卫星气象学第二章气象卫星发展概况
- 格式:ppt
- 大小:197.50 KB
- 文档页数:33
气象卫星发展回顾与展望气象卫星发展回顾与展望一、引言气象卫星作为现代气象观测的重要手段,经历了数十年的发展历程,在气象预报、灾害监测等方面发挥着重要作用。
本文将回顾气象卫星的发展历程,并展望未来的发展趋势。
二、气象卫星的发展历程1. 初期发展20世纪60年代,随着人类进入太空时代,气象卫星开始被应用于气象观测。
最早的气象卫星是TIROS-1,于1960年由美国发射成功。
这标志着人类首次通过卫星获取大范围的气象数据。
随后,法国、苏联等国也相继发射了自己的气象卫星。
2. 技术进步从1970年代到2000年代,气象卫星的技术得到了快速发展。
卫星传感器的分辨率不断提高,可以获取到更精细的气象数据。
同时,卫星平台的稳定性和寿命也有了显著提高,使得观测数据的准确性和可靠性大幅提升。
3. 数据共享与国际合作为了更好地利用气象卫星数据,国际上建立了各种合作机制和数据共享机制。
例如,美国、日本、欧洲等地的气象卫星数据可以通过WMO(世界气象组织)进行共享,以供全球气象预报机构使用。
这种国际合作极大地促进了气象卫星的应用和发展。
4. 多元化应用随着气象卫星技术的不断发展,其应用范围也越来越广泛。
除了传统的天气预报,气象卫星还可以用于海洋监测、农业灾害监测、城市气候分析等领域。
它为各行各业提供了重要的气象信息,对人类社会的发展产生了深远影响。
三、气象卫星发展的挑战1. 技术难题尽管气象卫星已取得了巨大的成功,但仍存在一些技术难题需要解决。
传感器的灵敏度、分辨率等方面仍有提高空间;卫星平台的稳定性和寿命也需要进一步改进。
只有不断推动技术进步,才能更好地满足人们对气象观测的需求。
2. 成本问题气象卫星的发射、运行等成本巨大,这对于发展中国家而言是一个严重的挑战。
如何降低气象卫星的成本,使其更加普及和可负担,是一个亟需解决的问题。
3. 数据处理和模型建立随着气象卫星数据的不断增加,如何高效地进行数据处理和模型建立也成为一个难题。
气象卫星技术随着科技的不断进步,气象卫星技术在现代气象学中扮演着非常重要的角色。
气象卫星技术通过利用卫星对地球大气进行观测,提供了海量且准确的气象数据,并为气象预报、灾害预警等工作提供了可靠的支持。
本文将对气象卫星技术的原理、应用和发展前景进行探讨。
一、气象卫星技术的原理气象卫星技术基于遥感原理,通过搭载在卫星上的各类传感器对地球大气进行观测。
传感器可以探测可见光、红外线、微波等不同波段的辐射,将这些辐射信号转换为图像或数据传回地面。
这些传回的数据可以提供有关地球大气的温度、湿度、气压、云量、云高、降水等信息。
卫星传感器通过扫描或成像方法对地球大气进行遥感观测,其原理可以简单概括为以下几个步骤:1. 接收辐射:卫星传感器接收来自地球表面和大气的辐射信号。
2. 辐射传输:辐射信号在大气中传输,被大气吸收、散射或反射。
3. 接收卫星信号:卫星传感器接收经过大气传输后的信号。
4. 数据处理:通过算法对接收到的信号进行处理,提取有用的气象信息。
5. 数据传输:将处理后的数据传回地面,供气象预报和科学研究使用。
二、气象卫星技术的应用气象卫星技术的应用范围非常广泛,主要体现在以下几个方面:1. 气象预报:气象卫星技术提供了海量的气象数据,可以用于分析和预测天气变化趋势。
通过对云量、降水、温度等数据的监测和分析,气象预报机构可以预测出未来数小时、数天甚至数周的天气情况,为社会各界提供准确的天气预报服务。
2. 灾害监测:气象卫星技术可用于监测台风、暴雨、干旱等气象灾害。
卫星传感器可以及时探测到这些灾害的形成和发展过程,为防灾减灾工作提供重要的信息支持。
同时,卫星图像还可以用于灾区的实时监测和评估,帮助相关部门做出及时合理的应对措施。
