回转器电路设计实验
- 格式:docx
- 大小:164.26 KB
- 文档页数:6
1.13 实验十三 回转器的研究1.13.1. 实验目的(1). 观测和研究回转器的端口伏安特性;(2). 测试回转器的参数;(3).了解回转器的应用。
1.13.2. 实验原理(1) 回转器的端口伏安特性理想回转器是一个二端口网络,其电路模型如图12.1所示,其伏安关系为i 1=g u 2 或 u 1= - r i 2i 2=-g u 1 u 2= r i 1即一个端口的电流(或电压)能够“回转”为另一个端口的电压(或电流),其中g 和r 分别称为回转电导和回转电阻,简称回转系数。
(2) 回转器的阻抗逆变作用在图1.13-2中,回转器输入端接入负载阻抗ZL ,入端的输入阻抗z r L 2)(r r 1r I U I U Z 2222211in=-=-== 假如负载为电容,其阻抗为1/(j ωC),则此时输入阻抗L j Cr j C j 122in r Z 'ω=ω=ω=即输入阻抗为电感L=r 2C 的电感元件,所以回转器也是一个阻抗逆变器。
(3) 利用回转器产生浮地电感用回转器(当输出端接电容C 时)模拟的电感一端接地,这就意味着此电路仅能用来实现一端接地的电感。
然而无源RLC 电路通常包含有不接地的电感,这种电感一般称为“浮地电感”。
实现这种电感的途径是把两个回转器和一个电容按图12.3(a)级联起来。
如果回转器是理想的,那么该电路就具有图1.13-3(b)所示的数值为Cr 2的理想浮地电感的性质。
图1.13-1 回转器模型 U 2 - + 图1.13-2 由回转器实现阻抗逆变 Z in 图1.1-3 回转器模拟浮地电感(a)用模拟电感可以构成谐振电路或滤波器等电路。
(4) 用运算放大器组成回转器用运算放大器组成回转器的电路有多种,图1.13-4为其中一种,其工作原理请同学们自行分析之。
1.13.3实验内容(1) 回转器端口伏安特性的观测用示波器分别观测输出端接R L 、L 或C 时的入端电压、电流波形。
回转器电路设计(完整版,包括pspice仿真电路以及实验⼤数据)航空航天⼤学电路实验报告回转器电路设计姓名:李根根学号:031220720⽬录⼀、实验⽬的 (2)⼆、实验仪器 (2)三、实验原理 (2)四、实验要求 (3)五、⽤pspice软件进⾏电路仿真并分析 (5)六、实验容 (9)七、实验⼼得 (11)⼋、附件(Uc – f 图) (12)⼀、实验⽬的1.加深对回转器特性的认识,并对其实际应⽤有所了解。
2.研究如何⽤运算放⼤器构成回转器,并学习回转器的测试⽅法。
⼆、实验仪器1.双踪⽰波器2.函数信号发⽣器3.直流稳压电源4.数字万⽤表5.电阻箱6.电容箱7.⾯包板8.装有pspice软件的PC⼀台三、实验原理1.回转器是理想回转器的简称。
它是⼀种新型、线性⾮互易的双端⼝元件,其电路符号如图所⽰。
其特性表现为它能够将⼀端⼝上的电压(或者电流)“回转”成另⼀端⼝上的电流(或者电压)。
端⼝变量之间的关系为I1 = gu2 u1 = -ri2I2 = gu1 u2 = ri1式⼦中,r,g称为回转系数,r称为回转电阻,g称为回转电导。
2.两个负阻抗变换器实现回转器图中回转电导为:四、实验要求先利⽤pspice软件进⾏电路仿真,(提⽰:仿真时做瞬态分析,信号源⽤Vsin ,做频率分析时,信号源⽤VAC)然后在实验室完成硬件测试:1.⽤运算放⼤器构成回转器电路(电路构成见实验教材p216图9-24,其中电阻R的标称值为1000Ω),测量回转器的回转电导。
2.回转器的应⽤——与电容组合构成模拟电感。
3.⽤电容模拟电感器,组成⼀个并联谐振电路,并测出谐振频率以及绘制其Uc~f幅频特性曲线。
具体要求:1.回转器输⼊端接信号发⽣器,调得Us=1.5V(有效值),输出端接负载电阻RL=200Ω,分别测出U1、U2及I1,求出回转电导g。
试回答改变负载电阻以及频率的⼤⼩对回转电导有何影响?2.回转器输出端接电容,C分别取0.1µF和0.22µF,⽤⽰波器观察频率为500Hz、1000Hz 时U1和I1的相位关系,解释模拟电感是如何实现的。
实验报告五 回转器的设计与研究1、电路课程设计目的(1)利用运算放大器设计电路,实现回转器;(2)用实验方法测定回转器参数并与理论计算值比较。
2、设计电路原理与说明理想回转器是一种线性的非互易二端口网络,不消耗功率也不发出功率,是一个无源线性元件。
