线性代数标准化作业
- 格式:doc
- 大小:944.00 KB
- 文档页数:56
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。
(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。
线性代数标准化作业普通⾼等教育“⼗⼀五”国家级规划教材经济管理数学基础系列线性代数标准化作业(C)吉林⼤学数学中⼼2012年9⽉学院班级姓名学号第⼀章作业(⾏列式)1、计算下列各⾏列式的值:(1)2116415012051422D--=----;(2)111122211112221111222D=;(3)112233100110011011b b b D b b b --= ----;(4)222b c c a a bD a b c a b c +++=;(5)3333333333333333aa Db b+-=+-;(6)11()11nDαβαβαβαβαβαβαβ++=≠++;(7)102201202013 D=.2、设4阶⾏列式的第2列元素依次为2、m、k、1,第2列元素的余⼦式依次为1、-1、1、-1,第4列元素的代数余⼦式依次为3、1、4、5,且⾏列式的值为2,求m、k的值.3、设a ,b ,c ,d 是不全为零的实数,证明线性⽅程组12341234123412340,0,0,0ax bx cx dx bx ax dx cx cx dx ax bx dx cx bx ax +++=??-+-=??--+=??+--=?仅有零解.4、已知齐次线性⽅程组123123123230,220,50x x x x x x x x x λ++=??+-=??-+=?有⾮零解,求λ的值.学院班级姓名学号第⼆章作业(1)(A +B )(A -B )=A 2-B 2;()(2)若AX =AY ,则X =Y ,其中X 、Y 都是n ×m 矩阵;()(3)若A 2=O ,则A =O ;()(4)若AB =O ,则A =O 或B =O ;()(5)(ABC )T = C T B T A T ;()(6)(A+B )1- =A 1-+ B 1-。
() 2、填空题(1)设3阶⽅阵B≠0,A =13524353t ??,且AB =O ,则t =;(2)设A =100220345??,A *为A 的伴随矩阵,则(A *)1-= ;(3)设A 为4阶标量矩阵,且|A |=16,则A =,A 1-=, A *=;(4)设A , B 均为n 阶⽅阵,且2+=()A B E ,其中A 为对称矩阵且可逆,求1T 1()--+-()A B E B A E =;(5)设A=5200210000120011-,则│A│=,A1-=;(6)设实矩阵A33?=≠)(ija O,0ij ijijA为ija的代数余⼦式),则│A│=;(7)设A为4阶可逆⽅阵,且│A1-│=2,则│3(A*)1--2A│=;(8)设A为2阶⽅阵,B为3阶⽅阵,且│A│=1B=21,则1(2)--O BA O=;(9)设A=111222333,则A100=;(10)设A为5阶⽅阵,且A2 = O,则R(A*)=__________. 3、选择题(1)若A,B为同阶⽅阵,且满⾜AB=O,则有().(A)A=O或B=O;(B)|A|=0或|B|=0;(C)(A+B)2=A2+B2;(D)A与B均可逆.(A)(AB)k=A k B k;(B)|-AB|=-|AB|;(C )E 2-(AB )2=(E -AB )(E +AB );(D )|A +B |=|A |+|B |.(4)已知A 为任意n 阶⽅阵,若有n 阶⽅阵B 使AB =BA =A ,则(). (A )B 为单位矩阵;(B )B 为零⽅阵;(C )B 1-=A ;(D )不⼀定.(5)若A ,B ,(B 1-+A 1-)为同阶可逆⽅阵,则(B 1-+A 1-)1-=(). (A )B 1-+A 1-;(B )B +A ;(C )(B +A )1-;(D )B (B +A )1-A . (6)设A 为3阶⽅阵,且|A |=3,*A 为A 的伴随矩阵,若交换A 的2,3两⾏得到矩阵B ,则||*BA =().(A )27;(B )-27;(C )3;(D )-3. 4、计算题:(1)431112315701-????; (2)()31,2,321??;(3)()211,2,13-??; (4)111213112312222321323333(, , )a a a x x x x a a a x a a a x;(5)12101031 01010121 00210023 00030003----.5、计算下列⽅阵的幂:(1)已知α=(1,2,3),β=(1,-1,2),A=αTβ,求A4 .(2)已知024003000A=轾,求A n.(3) 已知112224112----??A=,求A n .6、设3阶矩阵1122,2,3A=B=αβγγγγ,其中α,β,γ1,γ2均为3维⾏向量,且|A |=18,|B |=2,求|A -B |.7、设121132a b-A=,B=,若矩阵A 与B 可交换,求a 、b 的值.8、求下列矩阵的逆矩阵:(1)A=1234 1134 1344 0101----;(2)A=500000 000021 000053 010000 011000 011100.9、已知A=210121012,C=123421,求解下列矩阵⽅程:(1)AX=X+C ;(2)AXB=C.10、设矩阵300050,003-A=且满⾜ABA*+BA*+180E=O,求矩阵B.11、设A为n阶可逆矩阵,将A的第i⾏和第j⾏对换后得矩阵B,试证:(1)B可逆;(2)求AB-1。
线性代数标准化作业答案第一章:行列式基础必做题:(一) 一、填空题:1、3,n (n-1);2、1222+++c b a ;3、70,-14;4、-3M ;5、1 二、选择题:1、C2、D3、D4、A5、C 三、计算题: 1、解:原式1111001)1()1(11111C 12111++++=--⋅-⋅-+--⋅-++cd ad ab abcd dc dc ba ()(展开按2、解:原式31323121)c b a ()c b a (000)c b a (0111)c b a (2cr r 2br r ba c 2c2c2b a c b 2b111)c b a (2222++=++-++-++------++----++++++++提公因子b a c ccb ac b b c b a c b a c b a r r r r四、解:))()()((0000001)(1111)()(c x b x a x c b a x cx bc ab b x a b a xc b a c b a x xcbc x b c b x c b a c b a x x f ---+++=------+++=+++=因,0)(=x f 故,,,c b a x =或)(c b a ++-。
