材料力学第八章答案 景荣春
- 格式:pdf
- 大小:433.67 KB
- 文档页数:12
第八章 组合变形及连接部分的计算8-1 矩形截面简支梁其受力如图所示,试求梁截面上的最大正应力,并指出中性轴的位置。
(截面尺寸单位:mm )答:σmax =12MPa解:将F 分解成两个力对杆作用效果之和,133 4.52y M kN m =⨯⨯= , 13462z M kN m =⨯⨯=, 131504.52620015012y y M z MPa I σ⨯===⨯,2320062615020012z zM y MPa I σ⨯===⨯; 则1212MPa σσσ=+=;由3320015012tan tan 0.4515020012y zI I θϕ⨯===⨯,24.23θ=.:8-2 图示圆截面简支梁,直径d =200mm, F 1=F 2=5kN, 试求梁横截面上的最大正应力。
答:σmax =4.74MPa解:由于截面为圆形在可以用和弯矩求解max σ,即求max F ,且max F 最大在截面2-2处,由图可知max3.727F kN =, 则3max23.727100.14.740.264PM MPa I ρσπ⨯⨯===⨯A150题 8 - 1 图FF 2题 8 - 2 图8-3 图示悬臂梁,由试验测得εA =2.1×10-4,εB =3.2×10-4, 已知材料的E =200GPa ,试求P 和β值。
答:F =1.03kN,β='2131ο解:由已知74.210AA E Pa σε==⨯,76.410B B E Pa σε==⨯,又有y A z zF ly My I I σ==得y F =875N ,同理z F =535N 则F =1.03kN,'arctan()3021zyF F β== 8-4图示圆截面轴在弯矩M 和扭矩T 联合作用下,由试验测得A 点沿轴向的线应变为0ε=5×10-4,B 点与轴线成45°方向的线应变为ε45°=4.3×10-4。
第 3 章扭转思考题3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力偶矩)称为扭矩。
对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。
用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。
3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件是什么?答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力⎜,因为筒壁的厚度 ™很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。
又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公式;在圆轴两端施加一对大小相等、方向相反的外力偶。
从实验中观察到的现象,假设轴变形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。
公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。
3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。
答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。
3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ⎧之间关系。
答剪切胡克定律⎜ = G©(反映角度的变化)与拉伸(压缩)胡克定律 ⎛ = E∑(反映长度的变化)皆为应力与应变成正比关系。
3 个弹性常量E, G, ⎧之间关系为G =E2(1 + ⎧ )。
3-5圆轴扭转时如何确定危险截面、危险点及强度条件?答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。
2.1 试求图示杆件各段的轴力,并画轴力图。
2.2 已知题2.1图中各杆的直径d =20mm ,F =20kN ,q =10kN/m ,l =2m ,求各杆的最大正应力,并用图形表示 正应力沿轴线的变化情况。
答 (1)63.66MPa ,(2)127.32MPa ,(3)63.66MPa ,(4)-95.5MPa ,(5)127.32MPa2.4 一正方形截面的阶梯柱受力如题2.4图所示。
已知:a=200mm ,b=100mm ,F=100kN ,不计柱的自重,试 计算该柱横截面上的最大正应力。
解:1-1截面和2-2截面的内力为: FN1=-F ;FN2=-3F相应截面的应力为:最大应力为:15kN15kN20kN10kN(4)10kN5kN10kN 30kN+---FN 图-+++FF FF 20kN 30kN 50kN 40kN40kN10kN 20kN (2)(1)F N 图图N F l(5)q FFF q ll(5)qF+127.32MPa63.69MPa15kN 15kN 20kN 10kN (4)31.85MPa 15.82MPa +---Fs 图31.85MPa95.5MPa 4m4mabF题2.4图FF3N11213N22221001010MPa 100300107.5MPa200F A F A σσ-⨯===--⨯===-max 10MPaσ=2.6 钢杆受轴向外力如图所示,横截面面积为500mm2,试求 ab 斜截面上的应力。
