不等式(组)的解法及不等式的应用
- 格式:doc
- 大小:109.00 KB
- 文档页数:14
二元一次不等式组的解法与应用一、引言二元一次不等式组是数学中常见的问题之一,对于解不等式组以及应用于实际问题中具有重要的意义。
本文将介绍二元一次不等式组的解法,并探讨其在实际问题中的应用。
二、二元一次不等式组的解法要解决二元一次不等式组,我们可以通过图像法、代数法和线性规划法等多种方法。
接下来将详细介绍这些方法。
1. 图像法图像法是一种直观的解决二元一次不等式组的方法。
我们可以将每个不等式都转化为一个直线,并找出其解集的交集区域。
通过观察这个交集区域,我们可以得到不等式组的解。
2. 代数法代数法是一种基于代数运算的解决方法。
首先,我们需要将二元一次不等式组进行标准化,即将所有不等式移项并合并同类项。
然后,我们可以通过消元法或代入法来求解。
3. 线性规划法线性规划法是一种用于求解有约束条件的优化问题的方法,也可以应用于解决二元一次不等式组。
我们可以将不等式组转化为线性规划模型,并利用线性规划的理论和算法求解。
三、二元一次不等式组的应用二元一次不等式组在实际生活中有着广泛的应用。
以下是几个常见的例子。
1. 经济学中的应用在经济学中,我们经常会遇到一些涉及资源分配和约束条件的问题。
通过建立二元一次不等式组模型,可以帮助我们解决这些问题。
比如,某企业要通过生产两种产品来最大化利润,但存在资源限制和市场需求的约束,我们可以将这些条件转化为不等式组,并求解最优解。
2. 几何学中的应用几何学中的一些问题也可以通过二元一次不等式组来解决。
比如,某个区域内有一定数量的点,我们想要找到一个点,使得它到这些点的总距离最小。
我们可以将该问题转化为不等式组,并利用解不等式组的方法求解最优解。
3. 生活中的实际问题除了学科领域,二元一次不等式组也经常出现在我们的日常生活中。
比如,我们需要在一定的时间和金钱限制下,找到合适的方式安排旅行行程,或者在购物时选择最优的价格和质量。
通过建立二元一次不等式组模型,我们可以帮助解决这些实际问题。
不等式组的解法与不等式优化不等式是数学中重要的概念,广泛应用于各个领域。
在代数学中,不等式组的解法及不等式优化是一项重要的研究内容。
本文将介绍不等式组的解法和不等式优化的方法和技巧。
一、不等式组的解法不等式组是由一组不等式组成的方程组。
解决不等式组的关键是确定不等式组的可行解集,即满足所有不等式的解的集合。
下面将介绍两种常见的不等式组解法。
1. 图像法图像法是通过图像的方法来解决不等式组的问题。
首先,将每个不等式表示为一条直线或曲线,并标记出不等式的方向。
然后,通过几何方法确定满足所有不等式的解的区域。
最后,确定可行解集。
例如,考虑以下不等式组:① 2x + 3y ≤ 12② 4x - 5y ≥ 10将不等式①表示为直线2x + 3y = 12,并在直线下方标记不等式的方向;将不等式②表示为直线4x - 5y = 10,并在直线上方标记不等式的方向。
通过观察交集区域,找到满足两个不等式的解的区域,确定可行解集。
2. 代入法代入法是通过代入变量的具体值来解决不等式组的问题。
首先,选取一个不等式,将其他不等式的变量表示为该不等式变量的函数。
然后,将该函数代入其他不等式中,得到只含有一个变量的不等式。
最后,解决这个只含有一个变量的不等式,得到解。
例如,考虑以下不等式组:① x + y ≤ 5② 2x - y ≥ 1选取不等式①,将不等式②的y表示为x的函数,得到y = 2x - 1。
将该函数代入不等式①中,得到x + (2x - 1) ≤ 5。
解决这个只含有一个变量x的不等式,得到x ≤ 2。
将x的解代入y = 2x - 1,得到y ≤ 3。
因此,可行解集为x ≤ 2,y ≤ 3。
二、不等式优化不等式优化是在一定的约束条件下,寻找不等式的最优解的过程。
在数学建模、最优化等领域中有广泛应用。
下面将介绍两种常见的不等式优化方法。
1. 拉格朗日乘子法拉格朗日乘子法是优化问题中常用的方法之一,基于拉格朗日函数的构造。
等式与不等式的解法与应用知识点总结等式与不等式是数学中非常基础且重要的概念,它们在解数学问题、推导理论以及应用实践中都起到了至关重要的作用。
本文将对等式与不等式的解法以及其在实际问题中的应用进行知识点总结。
一、等式的解法1. 一元一次方程:一元一次方程是指只有一个未知数,并且未知数的最高次数为1的方程。
解一元一次方程可以使用基本的代数运算法则,如加减乘除等。
常用的解法有加减消元法、变量相消法、代入法等。
2. 二元一次方程组:二元一次方程组是指有两个未知数的方程组,并且每个方程中未知数的最高次数为1。
解二元一次方程组可以使用消元法、代入法、加减消元法等解法。
3. 二次方程:二次方程是指未知数的最高次数为2的方程。
解二次方程可以使用配方法、求根公式、完全平方式等。
其中,求根公式为:x=(-b±√(b^2-4ac))/2a。
4. 分式方程:分式方程是指方程中带有分式的方程。
解分式方程需要将方程中的分式进行通分,并使用合适的解方程方法进行求解。
