汽包水位测量仪表选型讲解
- 格式:ppt
- 大小:1.26 MB
- 文档页数:8
锅炉汽包水位测量与控制锅炉汽包水位测量与控制是锅炉系统中非常重要的一个环节。
正确的水位测量与控制可以确保锅炉的安全运行,避免水位过高或过低造成的危险。
本文将介绍锅炉汽包水位测量与控制的原理、方法和技术。
1. 原理锅炉汽包水位测量的原理是利用水位传感器或测量仪表测量锅炉内部水位的高度,从而控制水位在安全范围内。
常用的水位传感器主要有浮子型、电极型和超声波型等。
2. 测量方法(1)浮子型水位传感器:浮子型水位传感器由浮子和传感器组成,浮子随着水位的升降而浮沉,传感器通过感应浮子位置的变化来测量水位的高度。
通过传感器提供的信号,锅炉的控制系统可以控制水位的升降。
(2)电极型水位传感器:电极型水位传感器由多个电极组成,电极通过与锅炉水位接触,测量水位的高度。
通常情况下,电极根据水位的高低产生不同的电压信号,通过接线盒将信号传输给控制系统。
(3)超声波型水位传感器:超声波型水位传感器利用超声波的传播速度测量水位的高度。
传感器通过发送和接收超声波信号,并根据传播时间计算出水位的高度。
3. 控制技术水位的控制可以通过调整给水量来实现。
当水位过低时,控制系统会增加给水量;当水位过高时,控制系统会减少给水量。
为了确保锅炉水位的稳定控制,通常会使用一种叫做“三元控制”的技术。
三元控制是通过调节给水量、汽泄压力和燃料供给量来控制锅炉的水位。
4. 注意事项在进行锅炉汽包水位测量与控制时,需要注意以下几点:(1)选择合适的水位传感器,根据锅炉的特点和需求,选择适合的传感器进行测量。
(2)安装传感器时要注意正确的位置和角度,确保传感器的测量准确性。
(3)及时检修和维护传感器设备,避免传感器损坏或出现故障。
(4)定期校准传感器,确保测量的准确性和可靠性。
(5)根据实际情况进行相应调整,控制水位保持在安全范围内。
锅炉汽包水位测量与控制是锅炉系统中非常重要的一环,对于锅炉的安全运行起着至关重要的作用。
只有掌握了正确的测量方法和控制技术,才能保证水位的稳定和安全。
1 锅炉汽包水位控制系统介绍1.1 系统概述汽包水位是影响锅炉安全运行的重要参数,水位过高,会破坏汽水分离装置的正常工作,严重时会导致蒸汽带水增多,增加在管壁上的结垢和影响蒸汽质量。
水位过低,则会破坏水循环,引起水冷壁管的破裂,严重时会造成干锅,损坏汽包。
所以其值过高过低都可能造成重大事故。
它的被调量是汽包水位,而调节量则是给水流量,通过对给水流量的调节, 使汽包内部的物料达到动态平衡,变化在允许范围之内,由于锅炉汽包水位对蒸气流量和给水流量变化的响应呈积极特性。
但是在负荷(蒸气流量)急剧增加时,表现却为"逆响应特性",即所谓的"虚假水位",造成这一原因是由于负荷增加时,导致汽包压力下降,使汽包内水的沸点温度下降,水的沸腾突然加剧,形成大量汽泡,而使水位抬高。
汽包水位控制系统,实质上是维持锅炉进出水量平衡的系统。
它是以水位作为水量平衡与否的控制指标,通过调整进水量的多少来达到进出平衡,将汽包水位维持在汽水分离界面最大的汽包中位线附近,以提高锅炉的蒸发效率,保证生产安全。
由于锅炉水位系统是一个设有自平衡能力的被控对象,运行中存在虚假水位现象,实际应用中可根据情况采用水位单冲量、水位蒸汽量双重量和水位、蒸汽量、给水量三冲量的控制系统。
1.2 系统控制目标值控制目标值:汽包水位均匀量为:±220mm,水位控制在中间值,偏差≤±10mm 在仪表盘上使用原有的DDZ-Ⅲ操作器对水泵进行手动/自动调节控制。
1.3 系统控制模式系统给水自动调节分为三种模式:(1)单水位控制模式:只通过检测汽包水位来控制给水量(2)双冲量水位控制模式:监测汽包水位、蒸汽流量,将蒸汽流量作为前馈信号,与汽包水位组成前馈—反馈控制方式。
