大学物理(吴百诗)习题答案1质点运动学
- 格式:doc
- 大小:260.00 KB
- 文档页数:3
习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)101(3)01(21)01(32ji ⎥⎦⎤⎢⎣⎡-+--=(3) (4) (5) (6) 1-2 =v c t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++=将t =3s 代入证)sm (45)sm (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααx y tg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆(4) 1-41-5 g)(25m/s1047.280.13600101600223≈⨯=⨯⨯==t v a基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---=(2) .对应于t 13.184.122212120-=-="t t v ∆m /s )(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v sh s tl hl l ts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d dd d s v h t l v hl l lt va -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动. 1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωgr n gr1-9 物体A 下降的加速度(如图所示)为222m/s 2.04.022=⨯==h a在1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-=由此得s 59.02.18.95.1220=-⨯=-=ag h t而小球相对地面下落的距离为2021gt t v h +=259.08.92159.06.0⨯⨯+⨯=m 06.2= 1-11风地vb )两图中风地v应是同一矢量.1-12 (1) vLv L t 22==(2) 22212uv vL uv L uv L t t t -=++-=+=1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v L v L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v+=',则22uv V -='.习题1-12图习题1-11图2221222⎪⎭⎫ ⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V而1212sin sin =⨯=='αβu V船达到BD OB AB 将式(1) (2) 由t =即 c o s α故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333min =⨯=⨯=⨯=s u t π(3) 设l OB =,则ααββsin cos 2sin sin 22u uV Vu D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV Vu u D l'⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα0c o s 2s i n s i n 2222=⎥⎦⎤'-+''+αuV Vu a a uV简化后可得01cos cos 222=+'+-'αuVV u a即 01c o s 613c o s 2=+'-'αa解此方程得32cos ='α︒=='-2.4832cos1α将α'AB。
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
第1章 质点运动学一、选择题 题1.1 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j r i ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t =⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m s22π提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,222r R π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v tg t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴=又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴(2)又S R θ= 316S t R θ==∴ (3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴ 34t S =∴题1.16:解:(1)dv a kv dt ==- 0v tdvkdt v =-∴⎰⎰, 0ln v kt v =-(*)当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由上式:0kt v v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+1()F M m g a M M+==题2.4 :答案:[D] 提示:Ba BTTa A Tmg22A BAB m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos60)()1010m mv m v =+共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)2200112()22mv mv mgh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:θv 0v x v y由机械能守恒得20122mgh mv v gh =⇒= 0sin y v v θ=sin 2Gy Pmgv mg gh θ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k ga== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,MmG r - h=0,x=0,r =∞ 相对值题2.19: 答案:02mg k ,2mg ,0mg k题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx L μμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v Lg μ=-题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
物理学练习§1-1(总1)一、进择题:1. 某质点的运动方程为)(3723SI t t x +-=,则该质点作(A)匀加速直线运动,加速度沿X 轴正方向; (B)匀加速直线运动,加速度沿X 轴负方向; (C)变加速直线运动,加速度沿X 轴正方向;(D)变加速直线运动,加速度沿X 轴负方向。
( )解答:)(3723SI t t x +-= t -t x 2212 d d ==∴v t tva 21 d d -== ( D ) 3. 以下五种运动形式中,a保持不变的运动是(A)单摆的运动; (B)匀速率圆周运动;(C)行星的椭圆轨道运动; (D)抛体运动; (E) 圆锥摆运动。
( )解答:a 为矢量,a 保持不变说明a的大小和方向都不变(A )a 的大小和方向都变 (B )a的大小不变,方向变(C )a 的大小和方向都变 (D )a的大小和方向都不变(E )a的大小不变,方向变 (D )4.对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A)切向加速度必不为零;(B)法向加速度必不为零(拐点处除外);(C)由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零; (D)若物体作匀速率运动,其总加速度必为零;(E)若物体的加速度a为恒矢量,它一定作匀变速率运动。
( )解答:根据t n a a a+=(A )0≠t a说明物体作曲线运动时速度的大小改变,但是匀速率圆周运动的速度大小不变,因此该说法错误。
(B )题目给出物体作曲线运动,说明速度的方向是变化的即0≠n a,因此该说法正确。
(C )物体作曲线运动,速度的方向是变化的, 0≠n a,错误。
(D )物体作曲线运动,速度的方向改变0≠n a ,所以虽然速度的大小不变,即 0=t a ,仍有0≠+=t n a a a,该说法错误。
(E )该说法错误,例如斜抛运动,a是恒量,但做变速率运动。
(B )二、填空题,1.一质点沿X 方向运动,其加速度随时间变化关系为)(24SI t a +=,如果初始时质点的速度0υ为7m ·s -1,则当t为4s 时,质点的速度=υ 米/秒。
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解: kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx -=0 dt e v dx tk t x -⎰⎰=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m处,初速度v 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
运动量1-1质点在xOy 平面内的运动方程为 x =3t ,y =2t 2+3。
求:(1)t =2s 时质点的位矢、速度和加速度;(2)从t =1s 到t =2s 这段时间内,质点位移的大小和方向;(3)1~0s 和2~1s 两时间段,质点的平均速度;(4)写出轨道方程。
解:(1) j t i t r )32(32++=,j t i tr v 43d d +==,j t r a 4d d 22==s 2=t 时,j i r116+=,j i v 83+=,j a 4=(2) j i j i j i r r r 63)53()116(12+=+-+=-=∆,456322=+=∆r,与x 轴正向的夹角 ︒==4.6336arctan θ(3) j i j j i t r r v 2313)53(1011+=-+=∆-=,j i j i t r r v 631632122+=+=∆-= (4) 3x t =,39233222+=+⎪⎭⎫⎝⎛=x x y 1-2一质点在xOy 平面内运动,初始时刻位于x =1m ,y =2m 处,它的速度为v x=10t , v y= t 2。
试求2秒时质点的位置矢量和加速度矢量。
解:t tx v x 10d d ==,⎰⎰=t x t t x 01d 10d ,152+=t x 。
2d d t t y v y ==,⎰⎰=t y t t y 022d d ,2313+=t y j t i t r )231()15(32+++=, j t i t v 210+=, j t i tva 210d d +==s 2=t 时, j i r31421+=, j i a 410+=1-3一质点具有恒定加速度j i a46+=,在t =0时,其速度为零,位置矢量i r 100=,求(1)任意时刻质点的速度和位置矢量;(2)质点的轨道方程。