二、不等式的解法1. 一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。
解一元一次不等式需要注意不等号的变换规则,可使用类似于解等式的代数运算法则进行解答。
2. 一次不等式组:一次不等式组是指含有多个一次不等式的方程组。
解一次不等式组可以使用区间法、图解法等。
区间法是将不等式右边等式化,然后通过判断不等式的符号来确定解集的范围。
3. 二次不等式:二次不等式是指未知数的最高次数为2的不等式。
解二次不等式需要根据二次不等式的形式和条件来判断解集的范围,可以通过求根、图像、区间等方法进行求解。
4. 绝对值不等式:绝对值不等式是指方程中含有绝对值的不等式。
解绝对值不等式需要考虑绝对值的定义和性质,可通过分情况讨论、画图等方法进行求解。
三、应用知识点总结1. 线性规划:线性规划是一种优化问题,它将问题转化为目标函数和约束条件下的最大值或最小值求解。
不等式组1. 引言不等式组是数学中一个重要的概念,它由一组不等式组成。
不等式是数学中用于描述数值之间大小关系的工具,而不等式组则可以用于描述多个数值之间的复杂关系。
本文将介绍不等式组的定义、解法以及其在应用中的一些常见场景。
2. 不等式组的定义不等式组是由多个不等式组成的集合,每个不等式可以是大于(>)、小于(<)、大于等于(≥)或小于等于(≤)等符号连接的数学表达式。
一个不等式组的一般形式可表示为:{不等式1,不等式2,...不等式n}其中,每个不等式可以包含一或多个变量,表示了变量之间的大小关系,或者变量与常数之间的关系。
3. 不等式组的解法不等式组的解是使得每个不等式都成立的变量的取值范围。
要解决一个不等式组,可以通过以下步骤进行:- 确定每个不等式中的变量个数和类型。
- 找到每个不等式中变量的取值范围。
可以通过移项、合并同类项、因式分解等方法将不等式转化为形式更简单的不等式。
- 根据不等式符号的特性进行取值范围的确定。
例如,对于大于(>)或小于(<)的不等式,变量的取值范围应排除等号右侧的值;对于大于等于(≥)或小于等于(≤)的不等式,变量的取值范围应包括等号右侧的值。
- 根据每个不等式的取值范围求解整个不等式组的解。
可以通过求交集或并集的方式得到最终的解集。
4. 不等式组的表示方法不等式组可以用不等式图形表示法、解集表示法或区间表示法来表示,具体的表示方式取决于问题的要求和解的形式。
不等式图形表示法是通过绘制每个不等式的图形并表示它们的交集或并集来表示不等式组。
解集表示法是通过写出每个不等式的解集并表示它们的交集或并集来表示不等式组。
区间表示法是用数轴上的区间表示不等式组的解集。
5. 不等式组的应用不等式组在实际问题中具有广泛的应用。
以下是一些常见的应用场景:- 经济领域:不等式组可以用于描述供需关系、利润最大化问题等经济学中的问题。
- 工程领域:不等式组可以用于描述工程中的约束条件,如最大承载能力、最短路径等。
一元一次不等式(组)应用题类型及解答1.分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
3、把若干颗花生分给若干只猴子.如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数.6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。
甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。
③就学生数x讨论哪家旅行社更优惠。
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。
不等式与不等式组在数学中,不等式是描述数之间关系的一种表达方式。
不等式可以用于求解线性方程组、判断函数的增减性以及解决许多实际问题。
本文将介绍不等式及不等式组的概念、性质和解法。
1. 不等式的定义和性质不等式是用符号>、<、≥或≤表示数值之间相对大小关系的数学表达式。
其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。
例如,对于两个实数a和b,若a>b,则称a大于b,记作a>b。
不等式满足如下的性质:(1)传递性:如果a>b,b>c,那么a>c。
(2)反对称性:如果a>b且b>a,那么a=b。
(3)加法性:如果a>b,那么a+c>b+c,其中c为任意实数。
(4)乘法性:如果a>b且c>0,那么ac>bc。
2. 不等式的解法要求解一个不等式,需要确定不等式的解集。
解集是满足不等式条件的所有的实数集合。
(1)一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解一元一次方程相类似。
例如,对于不等式2x+3<7,我们可以按照如下步骤解题:2x+3<72x<4x<2因此,解集为x<2。
