数学人教版八年级下册16.3.2二次根式的加减乘除混合运算
- 格式:doc
- 大小:18.00 KB
- 文档页数:2
人教版数学八年级下册16.3《二次根式的加减》教学设计一. 教材分析人教版数学八年级下册16.3《二次根式的加减》是本节课的主要内容。
在此之前,学生已经学习了二次根式的性质和乘除运算,本节课将进一步引导学生学习二次根式的加减运算。
教材通过实例引入二次根式的加减运算,让学生在实际问题中体会和理解二次根式的加减法则。
二. 学情分析学生在学习本节课之前,已经掌握了二次根式的性质和乘除运算,具备了一定的数学基础。
但学生在进行二次根式的加减运算时,容易出错,对运算法则理解不深。
因此,在教学过程中,需要帮助学生巩固已学的知识,并通过实例让学生深入理解二次根式的加减法则。
三. 教学目标1.理解二次根式的加减法则,并能正确进行二次根式的加减运算。
2.培养学生运用二次根式解决实际问题的能力。
3.提高学生的数学思维能力和运算能力。
四. 教学重难点1.重点:二次根式的加减法则,二次根式的加减运算。
2.难点:理解二次根式加减法则是如何得出的,如何运用二次根式加减法则解决实际问题。
五. 教学方法1.采用问题驱动法,通过实例引入二次根式的加减运算,激发学生的学习兴趣。
2.运用合作学习法,让学生在小组内讨论二次根式的加减法则,培养学生相互学习、共同进步的能力。
3.采用归纳总结法,引导学生总结二次根式的加减法则,加深学生对知识的理解。
4.运用练习法,让学生在实践中掌握二次根式的加减运算。
六. 教学准备1.准备相关的教学PPT,展示二次根式的加减运算实例。
2.准备一些练习题,用于巩固学生的学习成果。
3.准备黑板,用于板书重要的运算过程和结论。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何进行二次根式的加减运算。
例如,问学生:“已知√3 + √5 = a,求a的值。
”让学生尝试解答,从而引出本节课的主题。
2.呈现(10分钟)展示几个二次根式的加减运算实例,让学生观察和分析。
例如:2√5 + 3√5引导学生观察这些实例,发现二次根式加减运算的规律。
人教版数学八年级下册16.3《二次根式的加减》说课稿一. 教材分析人教版数学八年级下册16.3《二次根式的加减》这一节,是在学生已经掌握了二次根式的性质和运算法则的基础上进行讲解的。
本节内容主要让学生学会如何进行二次根式的加减运算,进一步培养学生的运算能力和数学思维能力。
教材通过例题和练习题的形式,让学生在实际操作中掌握二次根式加减的计算方法,并能够灵活运用。
二. 学情分析在教学这一节之前,学生已经学习了二次根式的性质,包括根号下的数可以分为完全平方数和非完全平方数,以及二次根式的乘除运算。
但是,对于二次根式的加减运算,学生可能还存在一定的困难,特别是在处理含有同类项和非同类项的二次根式加减时,容易出错。
因此,在教学过程中,需要引导学生理清思路,明确二次根式加减的规则。
三. 说教学目标1.让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.培养学生的运算能力和数学思维能力,使学生在解决实际问题时,能够灵活运用二次根式的加减运算法则。
3.通过二次根式的加减运算,让学生体会数学的规律性和逻辑性,提高学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次根式的加减运算法则,能够正确进行二次根式的加减运算。
2.教学难点:如何引导学生理解并处理含有同类项和非同类项的二次根式加减问题。
五. 说教学方法与手段1.采用启发式教学法,引导学生通过观察、分析、归纳总结,发现二次根式加减的规律。
2.使用多媒体教学手段,通过动画、图片等形式,直观地展示二次根式的加减过程,帮助学生理解。
3.学生进行小组讨论和合作交流,让学生在讨论中解决问题,提高学生的团队协作能力。
六. 说教学过程1.导入:通过一个实际问题,引出二次根式的加减运算,激发学生的学习兴趣。
2.新课讲解:讲解二次根式的加减运算法则,并通过例题演示如何进行二次根式的加减运算。
3.学生练习:让学生独立完成一些二次根式的加减运算题目,巩固所学知识。
16.3.3 二次根式的混合运算(分母有理化)教学设计教学目标:1.理解有理化因式的概念,能正确的将一个含二次根式的代数式分母有理化2.能利用分母有理化进行二次根式加减乘除及混合运算,会解系数或常数项含二次根式的一元一次方程和一元一次不等式.3.在学习过程中体会类比、化归的数学思想方法。
教学重点:有理化因式的概念,能正确的将一个含二次根式的代数式分母有理化。
教学难点:运用分母有理化熟练进行二次根式的计算教学过程:一.复习引入:1分母有理化回顾如何将x二.新课探索:1分母有理化。
1.学生尝试将x+y(学生可能出现几种目前做不出的情况,有针对性的分析引导学生思考)2.上述两题的分母有理化中,分母x x=x(yx+)(x- y)=x-y提问:等号左边两个含有二次根式代数式相乘,它们的积有什么特征?3.两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,我们就说这两个含有二次根式的非零代数式互为有理化因式.如x与x互为有理化因式,(yx+)与(x- y)互为有理化因式4.提问:-2x可以是x的有理化因式吗?为什么?填空:x的有理化因式可以是x+的有理化因式可以是y小结:一个含有二次根式的代数式的有理化因式不唯一。