回转器有把一个端口的电压“回转”到另一个端口的电流或相反的过程这样一种性质。
正是如此,可利用回转器将一个电容回转为一个电感,这为集成电路中对于电感元件难以集成的问题提供了一种解决的方法,即用便于集成的电容代替电感。
回转器矩阵方程为112200i u g i gu ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭112200u i r u r i -⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,g 具有电导量纲,称为回转电导;r 具有电阻量纲,称为回转电阻,它们均为常数,亦称为回转常数,且1g r =。
设计电路图如下:1320R R ==Ω 2410R R ==Ω121'2'图一利用运算放大器的“虚短”“虚断”概念,对O 1的同相端列KCL 方程有2421u u i R -=对O 2同相端列KCL 方程有213u i R -=又流过R 2和R 4的电流相同有12424u u u R R -=故42112R i u R R =写成矩阵形式为31122412100R i u i u R R R ⎛⎫-⎪⎛⎫⎛⎫⎪=⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭当1234R R R R =时,即满足回转器的条件,矩阵形式为3112231010R i u i u R ⎛⎫-⎪⎛⎫⎛⎫ ⎪= ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭回转电导31g R =,回转电阻3r R =。
现取1320R R ==Ω,2410R R ==Ω,故0.05g s =,20r =Ω。
3、电路课程设计仿真内容与步骤及结果(1)在1-1’ 端口接入电源,在2-2’ 端口接入10Ω电阻,测量I 1 I 2 U 2;图二1212200.6u i ==Ω21 5.999200.3u i -=≈Ω (2)在2-2’ 端口接入电源,在1-1’ 端口接入10Ω电阻测量I 2 I 1 U 1;图三125200.25u i ==Ω 2110200.5u i --==Ω-(3)测量回转器将电感回转为电容的特性;图四波形图为图五电流超前电压,表现出电容的特性。
回转器实验报告回转器实验报告引言:回转器是一种常见的实验装置,用于研究物体在旋转时产生的力和动力学特性。
本次实验旨在通过构建一个简单的回转器装置,探究回转器的基本原理和运行机制,并分析其在不同条件下的性能表现。
一、实验目的本实验的主要目的如下:1. 理解回转器的基本原理和结构;2. 探究回转器在不同转速下的性能变化;3. 分析回转器在不同负载条件下的工作特性;4. 讨论回转器在实际应用中的局限性和改进方向。
二、实验装置与方法1. 实验装置:本次实验所使用的回转器装置主要包括一个电动机、一个转轴、一个负载轮和一套数据采集系统。
电动机通过转轴将动力传递给负载轮,数据采集系统用于记录转轴转速和负载轮的转动情况。
2. 实验方法:在实验开始前,首先将电动机与转轴连接,并将负载轮安装在转轴上。
然后,通过调节电动机的转速,记录不同转速下转轴的转动情况。
接着,改变负载轮上的负载,记录不同负载条件下转轴的转速和负载轮的转动情况。
最后,根据实验数据进行分析和讨论。
三、实验结果与讨论1. 回转器转速与负载关系:根据实验数据,我们可以得出回转器的转速与负载之间存在一定的关系。
当负载增加时,回转器的转速会下降;当负载减小时,回转器的转速会增加。
这是因为负载的增加会增加回转器所需的力矩,从而降低转速。
2. 回转器转速与电动机转速关系:实验还表明,回转器的转速与电动机的转速之间存在一定的关系。
当电动机的转速增加时,回转器的转速也会增加;当电动机的转速减小时,回转器的转速也会减小。
这是因为电动机提供的动力直接影响着回转器的转速。
3. 回转器的性能与负载轮材料的关系:在实验中,我们还发现负载轮的材料对回转器的性能有一定的影响。
当负载轮的材料较轻时,回转器的转速会相对较高;当负载轮的材料较重时,回转器的转速会相对较低。
这是因为负载轮的材料质量会影响回转器所需的力矩。
四、实验结论通过本次实验,我们得出了以下结论:1. 回转器的转速与负载之间存在一定的关系,负载增加会导致转速下降。
