳化硅和氮化硅的硬度分布均匀,各个方向上的硬度相差不大。
3. 应用领域:由于碳化硅硬度更高,常用于一些对硬度要求较高的场合,如磨料、陶瓷刀具等。
而氮化硅虽然硬度稍低,但具有更好的导热性能,常用于制造散热器、导热模块等。
结论:碳化硅和氮化硅作为重要的陶瓷材料,具有优异的硬度特点。
碳化硅的硬度略高于氮化硅,分别为9.5级和9.0级左右。
氮化硅结合碳化硅异型件氮化硅结合碳化硅(Si3N4-SiC)异型件是一种重要的工程陶瓷制品,具有优异的高温力学性能和化学稳定性。
在高温、高压和腐蚀性环境下,氮化硅结合碳化硅异型件能够发挥其卓越的性能,被广泛应用于各个工业领域。
氮化硅结合碳化硅异型件具有极高的热稳定性。
氮化硅是一种高熔点、高硬度的陶瓷材料,能够在高温下保持较好的强度和刚性。
碳化硅则具有优异的耐高温性能和热导率。
通过将氮化硅和碳化硅结合在一起,可以充分发挥两者的优点,使异型件在高温环境下具有更好的稳定性和耐热性能。
氮化硅结合碳化硅异型件具有出色的耐腐蚀性。
氮化硅和碳化硅都具有较好的化学稳定性,能够抵抗酸、碱等腐蚀介质的侵蚀。
而且,由于氮化硅结合碳化硅异型件的独特结构,其表面常常形成一层致密的氧化膜,能够有效阻止腐蚀介质的进一步侵蚀,提高异型件的使用寿命。
氮化硅结合碳化硅异型件还具有优异的机械性能。
氮化硅具有较高的硬度和强度,能够在高温下保持较好的刚性和抗磨损性。
碳化硅则具有较高的弹性模量和强度,能够承受较大的载荷。
通过将氮化硅和碳化硅结合在一起,异型件能够同时具备高硬度和高强度的优势,适用于一些对材料强度要求较高的场合。
氮化硅结合碳化硅异型件的应用范围非常广泛。
在航空航天领域,由于其耐高温和耐腐蚀的特性,氮化硅结合碳化硅异型件被广泛应用于航空发动机部件、航天器热防护结构等关键部件。
在化工领域,氮化硅结合碳化硅异型件能够承受腐蚀性介质的侵蚀,可用于制作化工反应器、管道和泵体等设备。
在电子领域,氮化硅结合碳化硅异型件的高热导率和耐高温性能,使其成为半导体设备散热器和封装材料的理想选择。
然而,氮化硅结合碳化硅异型件的制造和加工相对复杂。
由于氮化硅和碳化硅都属于难加工陶瓷材料,其加工难度大,生产成本也相对较高。
目前,制造氮化硅结合碳化硅异型件主要采用热压烧结、热等静压和化学气相沉积等工艺,需要经过多道复杂的加工工序。
此外,由于产品形状和尺寸的多样性,对机械加工设备和工艺的要求也较高。
碳化硅和氮化硅
碳化硅和氮化硅是两种重要的功能性陶瓷材料。
碳化硅是一种高硬度、高强度和高温稳定性的材料,广泛应用于制造切削工具、磨料和陶瓷材料等领域。
氮化硅是一种高温、高硬度和高耐腐蚀性能的材料,常用于制造电子元件、陶瓷材料和结构材料等领域。
碳化硅和氮化硅的制备方法不同。
碳化硅可通过热反应或化学气相沉积等方法制备。
氮化硅则可通过化学气相沉积、热反应或离子束沉积等方法制备。
此外,碳化硅和氮化硅也可以通过加工方法得到,例如烧结、热压、注射成型等。
碳化硅和氮化硅材料的特性和应用也有所不同。
碳化硅具有高硬度、高强度、高温稳定性和耐腐蚀性等特点,在制造切削工具、磨料和陶瓷材料等领域有广泛应用。
氮化硅具有高温、高硬度和高耐腐蚀性能等特点,在制造电子元件、陶瓷材料和结构材料等领域有广泛应用。
总之,碳化硅和氮化硅是两种重要的功能性陶瓷材料,具有不同的特性和应用。
对于人们的生活和工作,它们发挥着重要的作用。
- 1 -。
耐火材料配方
耐火材料是一种能够在高温下保持结构稳定性和耐磨性的材料,广泛应用于冶金、化工、建材等行业。
耐火材料的性能取决于其配方的选择和比例,下面将介绍几种常见的耐火材料配方。
首先,常见的耐火材料配方之一是硅酸盐耐火材料。
硅酸盐耐火材料以硅酸盐
为主要原料,通常包括氧化铝、氧化镁等辅助原料。
硅酸盐耐火材料具有良好的耐火度和抗热震性能,适用于高温炉窑的内衬和砌筑。