3. 气候研究:气象卫星技术对于研究地球气候变化具有重要意义。
通过长期观测和监测,科学家们可以获得大范围、连续的气象数据,并分析、验证气候变化模型。
这些数据和模型有助于了解气候系统的演变规律和影响因素,为制定应对气候变化的政策和措施提供科学依据。
气象发展历程气象学作为一门研究天气现象的学科,其发展历程可以追溯到人类文明的早期。
在古代,人们通过观察自然现象,如云彩、风向和气温等来判断天气变化,并在农业和航海中发挥作用。
然而,真正的气象学始于17世纪。
17世纪初,人们开始建立气象观测台,记录天气现象,以便研究和推测天气的变化规律。
1654年,法国人Evangelista Torricelli发明了气压计,并且研究了气压与天气之间的关系。
这是气象学史上的重要里程碑,为后来的气象学发展奠定了基础。
18世纪,气象学取得了重大的进展。
德国科学家Daniel Gabriel Fahrenheit发明了温度计,建立了摄氏温标。
他的研究使气象学能够更准确地测量和记录温度变化。
此外,法国天文学家Pierre-Simon Laplace提出了动力学理论,并将其应用于气象学中,解释了气压和风速之间的关系。
19世纪,气象学取得了更大的进步。
1842年,美国科学家Samuel Morse建立了第一个全国性的天气观测网络,使天气数据能够在更大范围内进行收集和分析。
此外,瑞士物理学家和气象学家Auguste Piccard发明了探空气球,并利用其升空到大气中进行观测和研究。
他的工作为气象学提供了更准确的数据和更深入的了解。
20世纪初,气象学发展迅速。
1904年,挪威物理学家Vilhelm Bjerknes提出了动力气象学的理论,奠定了现代天气预报的理论基础。
随后,雷达和气象卫星的发明和应用进一步改变了气象观测和预报的技术水平。
此外,计算机的发明和发展使得气象数据的处理和模拟成为可能。
近年来,气象学的发展取得了显著的成果。
通过高精度的观测设备和先进的计算模型,气象学家能够更准确地预测和解释天气现象。
此外,气候变化的研究也成为了气象学的一个重要领域,对全球气候变化进行模拟和预测,提供了重要的科学依据。
总的来说,气象学的发展历程可以看作是人类不断认识和探索自然界的过程。
从最早的观察和记录,到现代的高科技观测和预测,气象学为人们提供了更准确的天气信息和更全面的气候知识,对于人类的生产生活以及环境保护都起到了重要的作用。
气象卫星是对地球及其大气层进行气象观测的人造地球卫星,具有范围大、及时迅速、连续完整的特点,并能把云图等气象信息发给地面用户。
气象卫星的本领来自于它携带的气象遥感器。
这种遥感器能够接收和测量地球及其大气的可见光、红外与微波辐射,并将它们转换成电信号传送到地面。
地面接收站再把电信号复原绘出各种云层、地表和洋面图片,进一步处理后就可以发现天气变化的趋势。
气象卫星的轨道大致有两种,一种是太阳同步轨道,一种是地球静止轨道。
按照前一种轨道运行,卫星每天对地球表面巡视两遍,其优点是可以获得全球气象资料,缺点是对某一地区每天只能观测两次。
若运行于地球静止轨道,则可以对地球近1/5的地区连续进行气象观测,实时将资料送回地面,用四颗卫星均匀地布置在赤道上空,就能对全球中、低纬度地区气象状况进行连续监测;它的缺点是对纬度大于55度地区的气象观测能力差。
这两种卫星如果同时在天上工作,就可以优势互补。
气象卫星:从太空对地球及其大气层进行气象观测的人造地球卫星。
卫星气象观测系统的空间部分。
卫星所载各种气象遥感器,接收和测量地球及其大气层的可见光、红外和微波辐射,并将其转换成电信号传送给地面站。
地面站将卫星传来的电信号复原,绘制成各种云层、地表和海面图片,再经进一步处理和计算,得出各种气象资料。
