测量误差及其处理的基本知识
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
工程测量中的误差及其处理方法引言工程测量是确保工程项目的精确性和可靠性至关重要的一环。
然而,在实际操作中,由于各种因素的干扰,测量结果往往会出现误差。
本文将探讨工程测量中可能出现的误差来源以及相应的处理方法,以帮助工程师更好地理解和应对这些问题。
一、测量误差的来源1. 仪器误差不同仪器的制造质量和精度存在差异,这将导致不同仪器测量结果的偏差。
因此,在选择和使用测量仪器时,应该密切关注其规格和精度,选择合适的仪器以减小误差的影响。
2. 操作误差操作人员的技术水平和经验也是影响测量误差的重要因素。
不正确的使用测量仪器、不准确的读数和不规范的实施流程都可能造成操作误差。
因此,在测量过程中,培训和指导测量人员是至关重要的。
3. 环境误差环境因素,如温度、湿度和气压等,都会对测量结果产生影响。
这些因素可能会导致仪器扭曲或影响测量物体的特性,从而引发误差。
为了控制环境误差,应该在测量前进行环境条件的调整和校正。
4. 测量对象误差测量对象的表面状况、形态变化等也会对测量结果产生影响。
例如,光滑表面和不规则表面之间的反射光线会产生不同的结果。
因此,在进行测量前,需要对测量对象进行充分的观察和评估,以便采取相应的对策。
二、测量误差的处理方法1. 确定误差类型在测量结果出现偏差后,首先需要确定误差类型。
误差可以分为系统误差和随机误差两种类型。
如果误差具有规律性和一致性,那么很可能是系统误差;如果误差是随机性的、不规律和无法预测的,则很可能是随机误差。
2. 校正误差对于系统误差,可以通过校正方法来减小或消除。
校正可以通过仪器校正、环境条件控制和数据处理等方式进行。
例如,采用标定仪器、进行实验室校准、校正仪器表盘零位等,可以减小系统误差的影响。
3. 重复测量和平均值法对于随机误差,我们可以通过重复测量和取平均值的方法来减小其影响。
通过多次测量,可以得到一系列结果,然后计算平均值。
由于随机误差是随机分布的,多次测量可以使得误差呈现正态分布,从而得到更加准确可靠的结果。
测量误差的分类以及解决方法1、系统误差能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。
系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。
由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。
系统误差越小,测量结果的准确度就越高。
2、偶然误差偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。
产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。
偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和偶然误差是两类性质完全不同的误差。
系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。
3、疏失误差疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。
显然,凡是含有疏失误差的测量结果都是应该摈弃的。
解决方法:仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。
必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。
所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。
一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
1、系统误差的消除方法(1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
(2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。
为了减小测量误差, 必须仔细分析测量误差产生的原因,提高测量精度。
在实际1.测量误差的基本概念由于测量过程中计量器具本身和测量方法等误差的影响,以及测量条件的限制, 任何一次测量的测得值都不可能是被测量的真值,两者存在着差异。
这种差异在数值 上则表现为测量误差。
测量误差指被测量的测得值与其真值之差,用公式表示如下:x X 0式中,为绝对误差;X 为被测量的测得值;X 0为被测量的真值。
测量误差有下列两种表示形式: (1)绝对误差于或小于X 0,因而绝对误差可能是正值,也可能是负值。
这样,被测量的真值可以用 下式来表示:X 0 X利用上式,可以由被测量的量值和测量误差来估算真值所在的范围。
测量误差的绝对值越小, 则被测量的量值越接近于真值,测量精度就越高; 反之,测量精度越低。
用绝对误差表示测量精度,适用于评定或比较大小相同被测量的测量精度。
对于 大小不同的被测量,则需要用相对误差来评定或比较它们的测量精度。
(2)相对误差相对误差是指绝对误差的绝对值与被测量真值之比。
由于被测量的真值无法得 到,因此在实际应用中常以被测量的测得值代替真值进行估算,即X 0X式中,f 为相对误差。
2 .测量误差的来源(1-20)由式(1-20 )所定义的测量误差也称绝对误差。
在式(1-21 )中,由于 x 可能大(1-21 )(1-22)相对误差通常用百分比来表示。
例如, 某两轴径的测得值分别为 199.865mm 和80.002mm ,它们的绝对误差分别为+ 0.004mm 和一0.003mm ,则由式(1-22 )计算得 对误差分 另 U 为 h 0.004/199.8650.002%f 20.003/80.002 0.0037%,因此前者的测量精度比后者高。
测量中,产生测量误差的因素很多,归结起来主要有以下几个方面。
(1)计量器具误差计量器具误差是指计量器具本身在设计、制造和使用过程中的各项误差。
设计计量器具时,为了简化结构而采用近似设计会产生测量误差。
测量误差的概念及其处理方法测量误差是指测量结果与被测量真实值之间的差异。
在实际测量中,由于各种因素的影响,我们无法完全准确地获取到被测量的真实值,因此测量误差是不可避免的。