其次,铝酸盐耐火材料是另一种常见的耐火材料配方。
铝酸盐耐火材料以铝酸
盐为主要原料,通常添加适量的氧化铝、氧化硅等辅助原料。
铝酸盐耐火材料具有优异的耐火度和抗侵蚀性能,适用于高温炉窑的内衬和砌筑。
此外,碳化硅耐火材料是一种具有高温强度和耐磨性的耐火材料配方。
碳化硅
耐火材料以碳化硅为主要原料,通常添加适量的氧化铝、氧化硅等辅助原料。
碳化硅耐火材料适用于高温炉窑的内衬和砌筑,能够在高温下保持稳定的性能。
最后,氮化硅耐火材料是一种新型的耐火材料配方。
氮化硅耐火材料以氮化硅
为主要原料,通常添加适量的氧化铝、氧化硅等辅助原料。
氮化硅耐火材料具有优异的耐火度和抗侵蚀性能,适用于高温炉窑的内衬和砌筑。
总之,不同类型的耐火材料配方在不同的工业领域有着广泛的应用。
通过合理
选择原料和比例,可以制备出具有优异性能的耐火材料,满足高温工艺生产的需求。
希望以上介绍能够对耐火材料配方有所帮助,谢谢阅读。
一氧化硅分子式:SiOCAS号:性质:黑棕色至黄土色无定形粉末。
熔点>1702℃。
沸点1880℃。
溶于稀氢氟酸和硝酸的混酸。
不溶于水。
在空气中加热时生成白色的二氧化硅粉末。
由纯度99.5%的二氧化硅粉末与煤沥青粉末(或硅粉)以C/SiO2=1.3或Si/SiO2=1.2配比混合,放入电加热的真空炉,注入非氧化性气体(如氩、氢等气体),高温反应,制得超细(0.1/μm 以下)无定形氧化硅。
极富有活性。
固态一氧化硅可作绝缘材料。
作为精细陶瓷原料具有重要价值。
固态一氧化硅表面积研究是非常重要的,固态一氧化硅的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。
目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。
比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。
F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性二氧化硅晶体北京蒙泰有研技术开发中心二氧化硅性质:SiO2又称硅石。
在自然界分布很广,如石英、石英砂等。
白色或无色,含铁量较高的是淡黄色。
密度2.2 ~2.66.熔点1670℃(鳞石英);1710℃(方石英)。
沸点2230℃。
不溶于水微溶于酸,微粒时能与熔融和碱类起作用。
用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。
silicon dioxideCAS号:7631-86-9分子形状:四方晶系摩尔质量:60.1 g mol-1化学式SiO2,式量60.08。
也叫硅石,是一种坚硬难溶的固体。
它常以石英、鳞石英、方石英三种变体出现。
从地面往下16千米几乎65%为二氧化硅的矿石。
天然的二氧化硅分为晶态和无定形两大类,晶态二氧化硅主要存在于石英矿中。
纯石英为无色晶体,大而透明的棱柱状石英为水晶。
二氧化硅是硅原子跟四个氧原子形成的四面体结构的原子晶体,整个晶体又可以看作是一个巨大分子,SiO2是最简式,并不表示单个分子。
密度2.32g/cm3,熔点1723±5℃,沸点2230℃。
无定形二氧化硅为白色固体或粉末。
化学性质很稳定。
不溶于水也不跟水反应。
是酸性氧化物,不跟一般酸反应。
气态氟化氢或氢氟酸跟二氧化硅反应生成气态四氟化硅。
跟热的强碱溶液或熔化的碱反应生成硅酸盐和水。
跟多种金属氧化物在高温下反应生成硅酸盐。
用于制造石英玻璃、光学仪器、化学器皿、普通玻璃、耐火材料、光导纤维,陶瓷等。
二氧化硅的性质不活泼,它不与除氟、氟化氢和氢氟酸以外的卤素、卤化氢和氢卤素以及硫酸、硝酸、高氯酸作用。