解:质点作匀加速运动(1) j t i t t a v v 460+=+=, j t i t t j i i t a t v r r2222002)310()46(211021++=++=++=(2) 22t y =,22y t =,2310y x +=,)10(32-=∴x y1-4路灯距地面高度为H ,行人身高为h ,若人以匀速V 背向路灯行走,人头顶影子的移动速度v 为多少? 解:设x 轴方向水平向左,影子到灯杆距离为x ,人到灯杆距离为x 'xx x H h '-=,x h H H x '-=,V h H H t x h H H t x v -='-==d d d d直线运动1-5一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =3+6x 2,若质点在原点处的速度为零,试求其在任意位置处的速度。
(完整版)⼤学物理学(课后答案)第1章第1章质点运动学习题⼀选择题1-1 对质点的运动,有以下⼏种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的⽅向相同(B)在某⼀过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的⼤⼩和⽅向不变,其速度的⼤⼩和⽅向可不断变化 (D)在直线运动中,加速度不断减⼩,则速度也不断减⼩解析:速度是描述质点运动的⽅向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动⽅程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 ⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为v ,某⼀段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的⼤⼩即瞬时速率,故v =v ;平均速率sv t=,⽽平均速度trv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度⽅向⼀定指向切向,所以法向加速度也⼀定为零 (B)法向分速度为零,所以法向加速度也⼀定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度⼀定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度⼀定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为⼤于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-?,得到20112kt v v =+,故答案选B 。
物理学练习§1-1(总1)一、进择题:1. 某质点的运动方程为)(3723SI t t x +-=,则该质点作(A)匀加速直线运动,加速度沿X 轴正方向; (B)匀加速直线运动,加速度沿X 轴负方向; (C)变加速直线运动,加速度沿X 轴正方向;(D)变加速直线运动,加速度沿X 轴负方向。
( )解答:)(3723SI t t x +-= t -t x 2212 d d ==∴v t tva 21 d d -== ( D ) 3. 以下五种运动形式中,a保持不变的运动是(A)单摆的运动; (B)匀速率圆周运动;(C)行星的椭圆轨道运动; (D)抛体运动; (E) 圆锥摆运动。
( )解答:a 为矢量,a 保持不变说明a的大小和方向都不变(A )a 的大小和方向都变 (B )a的大小不变,方向变(C )a 的大小和方向都变 (D )a的大小和方向都不变(E )a的大小不变,方向变 (D )4.对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A)切向加速度必不为零;(B)法向加速度必不为零(拐点处除外);(C)由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零; (D)若物体作匀速率运动,其总加速度必为零;(E)若物体的加速度a为恒矢量,它一定作匀变速率运动。
( )解答:根据t n a a a+=(A )0≠t a说明物体作曲线运动时速度的大小改变,但是匀速率圆周运动的速度大小不变,因此该说法错误。
(B )题目给出物体作曲线运动,说明速度的方向是变化的即0≠n a,因此该说法正确。
(C )物体作曲线运动,速度的方向是变化的, 0≠n a,错误。
(D )物体作曲线运动,速度的方向改变0≠n a ,所以虽然速度的大小不变,即 0=t a ,仍有0≠+=t n a a a,该说法错误。
(E )该说法错误,例如斜抛运动,a是恒量,但做变速率运动。
(B )二、填空题,1.一质点沿X 方向运动,其加速度随时间变化关系为)(24SI t a +=,如果初始时质点的速度0υ为7m ·s -1,则当t为4s 时,质点的速度=υ 米/秒。
第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
第一章 质点运动学1–1 描写质点运动状态的物理量是。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是运动;任意时刻a n =0的运动是运动;任意时刻a =0的运动是运动;任意时刻a t =0,a n =常量的运动是运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
大学物理课后答案第1章质点运动学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第1章质点运动学习题解答1-1 如图所示,质点自A 点沿曲线运动到B 点,A 点和B 点的矢径分别为A r 和B r 。
试在图中标出位移r ∆和路程s ∆,同时对||r ∆和r ∆的意义及它们与矢径的关系进行说明。
解:r ∆和s ∆如图所示。
||r ∆是矢径增量的模||A B r r -,即位移的大小;r ∆是矢径模的增量A B A B r r r r -=-|||| ,即矢径长度的变化量。