(2)一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的方法与解一元二次方程相类似。
例如,对于不等式x^2-5x+6>0,我们可以按照如下步骤解题:(x-2)(x-3)>0根据零点的性质,我们可以得出两个解为x<2或x>3。
(3)不等式组的解法不等式组是由多个不等式组成的方程组。
解不等式组的方法与解方程组类似,需要找到所有满足所有不等式条件的解。
例如,考虑以下不等式组:x+y>32x-y<2我们可以通过图像法或代入法求解不等式组。
最终我们得到解集为x>1,y>2。
3. 不等式的应用不等式在实际问题中有着广泛的应用。
2020年中考数学必考经典题(江苏版)专题05 不等式(组)的解法与应用问题【方法指导】1.不等式性质:不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.2. 用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.4. 一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.5.不等式(组)的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.6.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【题型剖析】【类型1】不等式的性质【例1】(2019•昆山市二模)若x y<,则下列结论正确的是()A.1133x y->-B.22x y>C.11x y->-D.22x y<【变式1-1】(2019•滨湖区一模)若m n>,则下列各式中一定成立的是()A.22m n->-B.55m n-<-C.22m n->-D.44m n<【变式1-2】(2019•无锡模拟)下列不等式变形正确的是()A.由a b>,得22a b-<-B.由a b>,得||||a b>C.由a b>,得22a b-<-D.由a b>,得22a b>【变式1-3】(2018•无锡模拟)已知实数a、b,若a b>,则下列结论正确的是() A.55a b-<-B.22a b+<+C.33a b->-D.33a b>【类型2】解一元一次不等式(组)【例2】(2019•建湖县二模)解不等式221123x x+-+,并把它的解集在数轴上表示出来:【变式2-1】(2019•扬州一模)解不等式:122123x x-+-.【变式2-2】(2019•姑苏区校级二模)解不等式组3811223x xx x-<⎧⎪++⎨⎪⎩【变式2-3】(2019•玄武区二模)如图,在数轴上点A、B、C分别表示1-、23x-+、1x+,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当2AB BC=时,x的值为.【类型3】:不等式(组)的整数解【例3】(2019•天宁区校级二模)已知关于x的不等式组521xx a--⎧⎨->⎩有3个整数解,则a的取值范围是.【变式3-1】(2019•建邺区校级二模)若关于x的不等式组21312xx m+⎧+>-⎪⎨⎪<⎩的所有整数解的和是7-,则m的取值范围是.【变式3-2】(2019•南召县二模)已知关于x的不等式组321x ax-⎧⎨--⎩的整数解共有5个,则a的取值范围是.【变式3-3】(2018•海门市模拟)关于x的不等式组10x mx-<⎧⎨+>⎩恰有3个整数解,则实数m的取值范围为【类型4】:不等式的应用【例4】(2019•姑苏区校级二模)某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,若要保证获利不低于1000元,则甲商品最多能购进多少件?【变式4-1】(2019•高邮市二模)某校举办园博会知识竞赛,打算购买A、B两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.(1)A,B两种奖品每件各多少元?(2)若购买A、B奖品共100件,总费用不超过600元,则A奖品最多购买多少件?【变式4-2】(2019•镇江一模)某旗舰网店用8000元购进甲、乙两种口罩,全部销售完后一共获利2800元,进价和售价如下表:品名价格甲种口罩乙种口罩进价(元/袋)2025售价(元/袋)2635(1)该店购进甲、乙两种口罩各多少袋?(2)该店再次以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若这次购进的两种口罩均销售完毕,且本次销售一共获利不少于3680元,那么乙种口罩每袋最多让利多少元?【类型5】:不等式组的应用【例5】(2019•昆山市二模)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,用于此次购球的总资金不低于5400元,且不超过5500元,求本次购球方案.