气象卫星按轨道的不同分为太阳轨道(极轨道)气象卫星和地球静止轨道气象卫星;按是否用于军事目的分为军用气象卫星和民用气象卫星。
气象卫星观测范围广,观测次数多,观测时效快,观测数据质量高,不受自然条件和地域条件限制,它所提供的气象信息已广泛应用于日常气象业务、环境监测、防灾减灾、大气科学、海洋学和水文学的研究。
气象卫星也是世界上应用最广的卫星之一,美国、前苏联/俄罗斯、法国和中国等众多国家都发射了气象卫星。
1958年美国发射的人造卫星开始携带气象仪器, 1960年4月1日,美国首先发射了第一颗人造试验气象卫星,截止到1990年底,在30年的时间内,全世界共发射了116颗气象卫星,已经形成了一个全球性的气象卫星网,消灭了全球4/5地方的气象观测空白区,使人们能准确地获得连续的、全球范围内的大气运动规律,做出精确的气象预报,大大减少灾害性损失。
气象卫星发展的历史,现状及趋势
气象卫星是指专门用于观测地球大气、地表和海洋的卫星。
早在1960年代,气象卫星就已经开始发展。
随着技术的进步和需求的增加,气象卫星的规模和数量也在不断增加。
历史上,气象卫星的发展经历了三个阶段。
第一阶段是手动控制
和定时观测的阶段,这种卫星主要用于采集图片和简单的数据。
第二
阶段是数字化控制和自动化观测的阶段,这种卫星可以实现多光谱、
高精度、高分辨率的遥感观测。
第三阶段则是多元化和多功能化的阶段,这种卫星可以实现多尺度、多分辨率、全天候、全光谱的综合观测。
目前,气象卫星已经成为了重要的气象观测手段之一。
它可以有
效地观测气象灾害、天气变化、冰雪积雨、海洋环境、农业生产等重
要气象信息,为全球气象预报和气候变化研究提供了丰富的数据和信息。
同时,气象卫星还广泛应用于航空、军事、交通、电力、通信、
测绘等领域,为人们日常生活和生产带来了巨大的便利和经济效益。
未来,气象卫星的发展趋势将继续向多学科、多波段、大数据、
智能化等方向发展。
随着技术的进步和需求的增加,人们对气象卫星
的精度、分辨率、覆盖范围和观测能力都有不断提高的要求。
因此,
气象卫星将继续发挥着重要的作用,为人类的生产和生活创造更美好
的未来。
气象学中的气象卫星应用随着现代科技的快速发展,气象学的发展也越趋完善。
近年来,气象卫星的发射和使用日益广泛,成为气象预报的重要工具之一。
本文将讨论气象学中的气象卫星应用,包括气象卫星的分类、定位原理、应用场景,以及未来的发展趋势。
一、气象卫星的分类气象卫星按照使用目的的不同,可以分为实时监测卫星和气象预报卫星两种类型。
实时监测卫星主要用于气象灾害的监测和预警,具有实时高分辨率的观测能力。
其主要用途包括对风暴、洪水、地震、火灾等自然灾害进行监测和预警。
实时监测卫星还可以用于监测城市建设和交通情况,例如监测城市的交通拥堵情况以及城市绿化覆盖率。
气象预报卫星主要用于气象预报和气象科学研究,其观测周期比实时监测卫星长,观测分辨率也相对较低。
气象预报卫星可以提供气象数据,如云层高度、气温、湿度等,帮助专业人士进行气象预测。
这些数据可用于气候变化研究、预测天气状况、预测气象灾害等方面。
二、气象卫星的定位原理气象卫星可以分为静止卫星和低轨卫星两类。
不同类型的卫星使用的定位原理也不同。
静止卫星是气象亚洲区域域网的主要卫星,其高度约在35,800公里处。
静止卫星利用CERES和CERES-TK等技术对太阳光谱进行观测和分析,获取太阳辐射等数据,并实现了极地-极光圈全域数据的获取。
低轨卫星是气象卫星中的另一大类,主要用于天气预测和探测气体浓度变化。
它的高度通常在600-2000公里之间。
低轨卫星更适合对小尺度和强透射性的目标进行观测。
低轨卫星的定位原理是利用卫星探测器和观测器之间的距离变化来确定其所处位置。
