海洋深水钻井钻井液技术
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
海洋石油深水钻完井技术措施随着全球能源需求的不断增长,海洋石油的开发已成为人们关注的热点之一。
而深水油田的开发更是海洋石油开发中的一大挑战,因为深水条件下的石油开采和完井技术要求更高,成本更大。
本文将重点介绍海洋石油深水钻井完井技术措施。
一、深水钻井完井技术要求1.水深要求深水钻井一般指水深超过500米的区域,500-1500米为中水深钻井,超过1500米为深水钻井。
由于深水区域的水深较大,风浪和洋流的影响较小,因此深水钻井完井的技术要求较高。
2.环境条件要求深水区域的环境条件十分恶劣,海底水深,海流湍急,海底温度低,而且还存在着飓风、沙尘暴等极端天气,对钻井作业的安全性和可靠性提出了更高的要求。
3.技术难度要求深水区域的地质情况复杂,地下石油资源分布不均,水平分布广泛,开采难度大,深水钻井完井技术的难度也就更大。
二、深水钻井完井技术措施1.钻井平台选择深水区域的钻井平台要求比较苛刻,一般有浮式钻井平台、半潜式钻井平台和固定式钻井平台等,根据实际情况选择合适的钻井平台模式,以满足深水钻井作业的需求。
2.井眼稳定措施深水钻井井眼稳定是深水钻井完井中的一项关键技术,包括对井眼的泥浆配方、井眼的支撑和防护等技术措施,以确保井眼在钻井和完井过程中保持稳定。
3.井眼冲洗技术深水钻井完井中,井眼冲洗技术是必不可少的一项工艺,通过冲洗井眼可以清除井底碎屑、减轻井眼摩阻,提高钻井速度和井眼质量。
4.钻头选择深水钻井中,选择合适的钻头是十分重要的,在深水区域,一般使用可控方向钻头和导向钻头等,以满足深水井眼质量和完井效果的要求。
5.完井工艺技术深水完井技术主要关注几个方面:封隔技术、井筒治理技术、水泥浆配方、井眼净化技术等,这些技术对于深水油田的开发至关重要。
6.安全与环保技术深水油田开发中,要严格把控环境保护和安全生产,尤其是深水油田的开发,更要注重安全和环保,加强对海洋环境的保护。
7.智能化技术在深水钻井完井中,智能化技术是未来的发展方向,包括智能化钻井井下设备、智能化井筒监测系统等,提高深水钻井的效率和安全性。
海洋深水钻井钻井液研究进展随着人类对地球的认识不断加深,海洋深层资源的开发日益受到重视。
钻井液作为深水钻井的重要组成部分,在对海洋深层资源开发中也扮演着重要角色。
本文将从海洋深层资源的开发现状入手,介绍海洋深水钻井钻井液研究进展,并对未来的研究方向进行展望。
一、海洋深层资源开发现状人类对海洋深层资源的开发始于上世纪50年代,随着技术的不断进步,海洋深层资源的探索与开发范围逐渐扩大。
海洋深层资源主要包括石油、天然气、甲烷水合物等,这些资源所在的深度一般在几百到上千米不等。
海洋深层资源的开发不仅对全球能源战略具有重要意义,而且对保障世界经济的可持续发展也具有重要的战略意义。
然而,海洋深层资源的开发还面临着一系列的挑战,如复杂的海洋环境、技术难度大、投资高昂等。
如何克服这些挑战,提高海洋深层资源的开发效率和可持续性仍然是摆在我们面前的重要问题。
二、海洋深水钻井钻井液研究进展作为深水钻井的重要组成部分,钻井液在海洋深层资源的开发中具有不可替代的作用。
近年来,国内外的学者们在海洋深水钻井钻井液方面做了大量的探索和研究,主要包括以下方面:1. 钻井液性能的优化在海洋深水钻井操作中,一些问题例如烧钻、漏失、堵塞等都是由于钻井液性能不好而引起的,而且随着钻井深度的加深,这些问题可能更大程度的出现。
因此,研究人员需要优化钻井液的性能,以提高海洋深水钻井的效率和成功率。
其中,防漏失剂、泡沫剂、高温高压稳定剂、环保改性剂等新型钻井液药剂的开发,有望为海洋深水钻井领域带来重大的进展。