解: FN=20kN2.8 图示钢杆的横截面积 A=1000mm2,材料的弹性模量E=200GPa ,试求:(1)各段的轴向变形;(2)各段的轴向线应变;(3)杆的总伸长。
解:轴力图如图所示2.10 图示结构中,五根杆的抗拉刚度均为EA ,杆AB 长为l ,ABCD 是正方形。
在小变形条件下,试求两种加载情况下,AB 杆的伸长。
解 (a )受力分析如图,由C 点平衡可知:3020kNob aa b a b p αs αατF N o N N 0cos30==F F p A A ααo 2oN 03cos30cos 302010330MPa 5004F p A σ==⨯=⨯=αα3o o o N020103sin30cos30sin3017.32MPa 5004F p A ⨯===⨯=αατ-+20kN20kN 20kN ⅠⅡⅢ20kN20kN1m 1m 2m12320N 0N 20N N N N F k F k F k ===-41119624333962011020010100010020221020010100010N N F l L m EA L m F l L m EA ----⨯∆===⨯⨯⨯∆=⨯∆===-⨯⨯⨯⨯4411122244333101010210102L m l mL l L ml mεεε----∆===∆==∆-⨯===-41243100210L m L m L m--∆=∆=∆=-⨯I II III 0.1mm 00.2mm 0.1mm l l l l ∆=∆+∆+∆=+-=-实用标准文档F ’AC=F ’CB=0;由D 点平衡可知: F ’AD=F ’BD=0; 再由A 点的平衡:因此(b )受力分析如图,由C 点平衡可知:再由A 点的平衡:因此2.12 图示结构中,水平刚杆AB 不变形,杆①为钢杆,直径d1=20mm ,弹性模量E1=200GPa ;杆②为铜杆,直径d2=25mm ,弹性模量E2=100GPa 。
材料力学刘德华版课后习题答案word版2.1试求图示杆件各段的轴力,并画轴力图。
f(1)f+fn图30kn50kn20kn(2)+20kn+-fn图10knf10kn15kn15kn20knf10kn5kn-fn图+-10kn30kn-fql40kn(4)40kn(5)q2.2未知题2.1图中各杆的直径d=20mm,f=20kn,q=10kn/m,l=2m,求各杆的最大正应力,并用图形表示正应力沿轴线的变化情况。
l请问(1)63.66mpa,(2)127.32mpa,(3)63.66mpa,(4)-95.5mpa,(5)127.32mpa15kn15kn20kn10kn15.82mpa+-31.85mpa--31.85mpafs图95.5mpa(4)ff127.32mpa+(5)qlfn2?300?103?27.5mpaa220024m2.4一正方形横截面的阶梯柱受力如题2.4图右图。
未知:a=200mm,b=100mm,f=100kn,数等柱的蔡国用,先行排序该柱横截面上的最小正形变。
解:1-1截面和2-2截面的内力为:fn1=-f;ffn2=-3f相应截面的应力为:fn1?100?103?110mpaa110024mff63.69mpafab最大应力为:max10mpa题2.4图2.6钢杆受到轴向外力如图所示,横截面面积为500mm2,试求30aab斜横截面上的形变。
求解:fn=20knbfnfnapα==cos30ofnaaα0fb?α?pαcos30o?ncos230oaa0sαpα20?103330mpaταb50043f20?103ooonτcos30sin3017.32mpaα?pαsin30?a050042.8图示钢杆的横截面内积a=1000mm2,材料的弹性模量e=200gpa,试求:(1)各段的轴向变形;(2)各段的轴向线快速反应;(3)杆的总弯曲。
20kn解:轴力图如图所示20kn20knⅲⅰⅱfn1?20kn1m1m2mfn2?0kn20kn+fn3??20kn-fl20?1?420kn?l1?n11??10m9?6ea200?10?1000?10?l2?0mfn3l320?2?4?l2?10m39?6ea2 00?10?1000?10?l110?4m?4?410?l?10m11l11ml20ml220l2l32104ml32104m3104l32mlliliiliii0.1mm00.2mm0.1mm2.10图示结构中,五根杆的抗拉刚度均为ea,杆ab长为l,abcd是正方形。
第 3 章扭转思考题3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力偶矩)称为扭矩。
对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。
用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。
3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件是什么?答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力⎜,因为筒壁的厚度 ™很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。