1-2 一质点沿y 轴作直线运动,其运动方程为32245t t y -+=(SI )。
求在计时开始的头3s 内质点的位移、平均速度、平均加速度和所通过的路程。
解:32245t t y -+=,2624t v -=,t a 12-=)(18)0()3(m y y y =-=∆)/(63s m y v =∆= )/(183)0()3(2s m v v a -=-= s t 2=时,0=v ,质点作反向运动)(46|)2()3(|)0()2(m y y y y s =-+-=∆1-3 一质点沿x 轴作直线运动,图示为其t v -曲线图。
设0=t 时,m 5=x 。
试根据t v -图画3出:(1)质点的t a -曲线图;(2)质点的t x -曲线图。
解:⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v(1)dtdv a = ,可求得: ⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v质点的t a -曲线图如右图所示(2)dt dx v = ,⎰⎰=t x vdt dx 00, 可求得:20≤≤t 时,⎰⎰+-=tx dt t dx 05)2020(, 520102+-=t t x 62≤≤t 时,⎰⎰⎰+++-=t x dt t dt t dx 2205)5.215()2020(, 3015452-+=t t x 106≤≤t 时,⎰⎰⎰⎰-++++-=tx dt t dt t dt t dx 662205)5.775()5.215()2020(, 210754152-+-=t t x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-+-≤≤-+≤≤+-=∴)106( 21075415)62( 301545)20( 52010222t t t t t t t t t x质点的t x -曲线图如右图所示。
(C ) 只有(2)是对的。
(D ) 只有(3)是对的。
dr _ d$工d 厂 dr dt dt .只有③正确。
1-3在相对地面静止的坐标系内,A 、B 二船都以2m s-1的速率匀速行驶,A 船沿x 轴正向,B 船沿),轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(%, y 方向单 位矢用'〃表示),那么在A 船上的坐标系中,B 船的速度(以m s^为单位)为(A ) 2i + 2j(B ) - 2i + 2j (C ) —2i — 2j (D )2i — 2j 第一章质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为 r = at 2i + bt 2j (其中。
上为常量) 则该质点作 (A )匀速直线运动 (E )变速直线运动 (C )抛物线运动 (D ) —般曲线运动 v = — = 2citi + 2btj 解:由 缶 知卩随/变化,质点作变速运动。
x = at 2 又由y=bfl -b y = —x a 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2质点作曲线运动,「表示位置矢量,s 表示路程,①表示切向加速度,下列表达式中, 1 dv/dt = a ③ d5/d/ = v (2)dr /dz = v④ |dv/d/| = (A )只有(1)、 (4)是对的。
(B) 只有(2). (4)是对的。
[D] 解:由定义: dv a =— dr dv 丰— dr . ■[B]解:由"A 对地=2d,叫对地=2f 可得 "B 对A = "g 对地+ "地对A=%对地一对地= 2j-2i=一2i + 2/ ( m. S _1)1-4 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3 + 2/ (SI)如果初始时质点的速度%为5H1-S-1,则当/为3S 时,质点的速度 W m s tv= v 0 + J adt 解: o3=5 + J (3 + 2t)dto=23 m-s'11-5 一质点的运动方程为"'-/-(SI),则在/由o 至4s 的时间间隔内,质点的位 移大小为 8m ,在/由0到4s 的时间间隔内质点走过的路程为10m 。
质点运动学(1)——答案一、选择题l. D 2.B 3.D 4.D 5.D二、填空题1.23 m/s2.[(y51 2 - a)2 )cos cot + 2/3co sin cot\\ ^(2Z7+1)JT /co (〃 = 0, 1, 2,...)3.0.1 m/s24 + bt ; Jb二+ (I?。
+ )4 /R25. -g/2; 2面2/(3g)三、计算题1. 解:(l)v = Ax I At = -6m/s,7(2)v = dx/dt = 10/-9^ , v⑵=—16 /s,(3)(2 = dv/dt-10 —18Z, 口(2)= -26血<2.解: 设质点在x处的速度为vdv dv dx dv c , 2a =——= -------- =y——=3 + ()xdt dx dt dx源m =£(3 + 6疽)心,v=(6x+4%3)1/23. (1) x = 4c°s仞,消去t得轨道方程为具+二=1(椭圆)y = A2 sin cot A~ &一— dr .一v =——=-coA x sin coti + coA2 cos cot j(2)出_-dv2 A24.」2-a ————co & cos coti — co sin cot j ——co rdta与r反向,故a恒指向椭圆中心。
1 兀n A ■兀ix = A} cos — = 0, y = A sm— = A。
1 2 2质点位于图中的Q点。
显然质点在椭圆形轨道上沿反时针方向运动。
在M点,加速度Z的切向分量言,如图所示。
可见在该点切向加速度/的方向(3 )当t=0时,x=l , y=0 ,质点位于r =—时,J C 一、与速度V的方向相反。
所以,质点在通过M点速率减小。