基础必做题(二) 一、填空题:1、6,8;2、0;3、0,0;4、4;5、24 二、选择题:1、D ;2、C ;3、A ;4、A ;5、A,B,D 三、1、解:原式1)1)(1(10001011111)1(011111110111111)1(---=---=-=n n n n2、解:原式[][][]1)()1(00001)1(111)1(--⋅-+=---+=-+=n b a b n a ba b a b b b b n a abbb b a b b b b n a四、解:0111144342414==+++dbac bd d b c c b a A A A A五、解:1,0,1,20281142102,0321112112,20382141101,2038114202321321=======-==---==--==---=DD z DD y DD x D D D D 故提高选做题: 一、证明: 证法1:12113(0)2240,(1)22401111f f ====- 由罗尔定理知,至少存在一点ξ,使得()0,(0,1)f ξξ'=∈,故有一个小于1的正根。
经济数学基础线性代数标准化作业吉林大学数学中心2006.2学院班级姓名学号第一章作业(行列式)1、计算下列各行列式的值:(1)2116415012051422D--=----;(2)1111222111122211112221111222D=;(3)112233100110011011b b b D b b b --=----;(4)222b c c a a bD a b c a b c +++=;(5)1111111111111111a a D b b +-=+-;(6)11()11nDαβαβαβαβαβαβαβαβαβαβ+++=≠++;(7)102200302004D= 。
2、设4阶行列式的第2列元素依次为2、m、k、3,第2列元素的余子式依次为1、-1、1、-1,第4列元素的代数余子式依次为3、1、4、2,且行列式的值为1,求m、k的值。
3、用克拉默法则解方程组123123123241,52,4 3.x x x x x x x x x+-=⎧⎪++=⎨⎪-++=⎩4、已知齐次线性方程组有非零解,求λ。
123123123230,220,50.x x x x x x x x xλ++=⎧⎪+-=⎨⎪-+=⎩学院 班级 姓名 学号第 二 章 作 业(矩阵)1、是非题(设A 、B 、C 均为n 阶的方阵) (1)(A +B )(A -B )=A 2-B 2; ( ) (2)若AX =AY ,则X =Y ,其中X 、Y 都是n ×m 矩阵; ( ) (3)若A 2=O ,则A =O ; ( ) (4)若AB =O ,则A =O ,或B =O ; ( ) (5)(ABC )T = C T B T A T 。
( )2、填空题(1)设3阶方阵B≠0,A =⎪⎪⎪⎭⎫ ⎝⎛35342531t ,且AB =0,则t = ;(2)设A =⎪⎪⎪⎭⎫⎝⎛543022001,A *为A 的伴随矩阵,则(A *)1-= ;(3)设A 为4阶数量矩阵,且|A |=16,则A = ,A 1-= , A *= ;(4)设A 1-=⎪⎪⎭⎫ ⎝⎛8642,则A = ,│4A 1-│= ,(A T )1-= ; (5)设A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-1100210000120025,则│A │= ,A 1-= ; (6)设实矩阵A 33⨯=≠)(ij a 0,且011≠a ,ij ij A a =(ij A 为ij a 的代数余子式),则│A │= ;(7)设A 为二阶方阵,B 为三阶方阵,且│A │=1B=21,则1(2)--O B A O = ;(8)设A 为四阶可逆方阵,且│A 1-│=2,则│3(A *)1--2A │= ;(9)设A =⎪⎪⎭⎫ ⎝⎛-133121,且A 6=E ,则A 11= ; (10)设A 为5阶方阵,且A 2 = O ,则R (A *)=___________.3、选择题(1)设同阶方阵A 、B 、C 、E 满足关系式ABC =E ,则必有( ) (A )ACB =E ; (B ) CBA =E ; (C ) BAC =E ; (D ) BCA =E 。
线性代数作业提示与答案作业(1)一.k x x k x k x -====4321,0,, 二.⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=2413212211,757975,767171k x k x k k x k k x三.1.阶梯形(不唯一):⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---14010612007121002301,简化阶梯形⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-100000211000001002701 秩为4;2.简化阶梯形为单位矩阵.四.1.其系数矩阵的行列式值为 2)1)(2(-+λλ(该方程组的系数矩阵为方阵,故可以借助于行列式来判定)当12≠-≠λλ,时,方程组只有零解,当2-=λ时,通解为=x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111k ;当1=λ时,通解为=x T T k k ]1,0,1[]0,1,1[21-+-;2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++----2200123230121211~2λλλλA , 当2-≠λ时,方程组有唯一解;当2-=λ时,方程组有无穷解,通解为=x TT k ],,[],,[022111+.作业(2)一.1. =x 1,2,3; 2. !)(n n 11-- 3.-1204. ()()!)1(221n n n --- 5. 41322314a a a a 6. 2,0=x 7.abc 3- 8.12二.1.1; 2.以第二列、第三列分别减去第一列,再把第二列、第三列分别加到第一列上,得到333333222222111111b a a c c b b a a c c b b a a c c b +++++++++=2323322111c b a c b a c b a 3. 0;(注:行列式计算中注意行列式的表示方法不要和矩阵表示方法混淆,而且计算过程中用的是等号) 4.1222+++γβα作业(3)一.1.c; 2. d ; 3.a二.1.将第n ,,, 32列都加到第一列上,提出公因子∑=+ni iax 1,得到(∑=+ni i a x 1)1-n x.2.由第二列起,各列均减第一列,按第二行展开,得)!(22--n .3.由第1-n 行至第一行,相继将前一行元素乘以1-后加到后一行上,得到.)1(01000010111112212)1(n nn n n n --=--4.按第一列展开,得到行列式的值为.)(n n n y x 11+-+三.3)(=A R (注:用矩阵的行初等变换化为梯矩阵,数非零行即可.