【变式5-1】(2019•常熟市二模)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【变式5-2】(2019•太仓市模拟)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【变式5-3】(2018•海州区一模)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a270500元a 70餐椅110已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?【达标检测】一.选择题(共8小题)1.(2019•镇江)下列各数轴上表示的x的取值范围可以是不等式组的解集的是()2.(2019•宿迁)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个3.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.74.(2018•无锡)若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A.6≤m≤9 B.6<m<9 C.6<m≤9 D.6≤m<95.(2018•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.D.a2<b26.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a的取值范围为()A.1<a≤2 B.1<a<2 C.1≤a<2 D.1≤a≤27.(2019•西藏)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人8.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.4二.填空题(共6小题)9.(2019•淮安)不等式组的解集是.10.(2019•泰州)不等式组的解集为.11.(2018•扬州)不等式组的解集为.12.(2019•丹东)关于x的不等式组的解集是2<x<4,则a的值为.13.(2019•莱芜区)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)14.(2019•玉林)设01,则m,则m的取值范围是.三.解答题(共8小题)15.(2019•南通)解不等式x>1,并在数轴上表示解集.16.(2019•常州)解不等式组并把解集在数轴上表示出来.17.(2019•扬州)解不等式组,并写出它的所有负整数解.18.(2019•盐城)解不等式组:19.(2018•无锡)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?20.(2018•南通)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次 2 1 55第二次 1 3 65 根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.21.(2019•抚顺)为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉2m2,乙种花卉3m2,共需430元;种植甲种花卉1m2,乙种花卉2m2,共需260元.(1)求:该社区种植甲种花卉1m2和种植乙种花卉1m2各需多少元?(2)该社区准备种植两种花卉共75m2且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?22.(2019•莱芜区)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?。
第4节 不等式(组)的解法及不等式的应用(建议答题时间:60分钟)基础过关1. (2017株洲)己知实数a 、b 满足a +1>b +1,则下列选项可能错误的是( ) A. a >b B. a +2>b +2 C. -a <-b D. 2a >3b2. (2017眉山)不等式-2x >12的解集是( ) A. x <-14 B. x <-1 C. x >-14 D. x >-13. (2017安徽)不等式4-2x >0的解集在数轴上表示为( )4. (2017益阳)如图表示下列四个不等式组中其中一个的解集,这个不等式组是( )第4题图A. ⎩⎨⎧x ≥2x >-3B. ⎩⎨⎧x ≤2x <-3C. ⎩⎨⎧x ≥2x <-3D. ⎩⎨⎧x ≤2x >-35. (2017湖州)一元一次不等式组⎩⎪⎨⎪⎧2x >x -112x ≤1的解是( )A. x >-1B. x ≤2C. -1<x ≤2D. x >-1或x ≤26. (2017山西)将不等式组⎩⎨⎧2x -6≤0x +4>0的解集表示在数轴上,下面表示正确的是( )7. (2017遵义)不等式6-4x ≥3x -8的非负整数解有( ) A. 2个 B. 3个 C. 4个 D. 