【精品】2019年美国国家人工智能战略数据大数据报告PPT(完整版)图文
- 格式:pptx
- 大小:7.46 MB
- 文档页数:44
2019年中美人工智能产业分析报告2019年8月目录一、走进人工智能新时代 (6)1、人工智能是什么 (6)2、中美两国引领全球人工智能发展 (8)二、多角度对比中美人工智能投资 (11)1、看规模,中国人工智能投资额已超过美国 (11)2、看轮次,中国人工智能投融资更偏早期 (12)3、看投向,中国重应用层而美国重基础层 (13)三、人工智能带来新机会,中国有望从AI芯片突围 (18)1、人工智能的发展加速芯片专用化进程 (18)2、高端人才缺乏是中美AI芯片领域投资差异的最大原因 (21)(1)美国在芯片领域起步早,巨头众多,培养并积累了丰富的人才 (21)(2)美国芯片和互联网巨头众多,为资本退出提供更多选择 (22)(3)美国芯片产业链齐全,产业布局完整 (24)3、换道超车,中国在AI芯片上可以有所作为 (25)(1)AI芯片处于发展早期,竞争格局未定 (25)(2)边缘AI芯片领域,广阔的应用场景为中国提供巨大机会 (28)(3)芯片自主可控呼声高涨,政策为芯片研发保驾护航 (28)四、深入落地,计算机视觉仍有广阔的应用场景 (30)1、计算机视觉是中国人工智能市场的最大组成部分 (30)2、多重因素促成中美计算机视觉领域投资差异 (33)(1)安防千亿市场成为拉动中国计算机视觉发展的最大需求 (33)(2)我国计算机视觉技术领先,在数据方面占有优势 (35)(3)中国消费者对新技术接受度更高 (36)3、对比美国,看好中国计算机视觉应用领域进一步拓宽 (37)(1)新零售 (38)(2)医疗影像 (38)(3)保险行业 (39)(4)工业制造 (39)五、主要风险 (40)1、人工智能芯片研发不及预期 (40)2、计算机视觉技术发展不及预期 (40)中美两国引领全球人工智能发展。
得益于中国较好的互联网及信息技术产业底蕴以及国家、社会的高度重视,中国在人工智能方面发展迅猛。
目前,中美在人工智能企业数量、专利数量、论文数量以及人才数量上并驾齐驱,成为引领全球人工智能发展的两大动力来源。
大数据人工智能大数据带来的历史变革人工智能技术的演变人工智能标志性产品如何构建数据类产品什么是大数据大数据带来的价值变化工厂车间无形资产固定资产大数据的显著特征大数据最核心的特征——预测!大数据的另一个特征——全样本!大数据带来的变革Information Technology Technology Information 过去的20年,我们为客户提供的是支持业务的信息技术。
未来的20年,我们为客户提供的是驱动业务的技术信息。
下一个10年智能经济的浮现工业革命以前,人类认识世界的方法论处在初级阶段,占卜和宗教是人类应对不确定性的重要依据。
工业革命带来了一场革命,基于理论推理、实验验证、模拟择优的科学极大地减少了人类面临的不确定性,为人类带来了百余年的繁荣。
智能经济是使用决策机制去应对不确定性的一种经济形态。
产品、个体、组织、产业、世界都将完成微粒化的解构和智能化的重组。
大数据带来的历史变革人工智能技术的演变人工智能标志性产品如何构建数据类产品人工智能可以分成两个部分来理解,即“人工”和“智能”。
人工,自然就是一些人力所能做到的事情,由人去完成活动。
智能,应该理解为智慧和能力。
机器学习概念介绍机器学习的核心是“使用算法解析数据,从中学习,然后对世界上的某件事情做出决定或预测”。
三种主要类型的机器学习:监督学习、非监督学习和强化学习。
监督学习:涉及一组标记数据。
计算机可以使用特定的模式来识别每种标记类型的新样本。
无监督学习:数据是无标签的。
由于大多数真实世界的数据都没有标签,这些算法特别有用。
强化学习:使用机器的个人历史和经验来做出决定。
与监督和非监督学习不同,它更关注性能。
机器学习系统的基本原理机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。
但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。
回归模型回归是最流行的机器学习算法,线性回归算法是基于连续变量预测特定结果的监督学习算法。