注意矩阵的表示方法和变换过程中用到的是等价符号)作业(4)一. 1.()B A +32; 2. 24. 3. 232221x x x ++ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡232313322212312121x x x x x x x x x x x x x x x , 4. BA AB = 二. 1. a 2. a三. ⎥⎦⎤⎢⎣⎡---10832082四. 1.⎥⎦⎤⎢⎣⎡---21426711. 2. 不能相乘. . 3.323223313113212112233322222111)()()(x x a a x x a a x x a a x a x a x a ++++++++作业(5)一.1.1-n a ; 2.0; 3.=A -1⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--3405700021; 4. I ; 5.121-A二. 1. c; 2 .b; 3.b; 4. c; 5.d四. 1 五. n215-作业(6)一. 1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,-1, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010; 2. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2100010001,2,200010001 3. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-004010001,1.104010001 4. ()331-R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000103015. 列,[]3231,,3a a a a - 6. 相等二. 1.b ;2.c;三. 1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-17162132130121A ; 2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-111110011100011000011A四. 1. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-4141B A X , 2. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----==-212942521B A X 作业(7)一. 1. b a 23=;2. 1221b a b a =;3.R )(A 2≤;4.0≠lm ; 二.1.a ; 2. b; 3.d;三 1a 能由23,a a 唯一地线性表示,4a 不能由123,,a a a 线性表示四.123123212,,[,,]123124B b b b a a a AD ⎡⎤⎢⎥⎡⎤===⎣⎦⎢⎥⎢⎥-⎣⎦,因,5det =D ,故)()(B R A R =,从而321,,b b b 线性无关.作业(8)一.1.r ;2.相 3. 1,通解为=x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--100101010011121 n k k k二.1.d; 2.d ; 三.(1)412323aa a a =++,(2)又123,,a a a 线性无关,故123,,a a a 是向量组123,,a a a ,4a 的一个最大线性无关向量组.(3)123,,a a a ,4a 的秩和矩阵A =[123,,a a a ,4a ]的秩都为3.四.12341121014129321315101[,,,]~9315410003670000a a a a ⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=⎢⎥⎢⎥---⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦,12,a a 是向量组的一个最大线性无关组.且31241211521,9933a a a a a a =-+=+.作业(9)一 1.T ],,[558 2.r ;12,,,ra a a L ; 3.n-r 二. 1.b; 2. b; 3. a ; 4. d ; 5.c ; 6.d 三. 证明123,,aa a ,4a 线性无关,向量[]1,2,7,4b T=在这组基下的坐标为4351--,,,.四. ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--00007510072021~A ,基础解系为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=175072001221ξξ,,通解为=x 2211ξξk k + (注:先求出分量形式的通解,转化为向量形式的通解,容易得到基础解系。
河北工业大学线性代数作业(1)学院班级姓名学号一. 讨论下列齐次方程组是否有非零解,若有,求出其通解.⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+=+-+-=---0136152032024303524321432143214321x x x x x x x x x x x x x x x x二.求出下列线性方程组的通解.⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x三.用初等变换化下列矩阵为简化梯形矩阵,指出矩阵的秩是多少:1.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--370320852373812023012.nn 11111001110001100001⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------四. (1)当λ取什么值时,方程组⎪⎩⎪⎨⎧0=++0=++0=++321321321x x x x x x x x x λλλ 只有零解?有非零解?若有非零解,则确定其通解.(2)当λ分别取什么值时,下面方程组有唯一解?有无穷多解?无解?在它有无穷多解时,求出它的通解.⎪⎩⎪⎨⎧=++=+--=++-2321321321λλλ222x x x x x x x x x河北工业大学线性代数作业(2)学院 班级 姓名 学号一.填空题 1. 若行列式0=3333222211111xx x ,则.________,___,=x 2.0100002000010n n=-L L L L L L L L L.3. 