2. 钻井液环境适应性研究海洋深水钻井作业的复杂环境要求钻井液能够适应不同的环境并保持稳定。
例如,在深海海域中,海水温度低、压力大,钻井液需要有一定的防冻、抗压性能;在沉积物较多的海域,钻井液的粘度需要相应增加,以便保证井筒安全。
如何研究和开发能够适应不同海洋环境的钻井液,是海洋深水钻井研究领域需要攻克的重要难题。
3. 钻井液环保性研究随着环保意识的不断提高,环保性成为了深水钻井液研究的热点问题。
海洋钻井水基钻井液在页岩地层的使用海洋钻井水基钻井液在页岩地层的使用涉及到一种使用海水作为基础成分的钻井液,用于在页岩地层中进行钻井作业。
随着对非常规油气资源的开发和利用不断增加,页岩地层的钻井工程面临着更为复杂的挑战。
海洋钻井水基钻井液的使用在解决这些挑战中起到了关键作用。
海洋钻井水基钻井液的使用对于在页岩地层中的钻井作业来说具有环保的优势。
相比传统的石油钻井液,海洋钻井水基钻井液采用了更少的化学添加剂,其中一部分添加剂可以由可再生资源制造,减少了对地球资源的损耗。
使用海水作为基础成分也能够减少对淡水资源的需求。
这对于在海洋环境中进行钻井作业尤为重要,特别是远离陆地的深水钻井平台。
海洋钻井水基钻井液的使用在页岩地层的钻井作业中具有较好的稳定性和循环性能。
由于页岩地层的复杂性,传统的钻井液在其中很难保持稳定性。
而海洋钻井水基钻井液通过合理的配方和工艺优化,提供了钻井液密度、黏度、流变性等性能的调节能力,从而使钻井液能够更好地应对页岩地层的挑战。
海洋钻井水基钻井液具有较好的循环性能,可以更有效地清除钻屑,确保钻井作业的顺利进行。
海洋钻井水基钻井液的使用在页岩地层的钻井作业中对岩石保护效果好,并有利于提高生产。
在钻井过程中,钻井液需要对地层进行冷却和润滑,并减小钻头与地层接触的阻力。
海洋钻井水基钻井液在这方面具有突出的优势,能够很好地保护页岩地层的岩石结构,减少地层损伤和井壁稳定性问题。
海洋钻井水基钻井液还可以通过提高水驱效果,促进页岩地层的油气开采。
海洋钻井水基钻井液的使用在页岩地层钻探中可以降低成本。
传统的钻井液多数采用淡水作为基础成分,而在海洋环境中获取淡水供应是一项极大的挑战和成本,而且还需要考虑废水的处理问题。
相比之下,使用海洋钻井水基钻井液不仅能够节约资源,还能够降低成本,提高经济效益。
海洋钻井水基钻井液在页岩地层的使用具有环保、稳定性、保护地层和降低成本等优势,对于页岩地层的钻井作业有着重要的意义。
海洋石油深水钻完井技术措施摘要:深水钻完井工程设计存在着一系列水文地质条件差、运营成本高的设计难点,在一定程度上制约了我国深水油气层的开发进程。
从钻完井工程设计的过程和特点出发,选择了钻完井工程设计的主要内容,如钻井路径和井身结构设计、工作流体设计、钻柱及钻具组合设计、井控技术设计等,并对深水钻完井工程设计概念和设计结果进行了分析,提出了有针对性的设计建议,例如简化钻杆结构、简化钻具的组成、强调控制浅气井和使用大规模作业,可作为设计的有益参考。
关键词:海洋石油;深水;钻井完井技术;工程设计;前言根据海上石油生产的特点,正在进行深水钻完井,以达到预期的效率,并满足海上石油勘探和开采的需要。
加强钻完井钻井技术研究,解决钻完井施工问题,营造符合钻完井施工标准的施工环境,不断提高钻完井施工质量,确保钻完井平台正常运行,实现能力目标。
一、我国海洋石油深水钻完井技术概述1.国内海洋石油资源的整体现状解析石油和天然气资源是社会发展的重要组成部分,在发展国内市场经济方面发挥着关键作用。
在损耗量持续提升的现实状况下,国家石油和天然气资源仍然不足。
因此,为了实现国民经济的可持续发展,不仅需要进一步改进海洋石油和天然气的深水钻完井技术,而且还需要提高开发和利用海洋石油资源的总体效率。