5个8. (2017金华)若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x <m 的解是x <5,则m的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <59. (2017百色)关于x 的不等式组⎩⎨⎧x -a ≤02x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 23 10. (2017上海)不等式组⎩⎨⎧2x >6x -2>0的解集是________.11. (2017龙东)若关于x 的一元一次不等式组⎩⎨⎧x -a >01-x >x -1无解,则a 的取值范围是________.12. (2017通辽)不等式组⎩⎪⎨⎪⎧2x +1>-12x -13≥x -1的整数解是________.13. (2017牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.14. (2017烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,第14题图若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是________. 15. (2017宜宾)若关于x 、y 的二元一次方程组⎩⎨⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是________.16. (2017绍兴)解不等式:4x +5≤2(x +1).17. (2017黄冈)解不等式组:⎩⎪⎨⎪⎧3x -5<-2x 3x +22≥1.18. (2017北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7x +103>2x .19. (2017宁夏)解不等式组:⎩⎪⎨⎪⎧3x +6≥5(x -2)x -52-4x -33<1.20. (2017甘肃)解不等式组⎩⎪⎨⎪⎧12(x -1)≤11-x <2,并写出该不等式组的最大整数解.21. (2017长沙)解不等式组⎩⎨⎧2x ≥-9-x ,5x -1>3(x +1),并把它的解集在数轴上表示出来.第21题图22. (2017呼和浩特)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.23. 关注国家政策(2017广西四市联考)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?24. (2017绥化)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25. (2017泰安)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?满分冲关1. 如果关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,且关于x 的不等式组⎩⎨⎧2x +3>9x -m <0无解,那么符合条件的所有整数m 的个数为( ). A. 2 B. 3 C. 4 D. 52. (2017重庆九龙坡区适应考试)已知关于x 的不等式组⎩⎨⎧5x -a <7-2-x <0只有2个非负整数解,且关于x 的分式方程a -6x -1+a =2有整数解,则所有满足条件的整数a 的值的个数为( )A. 5B. 4C. 3D. 23. (2017重庆一中一模)从1,2,3,4,5,6这6个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组⎩⎨⎧x +1<a 3x +4≤4x 无解,且使关于x 的分式方程2x -ax -2=12的解为非负数,那么这6个数中所有满足条件的a 的值之积是( )A. 6B. 24C. 30D. 1204. (2017重庆育才三模)2018年俄罗斯世界杯亚洲区12强赛A组第8轮比赛于2017年6月13日进行,中国国家队将客场挑战叙利亚队,“爱我中华”球迷协会准备到现场为中国队加油助威,并计划购买A、B两种球票共600张.(1)若A种票的数量不少于B种票的4倍,求至少购买多少张A种票;(2)“爱我中华”球迷协会从销售处得知,由于团体购票有一定优惠,本场比赛的球票以统一价格(m+80)元出售给该协会,由于路途遥远,部分球迷放弃现场看球的计划,协会最后购买的票数在原计划的基础上减少(m+5)%,购票总共用去45600元,求m的值(m>0).5. (2017重庆南开阶段测试一)1月份,A型汽油均价为5.7元/升,B型汽油均价为6元/升,某汽车租赁公司购买这两种型号的汽油共支付40800元;2月份,这两种型号的汽油均价都上调了0.6元/升,该公司要购买与1月份A型汽油和B 型汽油数量都相同的汽油就需多支付费用.(1)若多支付的费用不超过4200元,那么该公司1月或2月最多可购买A型汽油多少升?