1070002000003000000400050= .4. =--nn n 0000000000100002000200010000.5.=0000041323123222114131211a a a a a a a a a a . 6. 当____x 时,0010413=xx x .7.若23013221D 1=,则==ca c ab a b 2033202D 2 . 8.若1333231232221131211-=a a a a a a a a a ,则=---333231312322212113121111324324324a a a a a a a a a a a a . 二.计算下列行列式的值:1.20104110631432111112.333333222222111111b a a c c b b a a c c b b a a c c b +++++++++3.dd c c b b a a d c b a dc b a 3434343412121212111122222222--------4.111222+++γγβγαβγββααγαβα河北工业大学线性代数作业(3)学院班级姓名学号一.选择题1.若()r R =A ,则A 中( )r 阶子式不等于零.()a 任意一个; ()b 只有一个; ()c 至少有一个; ()d 至多有一个.2.克拉默法则仅适用于解( )方程组.()a 非齐次线性方程组; ()b 齐次线性方程组;()c 任何有解的方程组;()d 方程个数=未知量个数,系数矩阵的行列式不等于零.3.设n m ⨯A ,则下列说法不正确的是( ).()a 若()r R =A ,则n m ⨯A 不存在等于零的1-r 阶子式; ()b ()()T R R A A =; ()c (){}min ,R m n ≤A ;()d 当n m =时,若A 为降秩(退化、奇异)方阵,则()n,det 0R <=A A .二.计算下面的n 阶行列式.1.nn n n a x a a a a a x a a a a a x a a a a a x ++++3213213213212.122222222232222n3.nnnnnn n n n n n nn n n n11321221----4.xyy x y x y x 0000000000三.用初等变换法求下面矩阵的秩A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--05916410202131412311.河北工业大学线性代数作业(4)学院班级姓名学号一.填空题1.若矩阵X 满足方程()()0=-2+-2X B X A ,则X= . 2. 设A 为3阶矩阵,3=A ,则A 2 =.3.已知[]321=x x x ,,A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B 321x x x ,则=AB ,__________=BA .4. 设B A ,为n 阶方阵,则()()22B A B A B A -=-+成立的条件为_______. 二. 单项选择题1.设有矩阵,,3223⨯⨯B A 33⨯C , 则下列运算可以进行的是( ).()a ABC ;()b TAB; ()c BC AB +; ()d ΒΑ23+.2.设A 为n m ⨯矩阵,则TAA 是( ).()a m 阶方阵; ()b n 阶方阵;()c n m ⨯矩阵;()d m n ⨯矩阵.三. 计算2--3B A C ,已知,,⎥⎦⎤⎢⎣⎡1-1012-7=⎥⎦⎤⎢⎣⎡3021-21=B A C ⎥⎦⎤⎢⎣⎡01726-3-=.四. 计算下列矩阵的乘积(如不符合两矩阵相乘的条件,则说明不能相乘). 1. ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡6234021231 2. ⎥⎦⎤⎢⎣⎡3402⎥⎦⎤⎢⎣⎡104312 3. []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321333231232221131211321x x x a a a a a a a a a x x x河北工业大学线性代数作业(5)学院班级姓名学号一. 填空题1. 设A 为n 阶矩阵,且0≠=a A det ,A adj 为其转置伴随阵,则det(adj A )= .2. 设4阶矩阵A 的秩为2,则其转置伴随阵A adj 的秩为 .3. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡740530002=A ,则=1-A .4. 设B A ,为n 阶矩阵,且I AB =,则=BA .5.设A 为n 阶可逆矩阵,则()12T-T ⎡⎤=⎢⎥⎣⎦Α .二.单项选择题1.设B A ,均为n 阶可逆方阵,则=⎥⎦⎤⎢⎣⎡-100B A ( ).()⎥⎦⎤⎢⎣⎡001-1-B A a ; ()⎥⎦⎤⎢⎣⎡001-1-BA b ; ()⎥⎦⎤⎢⎣⎡001-1-AB c ; ()⎥⎦⎤⎢⎣⎡001-1-A B d . 2.设C B A ,,是同阶方阵,且A 可逆,则下列各式中不一定成立的是( ).()a 若AC AB =,则=B C ;()b =ΑΒCA ,则=BC ;()c 若0=AB ,则0=B ; ()d 若CA BA =,则=BC .3.下列矩阵可逆的是( ).()a n 阶对角矩阵; ()b n 阶满秩矩阵;()c n 阶实对称矩阵; ()d n 阶上三角阵.4.设A 为n 阶对称矩阵,且A 可逆,那么有( ).()a T A A =-1; ()b A A T -=;()c IA A T =-1; ()d 以上结论都不对.5.B A,为n 阶矩阵,下列运算正确的是( ).()a ()k k k B A AB =; ()b ()111---=B A AB ;()c A A AA T T= ; ()d AA A A adj adj =.三.设A 满足,O I A A =4--2证明I A I A 2--,,都可逆.四. 设A ,B 均为2阶矩阵,且2=1-=B A det ,det ,求()]2det[21-ΒΑΤ.五.设A 是n 阶矩阵,A adj 是A 的转置伴随阵,若5=A det ,求 det[(5adj A )1-]的值.河北工业大学线性代数作业(6)学院班级 姓名 学号一.填空题 1.3阶初等阵=12R, ()=12det R,()=-112R .2.3阶初等阵 ()=23R , ()()=2det 3R ,()()=-132R .3.3阶初等阵()=-413R, ()()=-4det 12R,()()=--1134R.4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3-3-3-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211a a a a a a a a a a a a a a a a a a a a a A ,则A = .5.