回转器设计实验报告实验课程:电路实验与实践实验名称:回转器设计学号:031150204姓名:蔡慧敏实验目的:1.加深对回转器特性的认识,并对其实际应用有所了解。
2.研究如何用运算放大器构成回转器,并学习回转器的测试方法。
二、实验原理1. 回转器是理想回转器的简称,它能将一端口上的电压(电流)“回转“成另一端口上的电流(电压)。
端口变量之间的关系为:I1=gU2 或 u1=-ri212二 gU1 u2=ri1式中:r、g为回转系数,为回转电阻,g为回转电导。
2. 两个负阻抗变换器实现回转器:入 时 :Rin=1/(g2RL) 回转电导 :g=1/R三、实验仿真软件PSpice 仿真软件四、实验步骤1. 测回转电导 g :回转器输入端接信号发生器,调得US=1.5V (有效值),输出端接负载电阻 RL=200Q ,分别 测U1, U2, 11,求g 。
2.记录不同频率下 U1 、I1 的相位关系:回转器输出端接电容,C 分别取0.1卩F 、0.22卩F ,用 示波器观察f 分别为500Hz 、1000Hz 时U1和11的相位关系。
3.测由模拟电感组成的并联谐振电路的 Uc~f 幅频特性:取C 仁0.1卩F 经回转器成为模拟电感,另取C=0.22卩F ,则 f0=1.073kHz, 符合要求。
信号源输出电压有效值保持为 1.5V 不变,改变频率(200Hz 〜2000H3 ,测Uc 的值,同时观察 US 和 UC 的相位关系。
(串联一取样电阻,阻值 1k Q ) 五、仿真实验电路图及数据用电阻接一般情况 :Zin=1/(g2ZL )1 .测量回转电导g,仿真结果如图1-1所示;模拟数据::U 仁22.48uV U2=16.05uV g=u1/1000/U2=1.00X10-3 S 2.回转器等效电感电路仿真;仿真曲线:150 37uV1.337mAW\249 39nA115.07nAuA741147 18uV R9 w Ik■1 33 7mA 1+■(0.1uf 500Hz)(0.1uf 1000Hz)(0.22uf 1000Hz)(0.22uf 500Hz) 3. RLC并联电路仿真结果;Uc - F关系图六、(见手抄版)七、实验体会从星期天开始做仿真电路开始到今天已经是第四天,终于完成了了的时候,有一种很单纯的开心,从一开始不知所云开始,到一步步解决过程中遇到的困难,好像把这个学期所有的电路实验都连起来了一样,甚至于许多没做过的实验,记得在实验电路课堂上做仿真电路的时候,就只是按照书上的步骤照葫芦画瓢,设置的那些参数自己都不知道有什么用,而在这次的实验中,真是从新学了 PSPICE 的软件,各种参数设置的意义,还有许多图形符号的意义。
姓名:赵玲学号: 1010200219回转器的设计摘要:回转器是理想回转器的简称,是一种新型的双口元件。
其特性表现为它能将一端口上的电压(或电流)“回转”为另一端口上的电流(或电压)。
本文利用运算放大器实现负阻抗变换器电路,进而利用负阻抗变换器实现回转器。
通过在multisim11.0仿真软件中的模拟,验证了回转参数满足的基本方程以及回转器将负载电容“回转”为电感量的准确性。
关键字:回转器回转参数模拟电感正文:一、实验装置及设备装置双路稳压电源函数发生器交流毫伏表数字示波器有源电路实验板二、实验内容1、用运算放大器设计一个回转器电路并推导其基本方程(a)基本原理:①回转器示意图如图1-1,回转器端口量之间的关系:I1=gU2 I2=-gU1 或 U1=rI2 U2=-rI1式中g和r(r=1/g)分别为回转电导和回转电阻,简称回转常数。
用矩阵形式表示为: =⎥⎦⎤⎢⎣⎡I2I1⎢⎣⎡-g 0⎥⎦⎤0g ⎥⎦⎤⎢⎣⎡U2U1 或 =⎥⎦⎤⎢⎣⎡U2U1⎢⎣⎡r 0⎥⎦⎤0-r ⎥⎦⎤⎢⎣⎡I2I1 ②回转器电路图如图1-2所示:图 1-1图 1-2(b )实验的仿真电路图如下图所示:①实验步骤:电路图中:R1=R2=R3=R4=R5=R6=R7=R8=1kΩ,改变R8和一端的电压U1,测量一端电流I1、另一端电压U2和电流I2,并记录在表格中。
②仿真截图:V1=1.000 R8=1KΩ:R8=2KΩV2=2.000 R8=1KΩR8=2KΩ③由电路图知-13S10.01-⨯-=理g,R8/k ΏV1/VI1/mAU2/VI2/mAg测/1-S(g=I1/U2)g理/1-S%100|-|⨯理理测ggg1 1.000 1.00-1.0001.00-1.00310-⨯-1.00310-⨯2 1.000 1.999-1.9991.00-1.00410-⨯1 2.000 2.00-2.0002.00-1.00410-⨯2 2.0003.963-3.9631.982-1.00410-⨯④结果分析:由表格知,所测的回转参数的值与理论上回转器的回转参数值吻合,从而验正了回转参数满足了基本方程。