又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公式;在圆轴两端施加一对大小相等、方向相反的外力偶。
从实验中观察到的现象,假设轴变形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。
公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。
3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。
答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。
3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ⎧之间关系。
答剪切胡克定律⎜ = G©(反映角度的变化)与拉伸(压缩)胡克定律 ⎛ = E∑(反映长度的变化)皆为应力与应变成正比关系。
3 个弹性常量E, G, ⎧之间关系为G =E2(1 + ⎧ ) 。
3-5圆轴扭转时如何确定危险截面、危险点及强度条件?答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。
第 3 章扭转思考题3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力偶矩)称为扭矩。
对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。
用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。
3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件是什么?答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力⎜,因为筒壁的厚度 ™很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。
又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公式;在圆轴两端施加一对大小相等、方向相反的外力偶。
从实验中观察到的现象,假设轴变形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。
公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。
3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。
答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。
3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ⎧之间关系。
答剪切胡克定律⎜ = G©(反映角度的变化)与拉伸(压缩)胡克定律 ⎛ = E∑(反映长度的变化)皆为应力与应变成正比关系。
3 个弹性常量E, G, ⎧之间关系为G =E2(1 + ⎧ )。
3-5圆轴扭转时如何确定危险截面、危险点及强度条件?答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。
材料力学简明教程(景荣春)课后答案第五章5-1 最大弯曲正应力是否一定发生在弯矩值最大的横截面上?答不一定。
最大弯曲正应力发生在弯矩与弯曲截面系数比值最大的横截面上。
5-2 矩形截面简支梁承受均布载荷q作用,若梁的长度增加一倍,则其最大正应力是原来的几倍?若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的几倍?答若梁的长度增加一倍,则其最大正应力是原来的4倍;若截面宽度缩小一倍,高度增加一倍,则最大正应力是原来的1/2倍。
5-3 由钢和木胶合而成的组合梁,处于纯弯状态,如图。
设钢木之间胶合牢固不会错动,已知弹性模量EsEw,则该梁沿高度方向正应力分布为图a,b,c,d中哪一种。
思考题5-3图答(b)5-4 受力相同的两根梁,截面分别如图,图a中的截面由两矩形截面并列而成(未粘接),图b中的截面由两矩形截面上下叠合而成(未粘接)。
从弯曲正应力角度考虑哪种截面形式更合理?思考题5-4图答(a)5-5从弯曲正应力强度考虑,对不同形状的截面,可以用比值理性和经济性。
比值请从W来衡量截面形状的合AW较大,则截面的形状就较经济合理。
图示3种截面的高度均为h,A W的角度考虑哪种截面形状更经济合理?A思考题5-5图答(c)5-6 受力相同的梁,其横截面可能有图示4种形式。
若各图中阴影部分面积相同,中空部分的面积也相同,则哪种截面形式更合理?思考题5-6图答(b)(从强度考虑,(b),(c)差不多,从工艺考虑,(b)简单些)*FSSz5-7 弯曲切应力公式τ=的右段各项数值如何确定?Izb答FS为整个横截面上剪力;Iz为整个横截面对中性轴的惯性矩;b 为所求切应力所在位置横截面的宽度;Sz为横截面上距中性轴为y(所求切应力所在位置)的横线以下面积(或以上面积)对中性轴静矩的绝对值。
5-8 非对称的薄壁截面梁承受横向力作用时,怎样保证只产生弯曲而不发生扭转变形?答使梁承受的横向力过弯曲中心,并与形心主惯性轴平行。