初等矩阵C 31()3-右乘矩阵123[,,]a a a =A ,相当于对A 进行初等 变换,结果为______.6.矩阵A 经过有限次初等变换化为矩阵B ,则矩阵A 与B 的秩 .二. 单项选择题1.在下列矩阵中,不是初等矩阵的是( ).()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100001a ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00101-0100b ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000520001.c ;()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡105010001d . 2.下列说法正确的是( ).()a 对单位阵施行初等变换后所得的矩阵都是初等矩阵; ()b 初等矩阵的乘积还是初等矩阵;()c 可逆阵经过初等变换后仍为可逆阵; ()d 任何矩阵都可以表示有有限个初等阵的乘积.三. 用行初等变换法求下列矩阵的逆矩阵:1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡14-52-431-21=A2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11-0000011-000011-00001= A四. 从矩阵方程B AX =中解出X ,其中1.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1513-3421-2-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡311=B2.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡41-31-351-24=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4611-31=B河北工业大学线性代数作业(7)学院班级姓名学号一. 填空题 1. 方程组⎩⎨⎧=3++3+3=2++2+22121b x x x ax x x n n 有解的条件为___________.2.二维向量α[]T21=a a ,,β[]T21=b b ,线性相关的充要条件为 .3.若向量组1a ,2a ,a 3线性相关,且123⎡⎤=⎣⎦A aa a ,则R )(A .4.若向量组321a a a ,,线性无关,当常数m l ,满足_______时,向量组 l 1a ,-3a m 2a ,31-a a 线性无关.二. 选择题1.若向量b 可以由向量组m21a ,,a ,a 线性表示,则下列结论正确的是( ).()a 存在常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()b 存在不全为零的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ;()c 存在唯一的常数m k k k ,,, 21,使b =1k 1a +2k 2a ++ m k m a ; ()d 存在唯一不全为零的常数m k k k ,,21,使b =1k 1a +2k 2a ++ m k m a .2.设b ,a ,,a ,a n21是m 维向量,则关于方程组1k 1a +2k 2a ++ n n a k =b 的说法正确的是( ).()a 若方程组无解,则向量组b ,a ,,a ,a n 21 线性无关; ()b 若方程组有解,则向量组b ,a ,,a ,a n 21 线性相关; ()c 若n 21a ,,a ,a 线性相关,则方程组一定有解;()d 若n 21a ,,a ,a 线性无关,则方程组一定无解.3. 若向量组1a [],,,Τ001=T a ],,[0112=,=3a T cb a ],,[线性无关,则要求( ).()a c b a ==; ()b 0==c b ; ()c 0=c ; ()d 0≠c .三.已知321a a a ,,线性相关,432a a a ,,线性无关,试问: (1)1a 能否由32a a ,线性表示?(2)4a 能否由321a a a ,,线性表示?(3)当上面的表示式成立时,其表示式是否唯一?四.证明:若向量组321a ,a ,a 线性无关,则向量组,,212321122a a b a a a b +=-+=32134+3+2=a a a b也线性无关.河北工业大学线性代数作业(8)学院班级 姓名 学号一. 填空题1.设向量组r21a ,,a ,a 线性无关,则R {}=21r a a a ,,, .2.设a 为任一n 维向量,n21e ,,e ,e 为n 维单位向量,则向量组,,,21e e a ne , 线性____关.3.由一个方程0=+++21n x x x 构成的方程组的系数矩阵的秩r ____=,该方程组通解为.二.选择题1.向量组1M 和2M 的秩相等,则( ).()a 1M 与2M 等价; ()b 1M 与2M 所含向量个数相等;()c 1M 与2M 所含向量个数不等; ()d 以上结论都不对.2.设A 为n m ⨯矩阵,且R =)(A n m <,则( ).()a A 的行、列向量组均线性无关; ()b A 的行、列向量组均线性相关;()c A 的行向量组线性相关,列向量组线性无关; ()d A 的行向量组线性无关,列向量组线性相关.三. 设[][]T a a a a ],,,[,],,,[,,,,,,,,03121100101010014321=-===T TT.(1)将4a 用321a ,a ,a 线性表示.(2)由定义判定321a ,a ,a 是向量组321a ,a ,a ,4a 的一个最大线性无关向量组.(3)指出向量组321a ,a ,a ,4a 的秩和矩阵=A [321a ,a ,a ,4a ]的秩.四.设向量组为[],,,,T=31211a [],,,,T---=65142a []Ta 74313---=,,,,[]T-=01124,,,a .求该向量组的秩,并具体找出一个最大线性无关组.再把不属于最大线性无关组的向量用最大线性无关组的向量表示出来.河北工业大学线性代数作业(9)学院班级 姓名 学号一.填空题1.在基[][][]TTT===213132321321,,,,,,,,a a a 下,坐标为210,,的向量为________.2.在n R 中取r 个线性无关的向量r a a a ,,, 21,r<n ,由r21a ,,a ,a 生成的子空间记为S ,则=S dim ,S 的一个基为___________.3. n 阶矩阵Α的秩为r ,则其解空间的维数是 .二.选择题1.设向量组ma a a ,,, 21线性相关,V 为由m21a ,,a ,a 生成的向量空间,则V dim ( ).()a m =; ()b m <; ()c m ≤; ()d 无法确定.2. 