只有这样,才能充分满足国民经济日益增长的需求。
2.海洋石油深水钻井的特点深海非常动荡,海水波动很大,使得油井建设非常困难。
此外,深海环境状况和高度的安全风险要求建筑设计和管理方面的最佳做法,以达到钻完井施工的预期质量。
深水低温条件影响数百米以上的油层。
因此,垂直管内钻井液性能差影响钻井液的正常循环,对深水钻井液构成危险。
同时影响钻井作业的质量,泥浆不易迅速凝固,钻井作业时间较长,钻井作业费用增加。
在深水钻完井中,容易遇到浅气或流体。
如果不加以适当控制,井喷可能危及钻井平台的安全,并造成海洋污染。
浅水压力是爆炸事故的主要原因。
浅气体的存在可能导致油井中存在天然气。
86海洋深水钻井是目前石油勘探开采的主要方式之一,然而在深海环境下钻井完井过程中,液相环境的控制一直是关键的技术难点之一。
深海环境下的高温高压、高盐度、高硫化物等极端条件,对完井液的性能和稳定性提出了更高的要求。
因此,钻井完井液的研究和开发具有重要的意义。
在分析海洋深水钻井完井液的关键技术,并探讨如何在极端环境下实现完井液的优化和稳定运行。
1 海洋深水钻井完井液的作用1.1 井壁稳定深水钻井一般需要在海底几千米的深度进行,井壁稳定对于保障钻井的安全和顺利进行至关重要。
完井液可以在钻井过程中形成一层保护膜,防止井壁塌陷。
在钻井过程中,钻头会不断地钻过不同的地层,这些地层中的岩石和土壤会受到钻头的冲击而发生破坏,进而导致井壁不稳定[1]。
完井液可以通过在井壁表面形成一层保护膜来防止岩石和土壤的破坏,从而保证井壁的稳定。
完井液可以通过控制井壁的压力来实现井壁稳定。
在钻井过程中,完井液会在井孔中形成一定的压力,这种压力可以起到稳定井壁的作用。
1.2 钻头清洗钻头是钻井过程中最重要的工具之一,它需要在操作过程中不断地清洗,以保持其良好的工作状态和延长使用寿命。
海洋深水钻井完井液中的清洗剂和添加剂可以有效地清洗钻头,去除附着在其表面的泥沙和其他碎屑。
钻头清洗是钻井过程中必不可少的一环,因为钻头在钻井过程中会不断地接触到地层,附着在其表面的泥沙和其他碎屑会严重影响其工作效率和使用寿命。
如果不及时清洗,钻头表面的附着物会逐渐增多,导致钻头磨损加剧,甚至出现卡钻等问题,给钻井作业带来很大的困扰。
海洋深水钻井完井液中的清洗剂和添加剂可以有效地解决这一问题。
清洗剂可以快速地将钻头表面的附着物溶解或分散,使其易于清洗。
同时,添加剂可以改善液体的润滑和降低钻头磨损,延长其使用寿命。
1.3 油气井壁封堵油气井壁封堵是指在钻井完井过程中,利用完井液在井壁上形成的一层薄膜,将井壁封堵住,避免油气从井壁周围渗漏出来,从而保证油气资源的开采效果。
CATALOGUE目录•引言•钻井液概述•海洋深水钻井特点•钻井液在海洋深水钻井中的应用•海洋深水钻井钻井液面临的挑战与解决方案•结论与展望背景介绍研究目的和意义提高深水钻井液的稳定性和适应性为深水油气田的开发提供技术支持和保障研究深水钻井液的组成、性能及作用机理钻井液是一种流体,用于在钻井过程中润滑和携带岩屑。
它通常由水、化学剂和其他添加剂组成,用于维持井眼稳定、保护井壁和减少摩擦。
钻井液的定义水聚合物膨润土表面活性剂碱加重剂钻井液的组成钻井液的作用减少摩擦和热量生成。
润滑和冷却钻头携带岩屑维持井眼稳定保护储层将钻头切割下来的岩屑带出井眼。
保持井壁稳定,防止井塌、缩径等问题。
避免对储层造成损害,保护油气资源。
海洋深水钻井的难点深水环境复杂由于深水环境的特殊条件,需要使用高精度、高耐压、高效率的钻井设备,以满足钻井作业的需求。
设备要求高技术难度大海洋深水钻井的技术要求030201海洋深水钻井的特殊环境因素润滑性为了减少钻头和井壁之间的摩擦,应选择具有良好润滑性的钻井液。