4.解:先求质点的位置t = 2s,s =20x2 +5x22 = 60(m)(在大圆)v = ds /dt =20 + 以,松2) = 40m/s,=2s 时 2 =ia t—dv!dt - lOm/s Q〃一v 1RdvUy = ~dt『他=J;2力EE = J。
第一章 质点的运动一、填空题1、质点的位移为21()()2r r t r t Ri ∆=-=由r xi yj =+可知cos sin x R t y R t ωω=⎧⎨=⎩(1-1) 消去t ,可得质点的轨道方程为222x y R += 表明质点作已原点为圆心,半径为R 的圆周运动。
结合(1-1)可知运动周期为2T πω=从1t 到2t ,时长为2T ,所求路程为半圆周长,即R π。
2、因为()()32()()()281068d d d v t r t x t i t t i t i dt dt dt ⎡⎤===-+=-⎣⎦ 所以第二秒末的速度为1(2)16()v i m s -=⋅3、因为()()232()()()10203090040d d d v t r t x t i t t i t t i dt dt dt ⎡⎤===-+=-⎣⎦ 而()()2()()90040180040d d a t v t t t i t i dt dt ⎡⎤==-=-⎣⎦ 所以初始时刻的加速度为2(0)40()a i m s -=-⋅4、在地面上取竖直向下方向为x 轴方向。
(1)重物从开始脱落到再次回到脱落处是一个对称过程。
速度从105v m s -=-⋅变化至15v m s -=⋅,而加速度为210.0a m s -≈⋅,由0v v at =+ (1-2)可解出所花时间为1 1.0t s =。
(2)考察重物继续下落至触地的过程。
以初速105v m s -=⋅,加速度210.0a m s -≈⋅下落,发生的路程为20s m ∆=,由 2012s v t at ∆=+ 可解出21 1.6()2t s == 由(1-2)可计算出落地时的速度为121v m s -=⋅,方向竖直向下,而所求重物落地时间为12 2.6()t t t s =+=5、由图1-1,可得汽车行驶的总路程为30302080()s AB BC AB km ∆=++=++=取东北方向为x 轴,则总位移为2062.4()r AB BC CD i i km ∆=++=+≈ 图1-16、由r xi yj =+可知4cos 23sin 2x t y t=⎧⎨=⎩ (1-2) 消去t ,可得质点的轨道方程为2222143x y += 表明质点的运动轨迹为一椭圆。
第一章1.1 (1)BDFH (2)ACGH (3)BCDF (4)D (5)C 1.2填空题(1)1t 时刻的加速度 1t 到3t 时间内的平均加速度 ⎰4t v d t⎰4t dt v(2)圆周运动 匀速率曲线运动(3)j t y i t x t r )()()(111+= [][]j t y t y i t x t x r)()()()(1212-+-=∆[][]212212)()()()(t y t y t x t x r -+-=∆⎰+=∆21d )()(22t t t dtdydt dx s (4)dtdv⎰21)(t t dt t v⎰21)(t t dt t v1.6解:粒子的运动方程为59323+--=t t t x速度为9632--==t t dt dx v 加速度为66-==t dtdv a 当3>t 时,0>v 粒子沿x 轴正向运动; 当3<t 时,0<v 粒子沿x 轴负向运动;当31><t t 或时,0>⋅a v 粒子做加速运动; 当31<<t 时,0<⋅a v ,粒子做减速运动;1.8解:(1)j i r+=21,j i r 242-=(2)j t i dt rd v 22-== j dtvd a 2-== 代入2=t 得,j i v 422-=,j a 22-= (3)运动方程的分量式为 t x 2= 22t y -=由以上两式消去t ,得到轨迹方程为4/22x y -=1.13解:(1)bt v dt ds v -==0,b dt dv a -==τ,R bt v Rv a n /)(202-== 240222/)(R bt v b a a a n -+=+=τ(2)令b a =可解得b v t /0=(3)b v t /0=时,质点所经过的路程为b v b v b v s 2/2//202020=-=所以质点经过的圈数为bRv R s N ππ4)2/(20==。
运动量
1-1质点在xOy 平面内的运动方程为 x =3t ,y =2t 2+3。
求:(1)t =2s 时质点的位矢、速度和加速度;(2)从
t =1s 到t =2s 这段时间内,质点位移的大小和方向;(3)1~0s 和2~1s 两时间段,质点的平均速度;(4)写出轨道方程。
解:(1) j t i t r )32(32
,j t i t
r v 43d d ,j t r a 4d d 22
s 2 t 时,j i r
116 ,j i v 83 ,j a 4
(2) j i j i j i r r r 63)53()116(12 ,456322 r
,
与x 轴正向的夹角 4.633
6arctan
(3) j i j j i t r r v 2313)53(1011
,j i j i t r r v 631632122 (4) 3x t ,39233222
x x y 1-2一质点在xOy 平面内运动,初始时刻位于x =1m ,y =2m 处,它的速度为v x=10t , v y= t 2。
试求2秒时
质点的位置矢量和加速度矢量。
解:t t
x v x 10d d , t x t t x 01d 10d ,152
t x 。
2d d t t y v y
, t y t t y 022d d ,2313 t y j t i t r )231()15(32 , j t i t v 210 , j t i t
v
a 210d d
s 2 t 时, j i r
3
1421 , j i a 410
1-3一质点具有恒定加速度j i a