向量空间W w {=[]},,,,a d cb a dc b a ==++=T0的维数为( ).()a 1 ()b 2; ()c 3; ()d 4.3.若齐次方程组0=x A 有非零解,则其基础解系是( ).()a 唯一的,其中的向量线性相关;()b 唯一的,其中的向量线性无关; ()c 不唯一,其中的向量线性相关;()d 不唯一,其中的向量线性无关.4.设有4⨯3矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有解的充分条件为( ).()a R ()2≤A ; ()b R ()3≤A ; ()c R ()3=A ; ()d R ()3=A .6.设有5⨯5矩阵A ,A 表示非齐次方程组b AX =的增广矩阵,则b AX =有无穷多组解的充分条件是( ).()a ()5<A r ; ()b ()5=r ; ()c ()()5==A A r r ; ()d ()()4≤=A A r r .三.证明[],,,,T=00011a [],,,,T=00112a [][]TT==1111011143,,,,,,,a a 是4R 的一组基,并求向量[]T=4721,,,b 在这组基下的坐标.四 试求下列齐次方程组的基础解系,并说明解空间的维数1.⎪⎩⎪⎨⎧=++-=++-=++-01117840246303542432143214321x x x x x x x x x x x x五. 求解下列非齐次方程组.⎪⎩⎪⎨⎧-=+-=-+--=+352231232132131x x x x x x x x河北工业大学线性代数作业(10)学院班级 姓名 学号一.填空题 1.向量[]T11-1-1=,,,a 的规范化向量为=a e _____________.二.选择题1.设A ,B 为正交矩阵,则下列说法错误的是( ).()a 则1-A 和T A 也为正交矩阵,且有T -=A A 1;()b A 的每一行(列)向量都是单位向量,且其中的任意两个行(列)向量正交;()c AB 也为正交矩阵;()d B A +也是正交矩阵.三. 证明x V {=},,,),,(R x x x x x x x x x T ∈=++=3213213210构成3R 的一个子空间,并给出一组基.四.设[][][]TTT=-=-=103211112201,,,,,,,,,,,c b a ,1.求a 、b ,a 与b 的夹角;2.计算c b a b a ),(--23;3.证明c 与b ,a 都正交.五.}|{0==Ax x W 称为矩阵A 的零空间。
《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
线性代数作业习题第一章:行列式1、计算下列行列式1 2 2 … 2 22 2 2 … 2 22 23 … 2 2:::::2 2 2 … n-1 22 2 2 … 2 n解:首先利用每一行元素分别减去第二行元素得到:-1 0 0 0 2 2 2 00 0 1 00 0 0 2 00 0 0.......n-2可利用代数余子式求出:(-1)*2*(n-2)!2、计算下列行列式:|x y x+y||y x+y y||x+y y xl解:|x y x+y||y x+y y||x+y y x|=x|x+y y|+y(-1)| y y|+(x+y)| y x+y|| y x| |x+y x| |x+y y |=x(x2+xy-y2)-y(xy-xy-y2)+(x+y)(y2-x2-2xy-y2)=x(x2+xy-y2)-y(-y2)+(x+y)(-x2-2xy)=x3+x2y-xy2+y3-x3-x2y-2x2y-2xy2=y3-2x2y-3xy2=y(y2-2x2-3xy)3、计算下列行列式:1 2 -5 1-3 1 0 -62 0 -1 24 1 -7 6解:根据行(列)与行(列)之间互换,行列式值改变符号。
所以第一列与第二列互换,得出2 1 -5 11 -3 0 -60 2 -1 21 4 -7 6根据行列式倍加不变原理。
第四列乘以-2加上第一列,第四列乘以-1加上第二列,结果如下。
0 -7 9 -110 -7 7 -120 2 -1 21 4 -7 6根据行列式倍加不变原理。
第四列乘以-2加上第一列,第四列乘以-1加上第二列0 -7 9 -110 -7 7 -12- 0 2 -1 21 4 -7 6根据计算,得出= (-14)+49-62=-274、求二阶行列式1-x^2 2x----- -----1+X^2 1+X^2解:原式=([1-x2]2+4x2)/(1+x2)2=(1+x2)2/(1+x2)2=15、设A B为n阶方阵,满足ATA=AAT=E,BTB=BBT=E及|A|+|B|=0,求|A+B|解:原式=([1-x2]2+4x2)/(1+x2)2=(1+x2)2/(1+x2)2=1由已知, |A|^2=|B|^2 = 1所以|A|, |B| 等于1 或-1因为|A|+|B|=0所以|A||B|= -1所以有|A+B|= - |A||A+B||B|= - |A^T||A+B||B^T|= - |A^T AB^T+A^T BB^T|= - |B^T+A^T|= - |(A+B)^T|= - |A+B|.所以|A+B| = 0.第二章:矩阵1、已知矩阵A=[1 1 1][2 -1 0][1 0 1]B=[3 1 1][2 1 2][1 2 3 ] 求:AB解:AB=[1×3+1×2+1×1 1×1+1×1+1×2 1×1+1×2+1×32×3-1×2+0×1 2×1-1×1+0×2 2×1-1×2+0×31×3+0×2+1×1 1×1+0×2+1×2 1×1+0×2+1×3]=[6 4 6][ 4 3 4]2、设A=[2 2 3][1 -1 0][3 1 2] A*为A的伴随矩阵,求A(-1)A*解:AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4AA*=|A|EA* = |A|A^-1所以A^-1A* = |A| (A^-1)^2|A|=4A^-1=-1/2 -1/4 3/4-1/2 -5/4 3/41 1 -1(A^-1)^2=9/8 19/16 -21/1613/8 39/16 -33/16-2 -5/2 5/2所以A^-1A* = |A| (A^-1)^2 =9/2 19/4 -21/413/2 39/4 -33/4-8 -10 103、判断关于逆矩阵(A+B)的逆等于不等于A的逆加B的逆解:一般不等于,反例:令A=B=E则(A+B)=2E,(A+B)逆=E/2而A逆+B逆=E+E=2E所以不等4、求矩阵的秩[1 3 2 a][2 -4 -1 b]其中a,b,c为任意实数解:r(A)=3因为[1 3 2][2-4-1][3-2 0]的行列式不为0,说明原矩阵有一个3阶子式不为0,秩至少是3;又因为原矩阵是3*4的矩阵,它的秩最多为3,所以答案就是35、一个方程组x+y+z=22x+y+3z=03y+4z=1求方程的解解:设A=[111213034]B=[21]A的逆阵为C=(1/7)*[5,1,-28,-4,1-6,3,1]x=C.B=1/7[817-11]第三章:向量空间1、已知α1=(1,1,2,-1)α2=(-2,1,0,0,)α3=(-1,2,0,1)又β满足3(α1-β)+2(α3+β)=5(α2+β)求β解:由题设,有3α1-3β+2α3+2β=5α2+5β3α1+2α3-5α2=6β(3,3,0,-3)+(-2,4,0,2)-(-10,5,0,0)=6β6β=(11,2,0,-1)β=(11/6,1/3,0,-1/6)2、设数域F上向量空间V的向量组{α1 , α2 , α3}线性无关,向量β1可由α1 , α2 , α3线性表示,而β2不能由α1 , α2 , α3线性表示。