稳定性选择具有高度稳定性的钻井液,以减少在深水压力下破裂的风险。
抗腐蚀性深海水域具有高腐蚀性,因此需要选择具有抗腐蚀性能的钻井液。
钻井液的选择钻井液的使用方法钻井液的效果评估润滑性评估抗腐蚀性评估稳定性评估面临的挑战深水环境高压实低温高成本解决方案选择合适的添加剂优化钻井液配方加强成本控制采取保温措施采取保温措施,如使用保温筒等,防止钻井液在低温下结冰。
研究结论未来随着海洋油气勘探开发向深海和极地等复杂环境发展,深水钻井液的研究将更加重要。
研究展望针对深海复杂的地质条件和工程环境,需要进一步研究和开发新型的钻井液体系和添加剂,提高深水钻井的效率和安全性。
随着环保要求的提高,未来深水钻井液的研究将更加注重环保和可持续性,需要开发更加环保和可持续的钻井液体系和添加剂。
未来还需要加强深水钻井液的现场应用和技术服务,以提高深水油气勘探开发的效率和安全性。
海洋石油深水钻完井技术措施【摘要】海洋石油深水钻完井技术措施是为了确保深水钻井作业安全高效进行而制定的一系列措施。
钻井液体系技术措施包括选择适合海洋环境的钻井液体系和使用环境友好的钻井液。
钻井液的性能要求则要求其具有良好的冲刷和悬浮能力以及适应深水高温高压条件的稳定性。
在完井工艺技术措施方面,需要对井下情况进行综合评价,灵活应用多种完井工艺。
安全环保措施是保障作业人员和环境安全的重要举措,注重预防和紧急处理能力。
钻完井后的管柱处理要求合理对待各种管柱,确保深水油气资源得到有效开发。
通过综合这些技术措施,海洋石油深水钻完井可实现高效安全作业,为油气勘探开发提供保障。
【关键词】海洋石油、深水钻井、完井技术、钻井液、性能要求、完井工艺、安全环保、管柱处理、总结。
1. 引言1.1 海洋石油深水钻完井技术措施海洋石油深水钻完井技术是在海洋深水区域进行的一项复杂而重要的作业。
在这种特殊的环境下,钻井与完井技术措施需要更加严谨和精细,以确保工作的高效性和安全性。
海洋石油深水钻完井技术措施涉及到多个方面的知识和操作技能,需要工程师们充分了解并掌握。
在进行海洋石油深水钻完井作业时,钻井液体系技术措施是至关重要的一环。
钻井液的选择及配方需要考虑到海水的特性以及深水环境下的高温高压情况,以保证钻井过程的顺利进行。
钻井液的性能要求也是需要重点关注的问题,包括其稳定性、分离性、滤饱和度等指标。
完井工艺技术措施则主要包括完井管柱的设计与安装、封隔器的选择与使用、射水泵的设置等方面。
这些技术措施的合理应用可以有效提高完井作业的效率和质量。
安全环保措施也是海洋石油深水钻完井过程中的重要内容。
工程师们需要严格遵守安全规范,保障作业人员和设备的安全,同时还需加强环境保护意识,做好海洋环境的保护工作。
钻完井后的管柱处理也是一个关键环节,需要对管柱进行清洗、检测和保养工作,以确保其长期稳定的运行。
海洋石油深水钻完井技术措施在整个作业过程中起着至关重要的作用,只有全面、细致地制定和执行这些措施,才能确保工作的顺利进行和成功完成。
海洋深水浅层钻井关键技术及工业化应用目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 海洋深水钻井技术2.1 钻井平台和设备2.2 钻井工艺流程2.3 钻井液体系统3. 海洋浅层钻井关键技术3.1 钻井方法和工具选择3.2 地质勘探与数据解释3.3 大气环境下的钻井工程挑战4. 海洋钻井工业化应用案例分析4.1 深海石油勘探与开发项目4.2 海洋新能源开发项目4.3 海洋矿产资源开采项目5. 结论与展望(海洋深水浅层钻井关键技术及工业化应用)1. 引言1.1 背景和意义海洋深水浅层钻井技术是目前全球油气勘探与开发领域的关键技术之一。