了解测量误差的概念及其处理方法对于正确分析和解释测量数据、提高测量精度具有重要意义。
本文将详细介绍测量误差的概念、分类以及处理方法。
一、测量误差的概念测量误差是测量结果与被测量真实值之间的偏差,可以分为系统误差和随机误差两类。
1. 系统误差(Systematic Error)系统误差是由于测量仪器的固有缺陷、操作方法等引起的,它具有一定的偏向性和一致性。
系统误差一般不会随着重复测量而减小或增大,而是持续存在并造成连续的偏差。
例如,如果一个电子秤的刻度不准确,每次测量都会有固定的偏差,这就属于系统误差。
2. 随机误差(Random Error)二、测量误差的处理方法在实际测量中,我们需要尽量减小测量误差,提高测量的准确性和精度。
为了正确处理测量误差,对其进行分析和处理是必要的。
1.改善测量仪器首先,我们可以通过改善测量仪器的质量和可靠性来减小系统误差。
选择精度高、稳定性好的仪器设备,并定期进行校准和维护,可以减小设备固有的误差。
2.技术训练和规范操作3.重复测量与平均值处理由于随机误差的特点是不连续的和不一致的,通过重复测量可以减小随机误差对测量结果的影响。
多次测量后,可以计算测量值的平均值,通过取平均值可以减小随机误差。
4.误差分析与修正对于已知的系统误差,可以通过误差分析进行修正。
通过校正器或者修正公式,将系统误差减小至可接受范围内。
5.合理估计和报告误差总结起来,测量误差的概念及其处理方法能够帮助我们在实际测量中准确度量和分析物理量。
通过改善仪器质量、规范操作程序、重复测量与平均值处理、误差分析与修正以及合理估计和报告误差等方法,可以减小测量误差,提高测量结果的准确性和可靠性。
第五章 测量误差及其处理的基本知识1、测量误差的来源有哪些?什么是等精度测量?答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。
该三个方面条件相同的观测称为等精度观测。
2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除?答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。
偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。
系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。
3、举出水准测量、角度测量及距离测量中哪些属于系统误差?答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。
4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度?答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。
当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。
例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。
所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =||/1||m D D m = 。
5、观测值中误差如何计算?答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即11L x v -=22L x v -=......n n L x v -=则中误差 []1-±=n vv m6、算术平均值及其中误差如何计算?答:设对某量进行n 次等精度观测,观测值为i L (i =1、2……n ),其算术平均值为x : []nL n L L L x n =+++=......21 ; 算术平均值中误差nm m x ±= ,其中m 为观测值的中误差。
第五章 测量误差及其处理的基本知识
1、测量误差的来源有哪些?什么是等精度测量?
答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。
该三个方面条件相同的观测称为等精度观测。
2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除?
答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。
偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。
系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。
3、举出水准测量、角度测量及距离测量中哪些属于系统误差?
答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。
4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度?
答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。
当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。
例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。
所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =|
|/1||m D D m = 。
5、观测值中误差如何计算?
答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即
11L x v -=
22L x v -=
......
n n L x v -=
则中误差 []
1-±=n vv m
6、算术平均值及其中误差如何计算?
答:设对某量进行n 次等精度观测,观测值为i L (i =1、2……n ),其算术平均值为x : []n
L n L L L x n =+++=......21 ; 算术平均值中误差n
m m x ±= ,其中m 为观测值的中误差。
7、观测值的倍数函数、和差函数、线性函数的中误差如何计算?
答:观测值的倍数函数、和差函数、线性函数的中误差计算如下表所列。