(3)三冲量水位控制模式:监测汽包水位、蒸汽流量、给水流量,将汽包水位作为主控编练个,给水流量作为辅助被控变量的串级控制系统与蒸汽流量作为前馈信号组成前馈—串级反馈控制方式。
汽包水位计种类及测量原理
根据《防止电力生产事故的二十五项重点要求》,锅炉应至少配置两个彼此独立的就地汽包水位计和两支远传汽包水位计,并应采用两种以上工作原理共存的配置方式,以保证在任何运行工况下锅炉汽包水位的正确监视。
结合现场实际,介绍下集控作业区锅炉汽包水位计种类及测量原理。
(一)锅炉汽包水位计种类:
1、就地双色水位计
2、电接点水位计
3、差压式水位计
(二)锅炉汽包水位计测量原理:
1、就地双色水位计
根据水与蒸汽对光的折射率不同,实现双色显示水位。
由发光二极管发出红、绿两种颜色的光从不同角度照射到水位计腔体内,水位计腔体断面程梯形,腔体内为蒸汽时近似于透镜,红色光直接通过水位计腔体,绿色光直接照在水位计腔体内壁上,摄像机观察到的是红色。
腔体内为水时相当于梯形棱镜,红色光进入腔体被折射到腔体内壁上,绿色光进入腔体被折射直接通过,摄像机观察到的是绿色.以此来达到双色显示水位(水为绿色,蒸汽为红色)。
水位计腔体通过云母片及平面镜等组件密封。
示意图及原理图如下:
2、电接点水位计
由于水和汽的导电性能差别极大,汽阻远大于水阻,电接点与测量筒绝缘,当测量筒内水位没过电接点后,电接点与测量筒底部的公共端电阻变小,通过二次表进行转换后,以发光二极管和数码的形式显示水位值.
3、差压式水位计
采用差压变送器测得高、低压侧取样管内液柱高度差(L-H)转换成差压信号,传送至DCS经过计算得出。
L为参比水柱,高度固定不变,H为汽包内液位高度。
单台锅炉配置三套差压式水位计,传入DCS通过三取中间值参与水位自动调节。
示意图如下:。
锅炉汽包水位计选型参考一、智能型锅炉汽包专用液位计参数:1.工作电压:DC24V2.输出:4-20mA二线制3.防爆标志:ExiaIICT6 Ga4.工作压力:22MPamax5.测量范围:1500mm6.环境温度:-40℃~80℃7.介质温度:500℃max.二、智能型锅炉汽包专用液位计特点:1、采用独特专用的封装技术,设备内部压力越高密封越紧,设备效果越好,不渗漏。
2、根据锅炉及其介质特性,采用军事航空上的特殊材料,制成专用极杆。
3、根据锅炉及其介质特性,采用适合其工况条件的专用智能型信号放大器使其性能更加稳定,精准度更高,无假液位现象,并具故障自检功能,效果优于其他同类产品。
三、智能型锅炉汽包专用液位计优点:1.耐高温、高压、高稳定性、寿命长。
2.对测量过程中压力、温度的影响具有自动补偿功能。
3.电极选用耐高温高压非金属材料,采用独特结构,实现机电一体化。
4.适用于各种规格的工业锅炉、电站锅炉汽包液位在全工况条件下的连续准确性测量、控制。
四、智能型锅炉汽包专用液位计介绍:锅炉汽包水位测量的重要性是人所共知的,然而长期以来锅炉汽包水位连续测量技术方面采用的平衡容器式(差压式)测量方法存在许多无法改进的缺陷,主要体现在以下几个方面:1、不能实施全工况测量,存在“假水位”测量、在锅炉启、停、排空、连排、事故等不稳定运行工况下建立稳定差压条件时间较长、恢复时间较长或干脆不能建立正常差压,需要人工干预等问题。
2 、在稳定工况条件下,由于受结构限制,不能彻底解决因水侧绝温造成的系统测量误差的补偿问题。
在锅炉缺、满水等事故工况条件下,系统测量误差过大可能带来严重后果。
3、结构复杂,静密封点多,施工规模大并存在冬季保温问题。
4、测量时滞较长,不能即时反应锅炉水位变化,测量信号调节质量差。
5、由于存在冷凝筒放热,使用成本极高。
这些缺陷都是由于差压式测量原理及其对系统取样结构的不合理造成的,无法改进。
在非正常工况下给锅炉安全运行造成了极大隐患。
水工程重常用的液位测量仪表及选型要点
我们在选择液位测量仪表的时候,首先要考虑一下因素:
1. 测量对象,如被测介质的物理和化学性质,以及工作的温度和压力,安装条件,液位变化的速度等;
2. 测量和控制要求,如测量范围,测量精确度,显示方式,现场指示,远距离指示,与计算机的接口,安全防腐,可靠性及施工方便性。
给水工程中常用的液位计及选型要点如下:
1.浮球液位计
在液体中放入一个空心的浮球,当液位变化时,浮球将产生与液位变化相同的位移。
可用机械或电的方法来测得浮球的位移,这种液位计不适用于高粘度的液体,其输出端有开关控制和连续输出。
在净水厂的设计中,多将此种液位计用于集水井的液位测量以控制排水泵的自动开停。
2.静压式液位计
静压式液位计是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20mA/1~5VDC)。
其标准精度在±0.5%。
3.超声液位计
超声液位计的传感器由一对发射、接收换能器组成。
发射换能器面对液面发射超声波脉冲,超声波脉冲从液面上反射回来,被接收换能器接收。
根据发射至接收的时间可确定传感器与液面之间的距离,即可换算成液位。
这种液位计无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响,因此多用于药池、药罐、排泥水池等的液位测量。
但此种方法有一定的盲区,且价格较贵。
汽包液位变送器为什么是-6kP--0kP?汽包液位变送器为什么是-6kPa~0kPa而不是采用0kPa~6kPa“这个问题要从我们对锅炉汽包水位的测量是用哪一种引压方式上来回答。
锅炉汽包水位测量用的取样装置是所谓的平衡容器,它的引压出口一般有三个,其中有一个是所谓的正压侧接口,另一个是所谓的负压侧接口,剩下的一个是所谓平衡容器的排污接口,当然也有仅只有二个正、负引压接口的平衡容器。
1。
平衡容器的排污接口还有一个作用,就是在起炉的初期能通过适当的排污来加热整个平衡容器,使其能在较短的时间内达到与汽包内饱和水相同的温度而达到投用水位计的条件(主要是为水位自动控制创造条件);2。
正压接口一般是通过导压管接入差压变送器的正压侧;而负压接口那就是接入变送器的负压侧;3。
平衡容器的引压出口内在连通何处:至于平衡容器的正压侧是否与汽包内水侧相连还是与汽包的内部汽侧相连,不同的厂家配套来的平衡容器是不一样的,这个问题不弄清楚对以后的侧量的量程确定就麻烦了。
在安装时必须要引起足够的重视,当然对照平衡容器的出厂装置图是很容易判定的。
4。
正负压侧:上述问题我们搞清楚后,就可以简单地定义认为:与水侧相连的引压管是相对而言为”负端“,也就是我们常说的负压侧;与汽侧相连的引压管是相对而言为”正端“,也就是我们常说的正压侧;正、负压侧是指这两根导压管相对而言哪一个引入的压力略高一点哪一个略低一点而已,区分它们是正、负压侧的目的是为了接入变送器的方便和正确而定义的。
5。
量程的确定:1)当我们把与汽包的水侧相连的导压管接入变送的负压侧时,我们说此时的量程为:0~6.40kPa(0差压对应着高水位、满量程差压6.40kPa对应着0水位),变送器的量程就调校在:0~6.40kPa对应4~20mA输出(0差压--高水位对应着4mA、满量程差压6.40kPa--低水位对应着20mA)。
而此时对应的二次表(或数据采集器、DCS的DAS等)应当是:4~20mA输入电流对应着:+320mm~-320mm(4mA对应着+320mm、20mA对应着-320mm)。
锅炉汽包液位的选型及液位的控制摘要:分析了影响锅炉汽包运行的各种因素,介绍汽包水位检测的各种常规仪表、测量方法及汽包水位的三种控制方式,进而比较得出最佳的水位检测措施及控制策略。
最后,通过实。
关键词:汽包水位;选型;三冲量;控制方式锅炉汽包水位是锅炉安全运行的一个重要参数,特别是对高参数、大容量的锅炉,随时准确监视汽包水位的变化就非常重要。