2019人工智能发展报告2019 Report of Artificial Intelligence Development清华大学-中国工程院知识智能联合研究中心中国人工智能学会吴文俊人工智能科学技术奖评选基地2019年11月编写委员会(按姓氏拼音排序)主编:李涓子唐杰编委:曹楠程健贾珈李国良刘华平宋德雄喻纯余有成朱军责任编辑:景晨刘佳编辑:毕小俊程时伟韩腾侯磊刘德兵刘越骆昱宇麻晓娟仇瑜王若琳徐菁技术支持:北京智谱华章科技有限公司1 编制概要 (1)1.1 编制背景 (1)1.2 编制目标与方法 (3)2 机器学习 (4)2.1 机器学习概念 (4)2.2 机器学习发展历史 (6)2.3 机器学习经典算法 (7)2.4 深度学习 (21)2.4.1 卷积神经网络 (24)2.4.2 AutoEncoder (26)2.4.3 循环神经网络RNN (28)2.4.4 网络表示学习与图神经网络(GNN) (30)2.4.5 增强学习 (32)2.4.6 生成对抗网络 (34)2.4.7 老虎机 (35)2.5 人才概况 (37)2.6 代表性学者简介 (39)2.6.1 国际顶级学者 (40)2.6.2 国内知名学者 (50)2.7 论文解读 (60)2.7.1 ICML历年最佳论文解读 (63)2.7.2 NeurlPS历年最佳论文解读 (71)3 计算机视觉 (85)3.1 计算机视觉概念 (85)3.2 计算机视觉发展历史 (87)3.3 人才概况 (89)3.4 论文解读 (91)3.5 计算机视觉进展 (105)4 知识工程 (107)4.1 知识工程概念 (107)4.2 知识工程发展历史 (108)4.3 人才概况 (111)4.4 论文解读 (113)4.5 知识工程最新进展 (129)5 自然语言处理 (131)5.1 自然语言处理概念 (131)5.2 自然语言的理解发展历史 (132)5.3 人才概况 (133)5.4 论文解读 (136)5.5 自然语言处理最新进展 (153)6 语音识别 (155)6.1 语音识别概念 (155)6.2 语音识别发展历史 (156)6.3 人才概况 (158)16.4 论文解读 (160)6.5 语音识别进展 (173)7 计算机图形学 (175)7.1 计算机图形学概念 (175)7.2 计算机图形学发展历史 (175)7.3 人才概况 (178)7.4 论文解读 (181)7.5 计算机图形学进展 (194)8 多媒体技术 (197)8.1 多媒体概念 (197)8.2 多媒体技术发展历史 (198)8.3 人才概况 (200)8.4 论文解读 (203)8.5 多媒体技术进展 (215)9 人机交互技术 (217)9.1 人机交互概念 (217)9.2 人机交互发展历史 (218)9.2.1 简单人机交互 (218)9.2.2 自然人机交互 (219)9.3 人才概况 (222)9.4 论文解读 (225)9.5 人机交互进展 (239)10 机器人 (241)10.1 机器人概念 (241)10.2 机器人发展历史 (242)10.3 人才概况 (245)10.4 论文解读 (247)10.5 机器人进展 (260)11 数据库技术 (263)11.1 数据库概念 (263)11.2 数据库技术历史 (264)11.3 人才概况 (266)11.4 论文解读 (269)11.5 数据库技术重要进展 (287)12 可视化技术 (289)12.1 可视化技术概念 (289)12.2 可视化技术发展历史 (290)12.3 人才概况 (294)12.4 论文解读 (296)12.5 可视化进展 (313)12.6 可视化应用 (315)12.6.1 社交媒体可视化 (315)12.6.2 体育数据可视化 (316)12.6.3 医疗数据可视化 (318)13 数据挖掘 (321)13.1 数据挖掘概念 (321)13.2 数据挖掘的发展历史 (323)13.3 人才概况 (324)13.4 论文解读 (326)13.5 数据挖掘进展 (337)14 信息检索与推荐 (339)14.1 信息检索与推荐概念 (339)14.2 信息检索和推荐技术发展历史 (341)14.3 人才概况 (345)14.4 论文解读 (348)14.5 信息检索与推荐进展 (362)15 结束语 (365)参考文献 (366)附录 (372)3编制概要1编制概要1.1编制背景21世纪前两个十年,在大规模GPU服务器并行计算、大数据、深度学习算法和类脑芯片等技术的推动下,人类社会相继进入互联网时代、大数据时代和人工智能时代。