近年来,随着对传统陆地石油资源的逐渐枯竭和全球能源需求的不断增长,人们对海洋油气资源的开发越来越重视。
相对于陆地石油资源,海洋深水和浅层的钻井具有更大的潜力和开发前景。
深水钻井指在水深超过200米、通常达到1000米以上的海域进行的钻探作业。
而浅层钻井则主要在水深不超过200米的浅海区域进行。
这两种类型的钻井工程都面临着许多挑战,包括复杂的地质条件、恶劣的工作环境以及高昂的成本等。
通过研究海洋深水浅层钻井关键技术及其工业化应用,可以帮助我们更好地了解如何克服这些挑战并实现可持续能源开发和利用。
此外,为了满足全球经济对能源和资源的需求,推动海洋领域的钻探技术和工程实践创新至关重要。
1.2 结构概述本文主要分为五个部分进行论述。
首先,在引言部分,我们将介绍海洋深水浅层钻井关键技术及其工业化应用的背景和意义。
接下来,第二部分将阐述海洋深水钻井技术,包括钻井平台和设备、钻井工艺流程以及钻井液体系统等方面的内容。
第三部分将重点讨论海洋浅层钻井关键技术,其中包括钻井方法和工具选择、地质勘探与数据解释以及大气环境下的钻井工程挑战等方面的内容。
在第四部分中,我们将通过案例分析探讨海洋钻井工业化应用,具体展示深海石油勘探与开发项目、海洋新能源开发项目以及海洋矿产资源开采项目等方面的实际情况。
海洋石油深水钻完井技术措施1. 引言1.1 海洋石油深水钻完井技术措施海洋石油深水钻完井技术措施旨在确保钻井作业的安全、高效进行,并最大程度地提高石油开采效率。
这些措施包括了前期勘探、钻井设备选用、作业流程设计、管柱设计等各个方面。
通过科学规划和精密操作,可以有效应对深水环境下的挑战,提高作业质量,减少事故发生。
在当前世界范围内,海洋石油深水钻完井技术措施已成为石油行业的热门话题,各国纷纷投入大量资金和人力进行研究和实践。
在这个过程中,不断探索和创新技术措施已成为行业的主要趋势,只有不断改进和完善技术措施,才能更好地保障海洋石油开发的持续进行。
2. 正文2.1 深水钻井技术概述深水钻井技术是指在海洋深水区域进行的钻探作业,通常水深超过500米。
深水钻井相较于传统陆地钻井具有更高的技术难度和风险,需要更加先进和复杂的技术措施。
深水钻井技术概述主要包括以下几个方面:首先是钻井平台的选择,深水钻井通常需要使用半潜式钻井平台或者钻船,以应对海浪和风力较大的海域环境;其次是井下设备的设计,包括海底井口设备、井下管柱和钻头等,需要考虑深水高压环境对设备的影响;接着是钻井液的选取和循环系统的设计,深水钻井中需要使用高密度钻井液来对抗高温高压环境;最后是钻井方案的制定,需要根据地质情况、井筒稳定性和钻井目标等因素来选择合适的钻井方法。
深水钻井技术概述涉及到钻井平台、井下设备、钻井液和钻井方案等多个方面,需要综合考虑各种因素才能确保钻井作业的安全和高效进行。
随着海洋石油深水钻探的发展,对深水钻井技术的要求也将逐步提高,持续创新和改进技术措施将是未来的发展方向。
2.2 深水钻井过程中的挑战在深水钻井过程中,面临着诸多挑战,这些挑战不仅来自于技术层面,还涉及到环境、安全等多方面因素。
深水环境下地质条件复杂,海底地形不规则,地层结构复杂,这给钻井作业带来了很大的困难。
钻井过程中需要面对高温高压、高盐度、高硫化氢含量等问题,需要针对这些特殊环境条件采取相应的技术措施以确保钻井的顺利进行。
海洋深水钻井钻井液技术
深水钻井一般指在海上作业中水深超过900m的钻井;水深大于1500m时为超深水钻井,近年来随着海洋石油储量开采比例的不断增加,海洋石油勘探逐步向深水区发展。
然而,深水钻井所涉及的钻井环境温度低、钻井液用量大、海底页岩稳定性、井眼清洗、浅水流动、浅层天然气及形成的气体水合物等问题,给钻井、完井带来严峻的挑战。