2023工程力学简明教程(景荣春著)课后习题答案下载工程力学简明教程(景荣春著)课后答案下载工程力学简明教程图书详细信息:印次:1-1装帧:平装印刷日期:-12-17工程力学简明教程(景荣春著):图书信息点击此处下载工程力学简明教程(景荣春著)课后答案工程力学简明教程(景荣春著):目录第1篇静力学第1章静力学公理和物体的受力分析51.1 静力学基本概念51.2 静力学公理61.3 约束和约束反力91.4 物体的受力分析13__小结18思考题19习题20第2章平面力系222.1 平面汇交力系222.1.1 平面汇交力系合成与平衡的几何法22 2.1.2 平面汇交力系合成与平衡的解析法25 2.2 力对点之矩282.3 平面力偶系292.4 平面任意力系352.4.1 力线平移定理352.4.2 平面任意力系的简化362.4.3 平面任意力系的平衡392.5 物体系统的平衡432.6 平面简单桁架的内力计算452.7 考虑摩擦的平衡问题482.7.1 滑动摩擦492.7.2 摩擦角与自锁现象512.7.3 考虑滑动摩擦的物体平衡问题52 __小结55思考题56习题58习题答案63第3章空间力系663.1 空间汇交力系663.2 力对点的矩和力对轴的矩693.3 空间力偶系723.4 空间任意力系743.5 重心78__小结83思考题84习题85习题答案87第2篇材料力学第4章材料力学的基本概念914.1 材料力学的任务914.2 变形固体的基本假设924.3 内力截面法和应力的概念934.4 位移与应变的概念964.5 杆件变形的基本形式97__小结100思考题101习题101习题答案103第5章拉伸、压缩与剪切1045.1 轴力及轴力图1055.2 轴向拉伸、压缩时的应力1075.2.1 轴向拉伸、压缩时横截面上的正应力107 5.2.2 轴向拉伸、压缩时斜截面上的应力110 5.3 轴向拉伸、压缩时材料的力学性能1125.3.1 轴向拉伸时材料的力学性能1125.3.2 轴向压缩时材料的力学性能1165.4 轴向拉伸、压缩时的强度计算1175.5 轴向拉伸、压缩时的变形1215.6 拉伸、压缩超静定问题1245.7 应力集中的概念1285.8 连接件的实用强度计算1295.8.1 剪切实用强度计算1305.8.2 挤压实用强度计算132__小结135思考题137习题138习题答案144第6章扭转1466.1 外力偶矩的计算扭矩及扭矩图147 6.2 薄壁圆筒的扭转1506.2.1 薄壁圆筒扭转时的切应力1506.2.2 切应力互等定理1526.2.3 剪切胡克定律1526.3 圆轴扭转时的应力和强度计算153 6.3.1 圆轴扭转时横截面上的切应力153 6.3.2 圆轴扭转时强度计算1566.4 圆轴扭转时的变形和刚度计算159 6.4.1 圆轴扭转时的变形1596.4.2 圆轴扭转时的刚度计算1596.5 圆轴扭转时的超静定问题162__小结163思考题165习题165习题答案167第7章弯曲1697.1 平面弯曲梁的.计算简图1717.2 梁的剪力与弯矩剪力图与弯矩图1727.2.1 剪力与弯矩1727.2.2 剪力方程与弯矩方程剪力图与弯矩图1767.2.3 剪力、弯矩和分布荷载集度间的微分关系181 7.2.4 按叠加原理作梁的弯矩图1877.2.5 平面刚架和曲杆的内力图1897.3 梁的正应力和强度计算1917.3.1 梁的正应力1917.3.2 梁的正应力强度条件1967.4 梁的切应力和强度计算2007.4.1 梁的切应力2007.4.2 梁的切应力强度计算2047.5 提高梁弯曲强度的措施2077.6 梁的变形和刚度计算2117.6.1 挠曲线近似微分方程2117.6.2 用积分法求梁的挠度和转角2137.6.3 用叠加法求梁的挠度和转角2197.6.4 梁的刚度计算和提高梁弯曲刚度的措施223 7.7 简单超静定梁224__小结227思考题229习题229习题答案238第8章应力状态和强度理论2408.1 应力状态的概念2408.2 二向应力状态2428.2.1 二向应力状态的解析法2428.2.2 二向应力状态的图解法2488.3 三向应力状态2528.4 广义胡克定律2548.5 强度理论及其应用2568.5.1 材料的破坏形式2568.5.2 常用的强度理论及其应用257__小结261思考题262习题263习题答案265第9章组合变形的强度计算2679.1 拉伸(压缩)与弯曲的组合2689.2 扭转与弯曲的组合2729.3 两相互垂直平面内的弯曲275__小结279思考题280习题281习题答案285第10章压杆稳定28610.1 压杆稳定的概念28610.2 细长压杆的临界力28810.2.1 两端铰支细长压杆的临界力28810.2.2 其他支座条件下细长压杆的临界力28910.3 压杆的临界应力及临界应力总图291 10.3.1 细长压杆的临界应力29110.3.2 临界应力总图29210.4 压杆的稳定计算29510.5 提高压杆稳定性的措施298__小结298思考题299习题300习题答案302附录A 截面的几何性质303A.1 形心与静矩303A.2 惯性矩和惯性积305A.3 平行移轴公式307A.4 主轴与主惯性矩的概念309思考题311习题311习题答案312附录B 梁在简单荷载作用下的变形314附录C 型钢表317表C-1 热轧等边角钢(GB 9787-1988)317 表C-2 热轧不等边角钢(GB 9788-1988)323 表C-3 热轧槽钢(GB 707-1988)328表C-4 热轧工字钢(GB 706-1988)331。