(2)3月份,该公司A型汽油的购买量在(1)小题中2月份最多购买量的基础上减少了m%,但A型汽油的均价在2月份的基础上上调了m10元,因此3月份支付A种型号汽油的费用与(1)小题中2月份支付最多数量A型汽油的费用相同,求m 的值.6. (2017重庆大渡口区二模)某文具店分别以每本5元和6元的价格一次性购进了A、B两种笔记本各若干本,共用去了1960元,A种笔记本按每本获利60%的价格销售,B种笔记本每本售价是A种笔记本每本售价的54倍,经过一段时间后,这两种笔记本都销售完毕,经统计,销售这两种笔记本共获利1240元.(1)该文具店此次购进的A、B两种笔记本各多少本?(2)调查市场需求后,该文具店又以上次相同的价格购进了相同数量的A、B两种笔记本.由于市场原因,该文具店调整了这两种笔记本的销售单价,A种笔记本每本售价下调了a%,B种笔记本售价上调了34a%,若要求销售完这些笔记本后的利润不低于1200元,求a的最大值.7. (2017重庆西大附中月考)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…,最近的网红非“共享单车”莫属,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步,共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷,某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.答案基础过关1. D2. A3. D4. D5. C 【解析】不等式组⎩⎪⎨⎪⎧2x>x -1 ①12x ≤1 ②,解不等式①得x >-1,解不等式②得x ≤2,所以不等式组的解集为-1<x ≤2.6. A 【解析】解不等式2x -6≤0,得x ≤3,解不等式x +4>0,得x >-4,∴不等式组的解集为-4<x ≤3,解集在数轴上表示为选项A .7. B 【解析】解不等式得x ≤2,则非负整数解有0,1,2,共3个. 8. A 【解析】解不等式2x -1>3(x -2),得x <5,根据不等式组的解集为x <5,利用同小取小可知m ≥5.9. B 【解析】∵不等式组的解集为-3a2<x ≤a ,该解集中至少有5个整数解,所以a 比-3a 2至少大5,即 a ≥-3a2+5,解得a ≥2,所以a 的最小值是2. 10. x >311. a ≥1 【解析】由x -a >0得x >a ,由1-x >x -1得x <1,∴要使不等式组无解,则a ≥1.12. 0,1,2 【解析】⎩⎨⎧2x +1>-1 ①2x -13≥x -1②解不等式①得,x >-1,解不等式②得,x ≤2,∴不等式组的解集为-1<x ≤2,∴不等式组的整数解为0,1,2. 13. 8 【解析】设至多可以打x 折,由题意得,100(1+50%)x -100≥100×20%,化简得,150x ≥120,x ≥80%.则至多可以打8折.14. x <8 【解析】根据程序,可得不等式3x -6<18,解得x <8.15. m >-2 【解析】将两方程等号两边分别相加,得2x +2y =2m +4,∴x +y =m +2,∵x +y >0,∴m +2>0,∴m >-2.16. 解:去括号得4x +5≤2x +2,移项,合并同类项,得2x ≤-3, 解得x ≤-32.17. 解:解不等式3x -5<-2x ,移项得3x +2x <5, 合并同类项得5x <5, 解得x <1, 解不等式3x +22≥1,不等式两边同乘以2得3x +2≥2, 合并同类项得3x ≥0, 解得x ≥0,∴原不等式组的解集为0≤x <1. 18. 解:解不等式2(x +1)>5x -7, 去括号得2x +2>5x -7, 移项、合并同类项得-3x >-9, 解得x <3.解不等式x +103>2x , 去分母得x +10>6x .移项、合并同类项得10>5x , 解得x <2.∴不等式组的解集为x <2.19. 解:令⎩⎪⎨⎪⎧3x +6≥5(x -2) ①x -52-4x -33<1 ②,由①得x ≤8, 由②得x >-3,∴不等式组的解集为-3<x ≤8. 20. 解:解不等式12(x -1)≤1.得x ≤3, 解不等式1-x <2,得x >-1, 则不等式组的解集是-1<x ≤3, ∴该不等式组的最大整数解为x =3. 21. 解:解不等式2x ≥-9-x ,得x ≥-3, 解不等式5x -1>3(x +1),得x >2,∴不等式组的解集为x>2.其解集在数轴上表示如解图:第21题解图22. 解:(1)当m=1时,原不等式可变形为2-x2>x2-1,去分母得2-x>x-2,移项、合并同类项得2x<4,∴x<2.(2)解不等式2m-mx2>12x-1,移项、合并同类项2m-mx>x-2,(m+1)x<2(m+1)当m≠-1时,原不等式有解;当m>-1时,原不等式的解集为x<2;当m<-1时,原不等式的解集为x>2.23. 解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x. 