1.深水钻井带来的主要问题
与浅水区域相比,深水钻井面临的主要问题有以下几个方面:①井壁稳定性;②钻井液用量大;③地层破裂压力窗口窄;④井眼清洗;⑤低温下钻井液的流变性;⑥浅层天然气与形成的气体水合物。
这些问题给钻井工艺带来了许多困难,同时对钻井液提出了更高的要求。
1.1 海底页岩的稳定性
在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。
河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中。
如通过稀释或替换钻井液来控制钻井液的低密度钻井液的低密度固相的含量,必将需要大量钻井液。
因此,针对海底页岩稳定的问题,采取了加入一定量的页岩稳定剂的措施。
如在深水钻井液中加入无机盐(NaCl、CaCl2)和具有浊点的聚合醇、以达到增强页岩稳定性的目的。
1.2 钻井液用量大
实践证明,在深水钻井作业中的钻井液量远远大于其它同样深度但钻井条件不同的井,因为海洋钻井需要采用隔水管、隔水管体积一般高达159m3,加上平台钻井液系统,所以钻井液需要用量比其他同样深度但钻井条件不同井大得多。
钻井中为了避免复杂情况的发生,一般多下几层套管,因此所需的井眼直径也相应增大。
深水钻井时应配备3台高频率振动筛,以及大流量的除砂器和除泥器等固控设备,在非加重的钻井液中,固相的有效清除率大于75%,将钻井液中的钻屑含量控制在适当的范围内,可节省大量的钻井费用。
1.3 井眼清洗
深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。
因此,对钻井液清洗井眼的能力提出高要求,一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速度粘度,以及有规律地短程起下钻等方法,均有助于钻井过程中钻屑的清除。
使用与钻井过程中钻井液粘度不同的钻井液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。
1.4 浅层气与气体水合物
深水钻井遇到的主要问题之一是浅层气砂岩引起的气体水合物的生成。
一般在钻井液管线中发现生物气(沼气)并不算大问题。
但是在深层发现含气砂岩则会引起大问题。
因为对砂岩地层来说,浅层一般多是含有重油的非胶结性地层,而深层则是含有气体的低渗透率的硬质地层。
在深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题因为这种气体水合物是堵塞气体传输管线的主要原因。
气体水合物类似冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏水。
但是它在性质上又不象冰,如果压力足够,它可以在0℃以上形成。
在深水钻井作业中,海底较高的静水压力和较低的环境温度进一步增加了生成气体水合物的可能性,尤其是节流管线、钻井隔水导管以及海底的井口里,一旦
形成气体水合物,就会堵塞气管、导管、隔水管和海底防喷器等,从而造成严重的事故。
研究表明,有必要在钻井液中添加处理剂,使正常钻井时能抑制气体水合物的形成。
为了防止深水钻井作业中形成气体不合物,目前国外通用的方法是在钻井作业过程中使用高盐钻井液,这种体系一般可以使形成水合物的温度比使用淡水钻井液低于13.9~15.6℃。
为了进一步降低形成天然水合物的可能性,也可以在钻井液中加入一定量的醇类,使形成气体水合物的温度再降低 5.6~8.3℃。
通过这些措施,可以使形成气体水合物的温度总共降低19.5~23.9℃(一定压力条件下)。
1.5 温度过低