水位过高,蒸汽空间缩小将会引起蒸汽带水,使蒸汽品质恶化,以致在过热器管内产生盐垢沉积,使管子过热,金属强度降低而发生爆破;满水时蒸汽大量带水,将会引起管道和汽机内产生严重的水冲击,造成设备的虽坏。
水位过低,将会引起水循环的破坏,使水冷壁管超温过热,严重缺水时,还可能造成更严重的设备损坏事故。
因此加强对水位的监视和调整至关重要。
因此汽包锅炉应至少配置两只彼此独立的就地汽包水位计和两只远传汽包水位计,一般锅炉汽包水位波动要求不超过±30mm~50mm的范围,以防止恶性事故的发生。
比如:锅炉汽包满水事故和锅炉汽包缺水事故。
因此在锅炉上往往装有一套不同型式的水位计来监视汽包水位变化情况,并在汽包水位超限时进行报警,甚至达到连锁时动作停炉。
下面介绍几种常用汽包液位测量液位计。
锅炉汽包水位调节和水位保护的信号应采用有压力、温度补偿的差压式水位表的信号。
也就是说汽包水位保护的信号应来自差压变送器,严禁从就地水位表上取信号。
双色液位计,采用连通器原理制成,通过光学原理所显示的锅炉水汽部分都是有色的,汽呈红色,水呈绿色。
这种水位计属于锅炉的附属设备,就地安装。
直接观测水位,气满全红,水满全绿,随水位变化自动而连续。
在锅炉启、停时用以监视汽包水位和正常运行时定期校对其他型式的水位计。
双色水位计观测明显直观,在实际运行中,由于锅炉加药腐蚀和水汽冲刷,运行一段时间以后,石英玻璃管内壁磨损严重,引起汽水分界不明显。
尤其现在一般采用工业电视监视,现场摄像头受光线变化影响水位显示更加模糊不清,另外由于水位计处于汽包上,环境温度高,使水位计的照明维护工作量明显增加。
锅炉汽包水位监视基准表和保护仪表选型1 高维信1,董 强2,荆予华3,尤红军 4,滕会英5(1.淮安维信仪器仪表有限公司,江苏 淮安 223001;2. 山西阳光发电有限公司,山西 阳泉 045200;3.焦作电厂,河南 焦作 454001; 4.马头发电总厂,河北 邯郸 056044;5.衡丰发电有限公司, 河北 衡水053000)摘 要:分析差压水位计环境温度修正难点、测量附加差压的不确定性和随机性、实测不稳定、易大幅度飘移、0位必须频繁核对等问题。
差压式水位计的测量不稳定性影响保护全过程投入,保护实际传动校验问题多。
通过差压水位计和新型电接点水位计的性能比较,指出监视基准表、主表和保护仪表不宜选用差压水位计,而应选用电接点水位计。
提出保护与自调“合用”差压式信号的“危险集中”问题,并提供“危险分散”设计实例供借鉴。
关键词:锅炉;汽包水位;监视基准表;保护仪表;选型;危险分散中图分类号: 文献标识码:B 文章编号:1004-9649(2003)07-0000-000 前言云母、电接点、差压水位计是测量汽包水位的主要在用仪表,性能各有所长,但都有不容忽视的缺陷。
汽包水位监控保护系统整体设计,按监视、自调、保护3个子系统对其测量装置主要性能的不同要求,优化配置相应仪表,是防止锅炉重大水位事故的重要策略。
但监视基准和保护仪表配置问题长期未能妥善解决。
由于认为短期内不可能解决电接点水位计误差大和水位测点少问题,由于保护与自调信号的“危险集中”问题尚未引起汽包水位测量系统配置设计的重视,规定差压水位计用于监视基准和保护,使之成为3个子系统的同一配置仪表。
但差压水位计的实测值易变、误差不确定性,及差压式保护在锅炉启动时不能投入、水位实际传动校验性能差等问题,并未解决。
在20多台超高压、亚临界锅炉上,新型高精度、高可靠性电接点水位计已可靠用于监视基准与保护,“汽包水位多测孔接管”新技术已成功地增加了水位测点。