根据题意得,7500(1+x)2=10800,解得x=0.2=20%或x=-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%.(2)2016年的人均借阅量为:10800÷1350=8(本).根据题意得,8(1+a%)×1440-1080010800≥20%,解得a≥12.5.答:a的值至少是12.5.24. 解:(1)设乙工程队每天修路x千米,则甲工程队每天修路(x+0.5)千米,根据题意列方程15x=1.5×15x+0.5,解得x=1,答:甲工程队每天修路1.5 千米,乙工程队每天修路1千米.(2)设甲工程队修m天,余下的工程由乙工程队修,由两个工程队修路总费用不超过5.2万元,可列不等式为0.5m +15-1.5m 1×0.4≤5.2,化简得0.5m +6-0.6m ≤5.2,解得m ≥8, 答:甲工程队至少修8天,这样总费用不超过5.2万元.25. 解:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元, 则⎩⎨⎧200x +200y =8000y -x =20,解得⎩⎨⎧x =10y =30. ∴大樱桃进价为30元/千克,小樱桃进价为10元/千克,200×[(40-30)+(16-10)]=3200(元),答:大樱桃和小樱桃的进价分别是每千克30元和每千克10元,销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,由题意可得,(1-20%)×200×16+200a -8000≥3200×90%,解得a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.满分冲关1. C 【解析】∵关于x 的方程x 2-(2m -1)x +m 2-3m =0有实数根,∴[-(2m-1)]2-4(m 2-3m )=8m +1≥0,∴m ≥-18;解不等式组⎩⎨⎧2x +3>9x -m <0得x <m 且x >3,又∵关于x 的不等式组无解,∴m ≤3.则m 的取值范围是-18≤m ≤3,满足条件的整数有0,1,2,3共4个.2. C 【解析】解不等式组⎩⎨⎧5x -a <7-2-x <0得-2<x <a +75,∵该不等式组只有2个非负整数解,∴1<a +75≤2,即-2<a ≤3,解分式方程a -6x -1+a =2,得x =4a -2,∵分式方程的解为整数,∴a 可取0,1,3,共3个数.3. C 【解析】解不等式组⎩⎨⎧x +1<a 3x +4≤4x得,4≤x <a -1,要使其无解,则a -1≤4,即a ≤5;解分式方程2x -a x -2=12,得x =2a -23,∵x 为非负数,∴2a -2≥0,解得a ≥1,又∵x ≠2,解得a ≠4,综上1≤a ≤5且a ≠4,∴这6个数中,满足条件的a 值有1,2,3,5,它们之积为1×2×3×5=30.4. 解:(1)设购买x 张A 种票,则购买B 种票(600-x )张,由题意得,x ≥4(600-x ),解得x ≥480,∴至少购买480张A 种票.(2)由题意得(m +80)×[1-(m +5)%]×600=45600,解得m 1=15,m 2=0(舍去),∴m 的值为15.答:m 的值为15.5. 解:(1)设1月份可购买A 型汽油x 升,则1月份购买B 型汽油的升数为:40800-5.7x 6=(6800-0.95x )升, 由题意得,0.6x +0.6(6800-0.95x )≤4200,解得,x ≤4000,答:该公司1月或2月最多可购买A 型汽油4000升.(2)由题意可列方程,4000(1-m %)×(5.7+0.6+m 10)=4000×(5.7+0.6),即4000(1-m %)×(6.3+m 10)=4000×6.3,解得m 1=37,m 2=0(舍去),∴m 的值为37.答:m 的值为37.6. 解:(1)设购买A 种笔记本x 本,B 种笔记本y 本,由题意得,⎩⎪⎨⎪⎧5x +6y =1960,5×60%x +[5×(1+60%)× 54-6]y =1240. 解得⎩⎨⎧x =200y =160. 答:购买A 种笔记本200本,B 种笔记本160本.(2)A 原售价为5(1+60%)=8(元),B 原售价为8×54=10(元),由题意得,200×8(1-a %)+160×10(1+34a %)-1960≥1200.解得a ≤10.答:a 的最大值为10.7. 解:(1)设一月份该公司投入市场的自行车有x 辆, 则7500-1200x≤1-10%, 解得x ≥7000,答:一月份该公司投入市场的自行车至少有7000辆.(2)由题意得[7500(1-20%)+1200×(1+4a %)]⎝ ⎛⎭⎪⎫1-14a%=7752, 设a %=x ,原方程可化为50x 2-125x +23=0, 解得x 1=2.3(舍去),x 2=0.2,由a %=0.2,得a =20.答:a 的值为20.。