普通高等教育“十一五”国家级规划教材经济管理数学基础系列线性代数标准化作业(C)吉林大学数学中心2012年9月学院班级姓名学号第一章作业(行列式)1、计算下列各行列式的值:(1)2116415012051422D--=----;(2)1111222111122211112221111222D=;(3)112233100110011011b b b D b b b --=----;(4)222b c c a a bD a b c a b c +++=;(5)3333333333333333aa Db b+-=+-;(6)11()11nDαβαβαβαβαβαβαβαβαβαβ+++=≠++;(7)102201202013 D=.2、设4阶行列式的第2列元素依次为2、m、k、1,第2列元素的余子式依次为1、-1、1、-1,第4列元素的代数余子式依次为3、1、4、5,且行列式的值为2,求m、k的值.3、设a ,b ,c ,d 是不全为零的实数,证明线性方程组12341234123412340,0,0,0ax bx cx dx bx ax dx cx cx dx ax bx dx cx bx ax +++=⎧⎪-+-=⎪⎨--+=⎪⎪+--=⎩仅有零解.4、已知齐次线性方程组123123123230,220,50x x x x x x x x x λ++=⎧⎪+-=⎨⎪-+=⎩有非零解,求λ的值.学院 班级 姓名 学号第 二 章 作 业(矩阵)1、是非题(设A 、B 、C 均为n 阶的方阵)(1)(A +B )(A -B )=A 2-B 2; ( ) (2)若AX =AY ,则X =Y ,其中X 、Y 都是n ×m 矩阵; ( ) (3)若A 2=O ,则A =O ; ( ) (4)若AB =O ,则A =O 或B =O ; ( ) (5)(ABC )T = C T B T A T ; ( ) (6)(A+B )1- =A 1-+ B 1-。
( ) 2、填空题(1)设3阶方阵B≠0,A =13524353t ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,且AB =O ,则t = ;(2)设A =100220345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,A *为A 的伴随矩阵,则(A *)1-= ;(3)设A 为4阶标量矩阵,且|A |=16,则A = ,A 1-= , A *= ;(4)设A , B 均为n 阶方阵,且2+=()A B E ,其中A 为对称矩阵且可逆,求1T 1()--+-()A B E B A E = ;(5)设A=5200210000120011⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,则│A│=,A1-=;(6)设实矩阵A33⨯=≠)(ija O,0ij ija A+=(ijA为ija的代数余子式),则│A│=;(7)设A为4阶可逆方阵,且│A1-│=2,则│3(A*)1--2A│=;(8)设A为2阶方阵,B为3阶方阵,且│A│=1B=21,则1(2)--O BA O=;(9)设A=111222333⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则A100=;(10)设A为5阶方阵,且A2 = O,则R(A*)=__________.3、选择题(1)若A,B为同阶方阵,且满足AB=O,则有().(A)A=O或B=O;(B)|A|=0或|B|=0;(C)(A+B)2=A2+B2;(D)A与B均可逆.(2)若由AB = AC(A,B,C为同阶方阵)能推出B=C,则A满足(). (A)A≠O;(B)A=O;(C)|A|≠0;(D)|AB|≠0.(3)若A,B为同阶方阵,则有().(A)(AB)k=A k B k;(B)|-AB|=-|AB|;(C )E 2-(AB )2=(E -AB )(E +AB ); (D )|A +B |=|A |+|B |.(4)已知A 为任意n 阶方阵,若有n 阶方阵B 使AB =BA =A ,则( ). (A )B 为单位矩阵;(B )B 为零方阵;(C )B 1-=A ;(D )不一定.(5)若A ,B ,(B 1-+A 1-)为同阶可逆方阵,则(B 1-+A 1-)1-=( ). (A )B 1-+A 1-; (B )B +A ; (C )(B +A )1-; (D )B (B +A )1-A . (6)设A 为3阶方阵,且|A |=3,*A 为A 的伴随矩阵,若交换A 的2,3两行得到矩阵B ,则||*BA =( ).(A )27; (B )-27; (C )3; (D )-3. 4、计算题:(1)431112315701⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (2)()31,2,321⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)()211,2,13⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (4)111213112312222321323333(, , )a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;(5)12101031 01010121 00210023 00030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦⎣⎦.5、计算下列方阵的幂:(1)已知α=(1,2,3),β=(1,-1,2),A=αTβ,求A4 .(2)已知024003000A=轾犏犏犏犏臌,求A n.