非线性系统的描述函数分析
- 格式:ppt
- 大小:1.19 MB
- 文档页数:1
8 非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。
本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。
8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图8-1 伺服电动机特性8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。
例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。
实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。
非线性系统理论1.1.非线性系统特点非线性系统与线性控制系统相比,具有一系列新的特点],线性系统满足叠加原理,而非线性控制系统不满足叠加原理。
图8-1带滤波器的非线性系统2•非线性系统的稳定性不仅取决于控制系统的固有结构和参数, 而且与系统的初始条件以及外加输入有关系。
例:对于一由非线性微分方程 X=-x(1 ―) 描述的非线性系统,显然有两个平衡点,即x 1=0和x 2=1。
将上式改写为=—dt x(l - x)设20吋,系统的初态为咛积分上式可得dx3•非线性系统可能存在自激振荡现象 的情况: (1) 如图跳跃谐振和多值响应8 — 3 所砂)其输出存在极其复杂图8—3跳跃谐振与多值响应(2)分频振荡和倍频振荡非线性系统在正弦信号作用下, 其稳态分量除产生同频率振荡外,和分频振荡。
如图 8—4所示波形。
还可能产生倍频振荡4•非线性系统在正弦信号作用下, 的输入信号倍频信号分频信图8—4倍频撮荡与分频振荡8.1.2 研究非线性系统的意义与方法1•研究非线性系统的意义1)实际的控制系统,存在着大量的非线性因素。
这些非线性因素的存在,使得我们用线性系统理论进行分析时所得出的结论,与实际系统的控制效果不一致。
线性系统理论无法解释非线性因素所产生的影响。
2)非线性特性的存在,并不总是对系统产生不良影响。
2•研究非线性系统的方法1)相平面法是用图解的方法分析一阶,二阶非线性系统的方法。
通过绘制控制系统相轨迹,达到分析非线性系统特性的方法。
2)描述函数法是受线性系统频率法启发,而发展出的一种分析非线性系统的方法。
它是一种谐波线性化的分析方法,是频率法在非线性系统分析中的推广。
3)计算机求解法是利用计算机运算能力和高速度对非线性微分方程的一种数值解法。
8.2典型非线性特性的数学描述及其对系统性能的影响8.2.1饱和特性在电子放大器中常见的一种非线性,如图8-5所示,饱和装置的输入特性的数学描述如下:[辰。
sig 滋(f)8.2.2死区特性死区特性也称为不灵敏区,如图8-6所示。
第一章绪论重点:1.自动控制系统的工作原理;2.如何抽象实际控制系统的各个组成环节;3.反馈控制的基本概念;4.线性系统(线性定常系统、线性时变系统)非线性系统的定义和区别;5.自动控制理论的三个基本要求:稳定性、准确性和快速性。
第二章控制系统的数学模型重点:1.时域数学模型--微分方程;2.拉氏变换;3.复域数学模型--传递函数;4.建立环节传递函数的基本方法;5.控制系统的动态结构图与传递函数;6.动态结构图的运算规则及其等效变换;7.信号流图与梅逊公式。
难点与成因分析:1.建立物理对象的微分方程由于自动化专业的本科学生普遍缺乏对机械、热力、化工、冶金等过程的深入了解,面对这类对象建立微分方程是个难题,讲述时2.动态结构图的等效变换由于动态结构图的等效变换与简化普遍只总结了一般原则,而没有具体可操作的步骤,面对变化多端的结构图,初学者难于下手。
应引导学生明确等效简化的目的是解除反馈回路的交叉,理清结构图的层次。
如图1中右图所示系统存在复杂的交叉回路,若将a点移至b点,同时将c点移至d点,同理,另一条交叉支路也作类似的移动,得到右图的简化结构图。
图1 解除回路的交叉是简化结构图的目的3.梅逊公式的理解梅逊公式中前向通道的增益K P 、系统特征式∆及第K 条前向通路的余子式K ∆之间的关系仅靠文字讲述,难于理解清楚。
需要辅以变化的图形帮助理解。
如下图所示。
图中红线表示第一条前向通道,它与所有的回路皆接触,不存在不接触回路,故11=∆。
第二条前向通道与一个回路不接触,回路增益44H G L -=,故4421H G +=∆。
第三条前向通道与所有回路皆接触,故13=∆。
第三章 时域分析法重点:1. 一、二阶系统的模型典型化及其阶跃响应的特点;2. 二阶典型化系统的特征参数、极点位臵和动态性能三者间的相互关系;3. 二阶系统的动态性能指标(r t ,p t ,%σ,s t )计算方法;4. 改善系统动态性能的基本措施;5. 高阶系统主导极点的概念及高阶系统的工程分析方法;6. 控制系统稳定性的基本概念,线性定常系统稳定的充要条件;7. 劳斯判据判断系统的稳定性;8. 控制系统的误差与稳态误差的定义;9. 稳态误差与输入信号和系统类型之间的关系;10. 计算稳态误差的终值定理法和误差系数法;11. 减少或消除稳态误差的措施和方法。