三、气象卫星的应用场景气象卫星在气象学中发挥了重要作用。
其应用范围包括:1. 自然灾害监测和预警:卫星可以实时对自然灾害进行监测和预警,如风暴、洪水、地震、火灾等。
2. 气象预测:利用卫星数据可以对天气情况进行科学预测,为人们的工作和生活提供便利。
3. 环境监测:卫星可以监测大气、海洋、陆地等环境要素,对环境变化进行研究和监测。
太阳常数:指在不考虑大气作用,在平均日—地距离处,垂直于太阳入射的表面上接收到太阳的辐照度。
遥感: 在一定距离之外,不直接接触被测物体和有关物理现象,通过探测器接受来自被测物体(目标物)反射或发射的电磁辐射信息,并对其进行处理,分类和识别的一种技术.星下点:是指卫星与地球中心的连线在地球表面上的交点,用经纬度表示。
由于卫星运动和地球的自转,星下点在地球表面形成一条连续的运动轨迹,这一轨迹称为星下点轨迹。
截距:由于卫星绕地球公转的同时,地球不停地自西向东旋转,所以当卫星绕地球转一周后,地球相对卫星转过的度数称之为截距。
可见截距是两个升交点之间的经度差。
大气窗:通常把电磁波通过大气层时较少被反射、吸收或者散射而透过率较高的波段称做大气窗。
太阳同步卫星轨道(极轨卫星轨道):指卫星的运行的轨道平面与太阳始终保持固定的取向,由于这种卫星轨道的倾角接近90°选择性辐射体:如果物体的吸收率(或发射率)随波长而变,则这物体称做选择性辐射体黑体是指某一物体在任何温度下,对任意方向和任意波长的吸收率或发射率都等于l,这种物体称为黑体。
黑体:液态水、新雪;灰体:陈雪、冰;选择性吸收体:液态水云、卷云、土壤、草地、沙漠、森林、混凝土、城市;辐射平衡:如果一个物体在某一温度从外界得到辐射能,恰等于物体因辐射而失去的辐射能,则该物体的热辐射达到平衡,而温度保持不变,这一热辐射过程称做平衡热辐射或辐射平衡。
局地热力平衡:可设想大气中存在如下状态:在这个状态中,气体的每一体积元量犹如处在热力平衡状态中(对这个体积温度而言),这样的平衡称局地热力平衡。
基尔霍夫辐射定律:指的是在同样的温度下,各种不同物体对相同波长的单色辐射出射度与单色吸收比之比值都相等,并等于该温度下黑体对同一波长的单色辐射出射度。
大气的散射效应:主要起因于大气中悬浮的气溶胶粒子,如尘埃、水滴、冰晶等对电磁辐射的散射作用,它将使辐射在大气中传输时改变方向,散射过程中辐射能量将在空间重新分配,分配方式与辐射波长、粒子尺度和形状以及粒子的折射率有关。
中国气象卫星的发展历程
中国气象卫星的发展历程可以追溯到上世纪70年代初期。
当时,中国气象部门意识到气象卫星在天气预报、气候研究、灾害监测等方面的重要作用,开始了自主研制气象卫星的工作。
1970年代末,中国成功地发射了第一颗气象卫星“风云一号”,这标志着中国成为继美国、苏联、欧洲、日本之后,世界上第五个拥有自主气象卫星的国家。
随着技术的不断进步,中国陆续发射了“风云二号”、“风云三号”、“风云四号”等一系列气象卫星,实现了对全球气象环境的全面监测和预报。
其中,“风云二号”卫星是中国气象卫星发展的一个重要里程碑。
该卫星于2006年成功发射,是中国第一颗具有高光谱观测能力的气象卫星,可以对大气、云、陆地、海洋等进行高精度的观测和监测,为气象预报和环境监测提供了更加精细化的数据支持。
此外,中国还在气象卫星领域取得了其他重要的成果。
例如,“风云三号”卫星具有高分辨率的云图像和闪电监测能力,可以实现对强对流天气的精细化预报;“风云四号”卫星则具有更高的空间分辨率和更广泛的覆盖范围,可以实现对全球气象环境的全面监测和预报。
总的来说,中国气象卫星的发展历程经历了多年的努力和探索,取得了一系列重要的成果。
未来,随着技术的不断进步和应用需求的不断增加,中国气象卫星将继续发挥重要作用,为气象预报、环境监测等领域提供更加精细化的数据支持。