(3) 已知112224112-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦A=,求A n .6、设3阶矩阵1122,2,3⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A=B=αβγγγγ,其中α, β, γ1, γ2均为3维行向量,且|A |=18,|B |=2,求|A -B |.7、设121132a b ⎡⎤⎡⎤⎢⎥⎢⎥-⎣⎦⎣⎦A=,B=,若矩阵A 与B 可交换,求a 、b 的值.8、求下列矩阵的逆矩阵:(1)A=1234 1134 1344 0101⎡⎤⎢⎥----⎢⎥⎢⎥⎢⎥⎣⎦;(2)A=500000 000021 000053 010000 011000 011100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.9、已知A=210121012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B=1223⎡⎤⎢⎥⎣⎦,C=123421⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求解下列矩阵方程:(1)AX=X+C ;(2)AXB=C.10、设矩阵300050,003⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦A=且满足ABA*+BA*+180E=O,求矩阵B.11、设A为n阶可逆矩阵,将A的第i行和第j行对换后得矩阵B,试证:(1)B可逆;(2)求AB-1。
12、设A为n阶可逆对称阵,B为n阶对称阵,当E+AB可逆时,试证(E+AB)-1A 为对称矩阵。
13、把下列矩阵化为行最简形矩阵:(1)3102 1121 1344;轾犏犏--犏犏-臌(2)21837 23075 32580 10320⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥⎣⎦.14、把下列矩阵化为标准形矩阵(1)32131 21313 70518---⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦;(2)11343 33541 22320 33421--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦.15、利用初等矩阵计算:(1)1111100111100010111010011222011---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦;(2)已知AX =B ,其中111213111213122122232122232231323331323332a a a a a a a a a a a a a a a a a a a a a -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A=,B=, 求X .16、求下列矩阵的秩:(1)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A=;(2)11221511061aa-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦A=.17、设A 为n (2)n ≥阶方阵,*A 是A 的伴随矩阵,证明: (1)当R()n =A 时,R()n =*A ; (2)当R()1n =-A 时,R()1=*A ; (3)当R()1n <-A 时,R()0=*A .学院 班级 姓名 学号第 三 章 作 业(向量组的线性相关性)1、填空题(1)设β=(3,- 4), α1=(1,2), α2=(-1,3),则β表成α1,α2的线性组合为 ;(2)设向量组α1=(1,1,0),α2=(1,3,-1),α3=(5,3,t )线性相关,则t = ;(3)设向量组α1=(1,1,0),α2=(1,3,-1),α3=(5,3,t )的秩为3,则参数t 应满足的条件是 ;(4)设向量组T 1(1,2,1,0)=-α,T 2(1,1,0,2)=α,T 3(2,1,1,)a =α,若由123,,ααα形成的向量空间的维数为2,则参数a = ;(5)已知向量T 1(1,2,1)=α, T 2(2,3,)a =α, T 3(1,2,2)a =+-α, T 1(1,3,4)=β,T 2(1,1,)a =-β, 且1β可由123,,ααα线性表示, 2β不能由123,,ααα线性表示,则参数a = .2、选择题(1)设β,α1,α2线性相关,β,α2,α3线性无关,则正确的结论是( ). (A )α1,α2,α3线性相关; (B )α1,α2,α3线性无关; (C )α1可由β,α2,α3线性表示; (D )β可由α1,α2线性表示.(2)设α1100c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,α2201c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,α3311c ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,α4411c -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中c 1,c 2,c 3,c 4为任意常数,则下列向量组线性相关的是( ).(A )α1,α2,α3 ; (B )α1,α2,α4; (C )α1,α3,α4; (D )α2,α3,α4. (3)下列说法中正确的是( ). (A )向量组12,,,m ααα线性无关,则1α不能由23,,,m ααα线性表示;(B )向量组12,,,m ααα线性相关,则1α能由23,,,m ααα线性表示;(C )向量组12,,,m ααα线性无关,则减少分量后所得的向量组也线性无关;(D )含有零向量的向量组必线性相关,而不含零向量的向量组必线性无关. (4)设12,,,s ααα和12,,,t βββ为两个n 维向量组,且12R(,,,)s =ααα12R(,,,)t r =βββ,则( ).(A )两向量组等价; (B )1212R(,,,,,,,)s t r =αααβββ;(C )当s t =时,两向量组等价; (D )当12,,,s ααα能被12,,,t βββ线性表示时,12,,,t βββ也能被12,,,sααα线性表示.(5)已知1234,,,αααα是3维非零向量,则下列说法中错误的是( ). (A )如果4α不能由123,,ααα线性表出,则123,,ααα线性相关;(B )如果123,,ααα线性相关,234,,ααα线性相关,那么124,,ααα也线性相关;(C )如果3α不能由12,αα线性表出,4α不能由23,αα线性表出,则1α可以由234,,ααα线性表出;(D )如果11223414243R (,,)R (,,,)++=+++αααααααααααα,则4α可以由123,,ααα线性表出. 3、求向量组123452313712024,,,,3283023743--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ααααα的秩,并求出它的一个极大无关组。