氟化氢(氢氟酸)是唯一可使二氧化硅溶解的酸,生成易溶于水的氟硅酸:测其二氧化硅的比表面积。
则使用全自动BET比表面积测试仪F-Sorb 2400 。
SiO2 +4HF = SiF4↑ +2H2O二氧化硅与碱性氧化物SiO2 +CaO =(高温)CaSiO3二氧化硅能溶于浓热的强碱溶液:SiO2 +2NaOH = Na2SiO3 +H2O(盛碱的试剂瓶不能用玻璃塞而用橡胶塞)在高温下,二氧化硅能被碳、镁、铝还原:SiO2+2C=Si+2CO↑二氧化硅结构在大多数微电子工艺感兴趣的温度范围内,二氧化硅的结晶率低到可以被忽略。
尽管熔融石英不是长范围有序,但她却表现出短的有序结构,它的结构可认为是4个氧原子位于三角形多面的脚上。
多面体中心是一个硅原子。
这样,每4个氧原子近似共价键合到硅原子,满足了硅的化合价外壳。
如果每个氧原子是两个多面体的一部分,则氧的化合价也被满足,结果就成了称为石英的规则的晶体结构。
在熔融石英中,某些氧原子,成为氧桥位,与两个硅原子键合。
某些氧原子没有氧桥,只和一个硅原子键合。
可以认为热生长二氧化硅主要是由人以方向的多面体网络组成的。
与无氧桥位相比,有氧桥的部分越大,氧化层的粘合力就越大,而且受损伤的倾向也越小。
干氧氧化层的有氧桥与无氧桥的比率远大于湿氧氧化层。
因此,可以认为,SiO2与其说是原子晶体,却更近似于离子晶体。
氧原子与硅原子之间的价键向离子键过渡。
的胶体凝固后就成为蛋白石;二氧化硅晶粒小于几微米时,就组成玉髓、燧石、次生石英岩。
物理性质和化学性质均十分稳定的矿产资源,晶体属三方晶系的氧化物矿物,即低温石英(a-石英),是石英族矿物中分布最广的一个矿物种。
广义的石英还包括高温石英(b-石英)。
石英块又名硅石,主要是生产石英砂(又称硅砂)的原料,也是石英耐火材料和烧制硅铁的原料。
应用领域\用途玻璃平板玻璃、浮法玻璃、玻璃制品(玻璃罐、玻璃瓶、玻璃管等)、光学玻璃、玻璃纤维、玻璃仪器、导电玻璃、玻璃布及防射线特种玻璃等的主要原料陶瓷及耐火材料瓷器的胚料和釉料,窑炉用高硅砖、普通硅砖以及碳化硅等的原料冶金硅金属、硅铁合金和硅铝合金等的原料或添加剂、熔剂建筑混凝土、胶凝材料、筑路材料、人造大理石、水泥物理性能检验材料(即水泥标准砂)等化工硅化合物和水玻璃等的原料,硫酸塔的填充物,无定形二氧化硅微粉机械铸造型砂的主要原料,研磨材料(喷砂、硬研磨纸、砂纸、砂布等)电子高纯度金属硅、通讯用光纤等橡胶、塑料填料(可提高耐磨性)涂料填料(可提高涂料的耐候性)二氧化硅粉尘的危害二氧化硅在日常生活、生产和科研等方面有着重要的用途,但有时也会对人体造成危害。
二氧化硅的粉尘极细,比表面积达到100m2/g以上(全自动F-Sorb 2400氮吸附BET比表面积测试仪),可以悬浮在空气中,如果人长期吸入含有二氧化硅的粉尘,就会患硅肺病(因硅旧称为矽,硅肺旧称为矽肺)。
硅肺是一种职业病,它的发生及严重程度,取决于空气中粉尘的含量和粉尘中二氧化硅的含量,以及与人的接触时间等。
长期在二氧化硅粉尘含量较高的地方,如采矿、翻砂、喷砂、制陶瓷、制耐火材料等场所工作的人易患此病。
因此,在这些粉尘较多的工作场所,因采取严格的劳动保护措施,采用多种技术和设备控制工作场所的粉尘含量,以保证工作人员的身体健康。
碳化硅黑碳化硅粉目录【概述】【性质】【用途】【产地、输往国别及品质规格】【概述】碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。
碳化硅在大自然也存在罕见的矿物,莫桑石。
碳化硅又称金钢砂或耐火砂。
碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。
目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。