定义与发展历程定义第一次浪潮发展历程第二次浪潮萌芽期第三次浪潮人工智能应用领域计算机视觉通过图像处理和计算机图形学等技术,将图像转换为机器可理解的信息,应用于安防、医疗、自动驾驶等领域。
自然语言处理研究计算机理解和生成人类自然语言文本的能力,应用于机器翻译、情感分析、智能问答等领域。
语音识别与合成将人类的语音转换为文本或命令,以及将文本转换为自然的语音输出,应用于智能语音助手、无障碍交流等领域。
智能机器人结合机械、电子、计算机等技术,实现机器人的自主导航、语音识别、人脸识别等功能,应用于家庭服务、工业生产等领域。
基础层技术层应用层030201人工智能产业链结构逻辑回归(梯度提升树(Linear Regression )Random Forests )010203040506监督学习算法02030401非监督学习算法K 均值聚类(K-means Clustering )层次聚类(Hierarchical Clustering )主成分分析(Principal Component Analysis )自编码器(Autoencoders )强化学习算法学习(Q-learning)策略梯度(Gradients神经网络基本原理前向传播神经元模型解释神经网络如何通过前向传播算法计算输出值。
反向传播卷积层池化层CNN应用RNN基本原理01长短期记忆网络(LSTM)02RNN应用03词法分析与词性标注词法分析研究单词的内部结构,包括词根、词缀、词干等,以及单词的形态变化规则。
词性标注为每个单词分配一个词性标签,如名词、动词、形容词等,以便理解单词在句子中的角色和含义。
应用在信息检索、机器翻译、智能问答等领域中,词性标注有助于提高文本处理的准确性和效率。
1 2 3句法分析依存关系抽取应用句法分析与依存关系抽取情感分析和意见挖掘情感分析01意见挖掘02应用03图像分类与目标检测图像分类目标检测评估指标图像分割与场景理解图像分割场景理解评估指标三维重建与虚拟现实三维重建虚拟现实评估指标语音信号特性语音信号预处理语音信号特征提取阐述语音信号的物理特性、时域特性、频域特性以及倒谱特性等。
2019年中美⼈⼯智能产业分析报告2019年中美⼈⼯智能产业分析报告2019年8⽉⽬录⼀、⾛进⼈⼯智能新时代 (6)1、⼈⼯智能是什么 (6)2、中美两国引领全球⼈⼯智能发展 (8)⼆、多⾓度对⽐中美⼈⼯智能投资 (11)1、看规模,中国⼈⼯智能投资额已超过美国 (11)2、看轮次,中国⼈⼯智能投融资更偏早期 (12)3、看投向,中国重应⽤层⽽美国重基础层 (13)三、⼈⼯智能带来新机会,中国有望从AI芯⽚突围 (18)1、⼈⼯智能的发展加速芯⽚专⽤化进程 (18)2、⾼端⼈才缺乏是中美AI芯⽚领域投资差异的最⼤原因 (21)(1)美国在芯⽚领域起步早,巨头众多,培养并积累了丰富的⼈才 (21)(2)美国芯⽚和互联⽹巨头众多,为资本退出提供更多选择 (22)(3)美国芯⽚产业链齐全,产业布局完整 (24)3、换道超车,中国在AI芯⽚上可以有所作为 (25)(1)AI芯⽚处于发展早期,竞争格局未定 (25)(2)边缘AI芯⽚领域,⼴阔的应⽤场景为中国提供巨⼤机会 (28)(3)芯⽚⾃主可控呼声⾼涨,政策为芯⽚研发保驾护航 (28)四、深⼊落地,计算机视觉仍有⼴阔的应⽤场景 (30)1、计算机视觉是中国⼈⼯智能市场的最⼤组成部分 (30)2、多重因素促成中美计算机视觉领域投资差异 (33)(1)安防千亿市场成为拉动中国计算机视觉发展的最⼤需求 (33)(2)我国计算机视觉技术领先,在数据⽅⾯占有优势 (35)(3)中国消费者对新技术接受度更⾼ (36)3、对⽐美国,看好中国计算机视觉应⽤领域进⼀步拓宽 (37)(1)新零售 (38)(2)医疗影像 (38)(3)保险⾏业 (39)(4)⼯业制造 (39)五、主要风险 (40)1、⼈⼯智能芯⽚研发不及预期 (40)2、计算机视觉技术发展不及预期 (40)中美两国引领全球⼈⼯智能发展。
得益于中国较好的互联⽹及信息技术产业底蕴以及国家、社会的⾼度重视,中国在⼈⼯智能⽅⾯发展迅猛。