化工装置锅炉汽包液位仪表选型与计算秦雅君【摘要】化工装置中废热锅炉的主要作用为利用反应产生的热量产生水蒸气,起到节约能源的效果.主要介绍了汽包液位仪表的选型以及液位补偿等计算方法,针对汽包液位的控制提出了一些参考.在托普索工艺包中建议采用普通导压管连接的差压液位变送器,计算时通过密度补偿减少测量值误差,但考虑到伴热及可能出现的液位波动等同题,在某项目设计中创新使用连通器与双法兰组合测量汽包液位,同时结合密度补偿公式进行计算,既减少了伴热工作量,又可以通过连通器稳定液位.该项目已投入运行,使用效果良好.【期刊名称】《石油化工自动化》【年(卷),期】2016(052)001【总页数】3页(P71-73)【关键词】汽包液位;差压测量;双室平衡容器;密度;补偿;连通器【作者】秦雅君【作者单位】中国天辰化学工程有限公司,天津300400【正文语种】中文【中图分类】TQ056.1+4在化工生产中有许多产能反应,如加氢反应会有大量的热量产生,如何有效利用这些热量,节约能源并产生经济效益[1],是化工领域的一个重要课题。
废热锅炉就是利用这些热量并根据不同的热量等级产生不同压力等级的蒸汽,以供公用工程或后续工段使用的典型设备[2-3]。
由此,汽包水位的高低直接影响锅炉的运行是否安全:水位过高,会使蒸汽量增加,严重时出现满水、过水事故;如果水位过低,会导致锅炉缺水事故,需紧急停炉,若处理不当,在严重缺水时大量进水,就会出现汽锅爆炸事故。
因此,汽包水位测量在保证安全生产中起着举足轻重的作用,锅炉汽包流程如图1所示。
废热锅炉与汽包之间是动态平衡的关系,汽包是一个汽液两相并存的空间,是具有自平衡能力的被控对象。
锅炉给水在汽包内部不断汽化沸腾,使得气相和液相交接面形成水汽混合物的剧烈沸腾状态,即虚假液位[4],汽包液位测量的难点也正在于此。
为了解决运行中汽包存在虚假水位导致直接测量不准确的问题,以下阐述两种在工程领域使用的液位计测量方法,供参考、比较。
汽包水位测量系统常用的汽包水位计有哪些差压式水位计目前还是汽包水位测量的主流,它结构简单、安全可靠、费用低廉,但也存在着测量精度较低、维护麻烦等问题。
差压式汽包水位计的工作原理是通过把水位高度的变化转换成差压的变化来测量水位的,准确测量的关键是水位与差压之间的准确转换。
图1为典型的差压式汽包水位计原理图,采用的是单室平衡容器式。
近十几年来,在汽包水位测量方面也出现了不少新技术、新产品,如下介绍。
1、电容式水位计电容式液位计是采用测量电容的变化来测量液面的高低的。
它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。
两电极间的介质即为液体及其上面的气体。
由于液体的介电常数e1和液面上的介电常数e2不同,比如e1>e2,则当液位升高时,电容式液位计两电极间总的介电常数值随之加大因而电容量增大。
反之当液位下降,e值减小,电容量也减小。
所以,电容式液位计可通过两电极间的电容量的变化来测量液位的高低。
优点:利用水、汽电容不一致原理直接测量液面,能减少偏差。
缺点:价格偏高于差压式水位计、适应低压、中汽包、对于重型燃气轮机的高压汽包存在一定的温度过高,导致设备损坏的风险,同时汽包内液面和下降管中液面水位也存在环境温度引起的水汽界面模糊的偏差。
2、导波雷达水位计导波雷达液位计是依据时域反射原理为基础的雷达液位计,导波雷达物位计发出高频脉冲沿着导波组件传播,当雷达波遇到被测介质时,由于介电常数发生突变,引起部分脉冲波的反射,并沿着导波组件还回。
由于雷达波的传输速度是恒定的,因此雷达物位计只要计算出发射与接收雷达波的时间间隔,就可以计算出液位空高,量程减去空高就是实际液位高度。
优点:利用导波雷达反射原理测量,测量精度较高,使用便捷,能减少偏差。
缺点:价格明显高于差压式水位计,适应低压、中汽包,对于重型燃气轮机的高压汽包同样存在一定的温度过高,导致设备损坏或寿命大幅缩短的风险。
3、内置式差压水位计内置式差压水位计本身工作原理和差压式水位计式一样的,不同的是将取压装置安装在汽包内部,以此来消除由于汽包内外温度差别引起的密度差。