随着水的深度加大,钻井环境的温度也越来越低,给钻井和采油作业带来很多问题。
如在低温下,钻井液的粘度和切力大幅度上升,而且会出现显著的胶凝现象,增加形成天然气水合物的可能性。
目前主要是采用在管汇外加有绝缘层的方法,这样可以在停止生产期间保持设备的温度,防止因温度降低而形成水合物。
2.适用于深水钻井的钻井液体系
深水钻井作业的钻井液必须解决以下问题:①有效地掏气体水合物的产生;②在大直径井眼(尤其是大位移井)中应具有良好的悬浮和清除钻屑的能力;③具有良好的页岩稳定性,有效稳定弱胶结地层;④低温下具有良好的流变特性;⑤能够满足环保的要求;⑥综合成本低。
目前,世界上深水钻井中常用的体系有高盐/木质素磺酸盐钻井液、高盐/PHPA(部分水角聚丙烯酰胺)聚合物加聚合醇钻井液、油基钻井液以及合成基钻井液等。
目前最有效、最常用而且又能满足环保要求的钻井液体系有:高盐/PHPA聚合物加聚合醇钻井液和合成基钻井液。
2.1 高盐/PHPA聚合物钻井液
高盐/PHPA聚合物钻井液在PH值为中性时抑制岩屑效果好,适用于各种从淡水到饱和盐水的钻井液,当然在高盐环境下其使用效果更好。
高盐/PHPA聚合物钻井液可以抑制气体水合物的形成。
但是为了更好地抑制气体水合物的形成以及页岩稳定,建议在该钻井液中加入聚合醇,维持PH呈中性,减-OH基团对页岩的分散作用。
该钻井液生物毒性低,LC50值大于100ⅹ104mg/L满足环保要求,具有良好的剪切稀释性,有助于提高机械钻速。
但是,由于该体系中含高浓度的盐类,钻井液密度无法降至 1.20g/cm3;钻井过程中为了确保井眼清洁,维护钻井液性能,必须经常进行短程起下钻,因此减慢了钻速,增加了钻井时间,加大了钻井成本。
2.2 合成基钻井液
合成基钻井液的综合性能优于水基钻井液和油包水钻井液。
典型的水基钻井液的塑性粘度、热膨胀和压缩性比常规的原油和合成钻井液低,因此导致了当量循环密度降低,同时也增加了对小井眼钻具拉力及扭矩的限制。
合成基钻井液具有合适的流变性,能满足井眼和钻井隔水管之间的巨大变化,在深水钻井甚至在进行小井眼侧钻时,都表现出了很好的效果。
因为合成基钻井液的流变性随井下条件的不同而变化很大,所以准确地预测钻井液水力状况和当量循环密度对成功完成深水钻井作业非常重要。
合成基钻井液具有以下特点:性能稳定,便于调;钻速快,降低了压差卡钻发生率。
3. 深井水基钻井液研究方向
3.1 钻井液在低温流动状态热转换规律研究
要使天然气水合物在钻井过程中具有抑制水合物分散、维持相态稳定的特点,应研究钻井液在低温流动状态下的热转换特性和规律,重点研究不同类型的钻井液的热转换性质,寻求最佳组合方案。
3.2 钻井液在低温条件下的流变性研究
钻井液流变性在钻进过程中对冷却钻头、携带岩屑、稳定井壁等具有重要的作用,应研究相应处理剂调整钻井液流变性,满足海洋深水钻井的要求。
3.3 低温钻井液类型和钻井介质研究
国外曾提出几种组成方案,可供进一步研究:①NaCl含量为20%~23%的聚合物体系是深水钻井中常用的钻井液;②已开发了一种钻井液配方,能最大抑制水合物温度至17.8℃,其配方为5%KCl+15%NaCl+10%乙稀乙二醇;③用30% CaCl2配成的钻井液在极度低温冷却下不会形成不合物,然而当CaCl2浓度减至15%时水合物形成。
④基于低温钻井液体系性能要求,NaCl是效果最好的抑制剂其它无机盐依次为:KCl、CaCl2、NaBr、HCOONa、Ca(NO3)2;⑤在有机物中乙稀乙二醇具有良好的抑制效果。
所以,应先研究低温条件对常规钻井液体系性能的影响,探索其影响因素,配方规律,处理剂应用和改性方案等,最终确定有效抑制天然气水合物生成及钝化低温条件下钻井液流变性变化的适合于钻井的水基钻井液体系。