46 ,在t =0时,其速度为零,位置矢量i r 100 ,求(1)任意时刻
质点的速度和位置矢量;(2)质点的轨道方程。
解:质点作匀加速运动
(1) j t i t t a v v 460 , j t i t t j i i t a t v r r
2222002)310()46(2
11021
(2) 22t y ,2
2y t ,2310y x ,)10(32
x y
1-4路灯距地面高度为H ,行人身高为h ,若人以匀速V 背向路灯行走,人头顶影子的移动速度v 为多少? 解:设x 轴方向水平向左,影子到灯杆距离为x ,人到灯杆距离为x
x
x x H h
,x h H H x ,V h H H t x h H H t x v d d d d
直线运动
1-5一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =3+6x 2,若质点在原点处的速度为零,试求其
在任意位置处的速度。
解:2
63d d d d d d d d x x v v t x x v t v a
, x v x x v v 020d )63(d ,32232
1x x v ,346x x v 图1-4
1-6一小球由静止下落,由于阻力作用,其加速度a 与速度v 的关系为a =A-Bv ,其中A 和B 为常数,求t
时刻小球的速度。
解:Bv A t
v
a
d d ,
v
t
t Bv
A v
d d ,)1(Bt
e B
A
v
1-7一质点沿x 轴运动,已知速度v =8+2t ,当t =8s 时,质点在原点左边52m 处。
求:(1)质点的加速度和
运动方程;(2)初速度和初位置。
解:(1) 2m/s 2d d t
v a ,m/s 28d d t t x v , t x t t x 852d )28(d ,m 18082 t t x
(2) m/s 80 v ,m 1800 x
曲线运动
1-8质量m =0.1kg 的小球沿半径R =1m 的圆周运动,角位移 =t 4
-3,求t =1s 时小球所受外力的大小和方向。
解:34d d t t
,212d d t t ,212t R R a t ,6216t R R a n s 1 t 时,2m/s 12 t a ,2m/s 16 n a ,m/s 20161222 a
a m F ,N 2201.0 ma F
,F 与切线方向夹角 13.5312
16arctan
arctan t n a a 1-9一质点沿半径为R 的圆周运动,质点所经过的弧长与时间的关系为2
2
1ct bt s
,其中b 、c 为正常数,且Rc >b 2,求切向加速度与法向加速度大小相等之前所经历的时间。
解:ct b t s v d d ,c t
v a t d d ,R ct b R v a n 2
2)(
,n t a a ,c R ct b 2)(,c b Rc t 1-10一张CD 光盘音轨区域的内半径R 1=2.2cm ,外半径R 2=5.6cm ,径向音轨密度n=650条/mm 。
在CD 唱
机内,光盘每转一圈,激光头沿径向向外移动一条音轨,激光束相对光盘是以v =1.3m/s 的恒定线速度运动的。
求(1)这张光盘的全部放音时间是多少?(2)激光束到达离盘心r =5.0cm 处时,光盘转动的角速度和角加速度各为多少? 解:(1) 在距离中心为r 、宽度为r d 内音轨的长度为 r rn d 2 ,
激光划过这些音轨所需的时间 v
r
rn t d 2d
,整张CD 的放音时间 min 4.69s 4166)2.26.5(130
6500
)(d 2d 22212221
R R v n v r rn t t R R
(2) r v
,cm 0.5 r 时,rad/s 260
.5130 ,n r v rn v r v t r r v t 322222d d d d
cm 0.5 r 时,233
2
rad/s 1031.36500
52130 相对运动
1-11一列火车以36km/h 的速率向东行驶时,相对于地面匀速竖直下落的雨滴在车窗上形成的雨迹与竖直
方向成300角。
求(1)雨滴相对于地面的水平分速度多大?相对于列车的水平分速度多大?(2)雨滴相对于地面的速率如何?相对于列车的速率如何? 解:车对地雨对车雨对地v v v
(1) 雨滴相对于地面的水平分速度 01 x v
雨滴相对于列车的水平分速度 m/s 10km/h 362 x v (2) m/s 3.17km/h 4.6260tan 3660tan 车对地雨对地v v
m/s 20km/h 7260cos /3660cos / 车对地雨对车v v
1-12飞机A 以v a =1000km/h 的速率相对于地面向南飞行,同时另一架飞机B 以v b =800km/h 的速率相对于
地面向东偏南300方向飞行。
求A 机相对于B 机速度的大小和方向。
解:对地对对地B B A A v v v
km/h
91760cos 80010002800100060cos 2222
2
对地对地对地
对地
对B A B A B A v v v
v
v 6543
.0917
5.0800100030sin sin
B A B A v v v 对对地对地 9.40 即A 机相对于B 机的速度方向为向西偏南 9.40。
1-13一人在静水中以m /s 1.1的速度划船,现欲横渡一宽为m 1000.13 、水流速度为m /s 55.0的大河。
(1)
若要横渡到正对岸的一点,划行方向应如何?所需时间为多少?(2)如要用最短的时间过河,划行方向应如何?到达对岸什么位置?
解:水对地船对水船对地v v v
(1) 6010
.155
.0arccos
arccos 船对水水对地v v s 105060sin 1.1100060sin 10001000
船对水船对地v v t (2) 4.6355
.010
.1arctan arctan
水对地船对水v v m 50010
.11000
55.01000 船对水水对地v v x , 船到达对岸下游m 500处。
y
车对地雨对地。