包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。
其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。
绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。
其硬度介于刚玉和金刚石之间,机械强度高于刚玉。
常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。
另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。
【性质】分子式为SiC,其硬度介于刚玉和金刚石之间,机械强度高于刚玉,可作为磨料和其他某些工业材料使用。
工业用碳化硅于1891年研制成功,是最早的人造磨料。
在陨石和地壳中虽有少量碳化硅存在,但迄今尚未找到可供开采的矿源。
纯碳化硅是无色透明的晶体。
工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。
碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。
α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。
β-SiC于2100℃以上时转变为α-SiC。
碳化硅的工业制法是用优质石英砂和石油焦在电阻炉内炼制。
炼得的碳化硅块,经破碎、酸碱洗、磁选和筛分或水选而制成各种粒度的产品。
碳化硅有黑碳化硅和绿碳化硅两个常用的基本品种,都属α-SiC。
①黑碳化硅含SiC约98.5%,其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。
②绿碳化硅含SiC99%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。
此外还有立方碳化硅,它是以特殊工艺制取的黄绿色晶体,用以制作的磨具适于轴承的超精加工,可使表面粗糙度从Ra32~0.16微米一次加工到Ra0.04~0.02微米。
碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。
低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。
此外,碳化硅还大量用于制作电热元件硅碳棒。
碳化硅的硬度很大,具有优良的导热性能,是一种半导体,高温时能抗氧化。
【用途】(1)作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。
(2)作为冶金脱氧剂和耐高温材料。
碳化硅主要有四大应用领域,即: 功能陶瓷、高级耐火材料、磨料及冶金原料。
目前碳化硅粗料已能大量供应, 不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。
(3)高纯度的单晶,可用于制造半导体、制造碳化硅纤维。
【产地、输往国别及品质规格】(1)产地:河南、青海、宁夏、四川、贵州、湖北丹江口等地。
(2)输往国别:美国、日本、韩国、及某些欧洲国家。
(3)品质规格:①磨料级碳化硅技术条件按GB/T2480—96。
各牌号的化学成分由表6-6-47和表6-6-48给出。
②磨料粒度及其组成按GB/T2477—83。
磨料粒度组成测定方法按GB/T2481—83。
氮化硅氮化硅,分子式为Si3N4,是一种重要的结构陶瓷材料。
它是一种超硬物质,本身具有润滑性,并且耐磨损;除氢氟酸外,它不与其他无机酸反应(反应方程式:Si3N4+4HF+9H2O=====3H2SiO3(沉淀)+4NH4F),抗腐蚀能力强,高温时抗氧化。