实验二十三 回转器一、实验目的1. 掌握回转器的基本特性2. 测量回转器的基本参数3. 了解回转器的应用 二、原理说明1. 回转器是一种有源非互易的新型两端口网络元件, 电路符号及其等效电路如图23-1(a)、(b)所示。
图 23-1 理想回转器的导纳方程如下: I 1 0 g u 1= ,或写成 i 1=gu 2 ,i 2=-gu 1 I 2 -g 0 u 2也可写成电阻方程:u 1 0 -R i 1= ,或写成u 1=-R i 2 ,u 2=R i 1 u 2 R 0 i 2式中g 和R 分别称为回转电导和回转电阻,统称为回转常数。
2. 若在2-2'端接一负载电容C ,则从1-1'端看进去就相当于一个电感,即回转器能把一个电容元件“回转”成一个电感元件;相反也可以把一个电感元件“回转”成一个电容元件,所以也称为阻抗逆变器。
2-2'端接有C 后,从1-1'端看进去的导纳Y i 为2222211/i u g g i gu u i Y i -=-== Cj Z i u L ω122=-=Lj C j g Y i ωω1/2==∴,式中2g C L =为等效电感。
3. 由于回转器有阻抗逆变作用,在集成电路中得到重要的应用。
因为在集成电路制造中,制造一个电容元件比制造电感元件容易得多,我们可以用一带有电容负载的回转器来获得数值较大的电感。
图23-2为用运算放大器组成的回转器电路图。
112,22U 2(a)11,U 12U 2(b)图 23-2三、四、实验内容实验线路如图23-3所示。
R S 跨接于HE-13挂箱中G 线路板左下部的二个插孔间。
1. 在图23-3的2-2'端接纯电阻负载(电阻箱), 信号源频率固定在1KHz ,信号电压≤3伏。
图 23-3 用交流毫伏表测量不同负载电阻R L 时的 U 1、U 2 和U RS , 并计算相应的电流I 1、I 2和回转常数g ,一并记入表23-1中。
南京航空航天大学
实验报告
实验课程:电路实验与实践
实验名称:回转器电路设计
班级:0312302
学号:
姓名:
实验日期:2013-12-19
一、实验目的
1.加深对回转器特性的认识,并对实际应用有所了解;
2.研究如何运用运算放大器构成回转器,并学习回转器的测试方法。
二、实验原理
回转器是理想回转器的简称,它能将一端口上的电压(电流)“回转”成
另一端口上的电流(电压)。
端口之间的关系为:
I1=gU2 或u1=-ri2
I2=-gU1 或u2=ri1
式中:r、g 为回转系数,r为回转电阻,g 为回转电导。
三、实验步骤
1. 测回转电导g:
回转器输入端接信号发生器,调得US=1.5V(有效值),输出端接负载电
阻RL=200Ω,分别测U1,U2,I1,求g。
2. 记录不同频率下U1、I1的相位关系:
回转器输出端接电容,C分别取0.1μF、0.22μF,用示波器观察f
分别为500Hz、1000HZ时U1和I1的相位关系。
3. 测由模拟电感组成的并联谐振电路的Uc~f幅频特性:
取C1=0.1μF经回转器成为模拟电感,另取C=0.22μF,则f0=1.073kHz,
符合要求。
信号源输出电压有效值保持为 1.5V 不变,改变频率(200Hz~2000Hz),测Uc 的值,同时观察US和UC的相位关系。
(串联一取样电阻,阻值1k
Ω)
四、仿真实验电路图及数据
1.测量回转电导g,仿真结果如下图所示
实验数据:U1=250mV U2=244.99mV I1=U1/1000 g=I1/U2=U1/(1000*U2)=1.00 X 10-3s
2、回转器等效电感电路仿真:
注:以下视图V(R1:1,R1:2)为UR(UR=I1*R),V(R5:2)为输入电压U1
U1-I1 相位关系图(C=0.1uf ,f= 500HZ)
U1-I1 相位关系图(C=0.1uf ,f= 1000HZ)
U1-I1 相位关系图(C=0.22uf ,f= 500HZ)
U1-I1 相位关系图(C=0.22uf ,f= 1000HZ)3. RLC并联电路仿真结果:
Uc-f 幅频特性曲线。