5.想一想:a x+b y的有理化因式是什么?(填一个答案即可)6.说出下列各式的有理化因式:12-a 472- x ++11三.巩固运用:1.(口答)说出下列各式的一个有理化因式: 35+ b a -2 1-x 1-x 21x x ++ 21x x +-2.把下列各式分母有理化(集体练习,个别演示)(1)133+ (2)23341+ (3))(n m n m nm ≠+-(提醒此题也可以约分做)3. 计算:(集体练习,个别演示)(1)154510-- (2) 221111x x x x +-+++4.(备用) 已知2231+=x ,求31-x 的值 5.(备用) 解不等式:(1) (21-)x ﹥1(2)x x 332>-四、总结交流:这节课你有什么收获?五、作业布置:练习册习题。
人教版八年级下册数学课本目录数学知识是人教版八年级数学学习的主要内容之一,其中目录里面包含了哪些知识重点呢?小编整理了关于人教版八年级下册数学课本的目录,希望对大家有帮助!人教版八年级下数学课本目录第十六章二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减数学活动小结复习题16第十七章勾股定理17.1 勾股定理阅读与思考勾股定理的证明17.2 勾股定理的逆定理阅读与思考费马大定理数学活动小结复习题17第十八章平行四边形18.1 平行四边形18.2 特殊的平行四边形实验与探究丰富多彩的正方形数学活动小结复习题18第十九章一次函数19.1 函数阅读与思考科学家如何测算岩石的年龄19.2 一次函数信息技术应用用计算机画函数图象14.3 课题学习选择方案数学活动小结复习题19第二十章数据的分析20.1 数据的集中趋势20.2 数据的波动程度阅读与思考数据波动程度的几种度量20.3 课题学习体质健康测试中的数据分析数学活动小结复习题20部分中英文词汇索引八年级数学下册知识点:数据的分析将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数(mode)。
一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1.收集数据2.整理数据3.描述数据4.分析数据 5.撰写调查报告八年级数学下册知识点:四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定 1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
二次根式的混合运算教学设计知识与技能:在有理数的混合运算及整式的混合运算基础上,使学生了解二次根式的混合运算与以前所学知识的联系,在比较中得到方法,并能熟练地实行二次根式的混合运算.过程与方法:1.对二次根式的混合运算与整式的混合运算及数的混合运算作比较,注意运算顺序及运算律在计算过程中的作用.2.通过引导,在多解中实行比较,寻求有效快捷的计算方法.情感态度与价值观:1.学会知识间的类比,进一步体会数学学习方法的重要性.2.通过独立思考与小组讨论,培养良好的学习态度.【重点】能熟练实行二次根式的混合运算.【难点】灵活使用因式分解、约分等技巧,使用运算律使计算简便.【教师准备】教学中出示的教学插图和例题.【学生准备】复习总结二次根式的加减运算的方法.导入一:教师节快要到了,为了表示对老师的敬意,小波做了两张大小不同的正方形壁画准备送给老师.其中一张面积为800 cm2,另一张面积为4500 cm2,他想如果再用金彩带镶上边会更漂亮.他现在有一条长1.2 m的金彩带,请你帮忙算一算,他的金彩带够用吗?若不够用,还需要购买多长的金彩带?引导学生计算所需金彩带的总长,列式为4(+),思考计算方法.如何计算呢?通过本节课的学习,我们就会很容易解决这个问题.[设计意图]创设问题情境,激起学生的探索兴趣和求知欲望.导入二:让我们一起来回顾一下二次根式的基本运算,你会计算下面几个式子吗?计算:(1)+;(2)×;(3)÷.学生计算交流后,提出问题:(+)应怎样计算?乘法分配律依然能够应用吗?本节课我们重点探究整式的乘法法则和公式在二次根式的混合运算中仍然适用和二次根式的混合运算的问题.[设计意图]通过复习二次根式的运算,自然过渡到二次根式的混合运算,明确本节课的目标.1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用思路一(1)怎样计算4(+)?引导学生回忆学习过的整式乘法中的乘法分配律,仿照a(b+c)=ab+ac尝试计算,并全班交流.4(+)=4+4=4×20+4×30=80+120.(2)怎样计算(+2)(-2)?引导学生回忆整式乘法公式,仿照(a+b)(a-b)=a2-b2尝试计算,并全班交流.(+2)(-2)=()2-(2)2=3-8=-5.(3)(+2)2和(-2)2又该如何计算呢?学生讨论,用完全平方公式计算.(+2)2=()2+2××2+(2)2=3+4+8=11+4.(-2)2=()2-2××2+(2)2=3-4+8=11-4.进一步引导学生总结:整式的乘法法则和公式在二次根式的混合运算中仍然适用.[设计意图]用类比的方法探索二次根式混合运算的特点,使学生弄清楚新旧知识的区别和联系.让学生亲自动手,实行实验、探究,得出结论,激发学生的求知欲望.思路二(1)请同学们完成下列各题:计算:①(2x+y)·zx;②(2x2y+3xy2)÷xy;③(2x+3y)(2x-3y);④(2x+1)2+(2x-1)2.学生计算后,老师点评.这些内容是对八年级上册整式运算的再现.主要有:单项式×单项式;单项式×多项式;多项式×多项式;多项式÷单项式;完全平方公式的使用;平方差公式的使用.如果把上面的x,y,z改成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x,y,z是一种字母,它的意义十分广泛,能够代表所有的式子,当然也能够代表二次根式,所以整式中的运算规律也适用于二次根式.下面,我们来验证一下用乘法分配律计算(+)×.(+)×=(2+3)×=5×=10,(+)×=×+×=4+6=10.引导学生观察,发现:这两种方法的结果是相同的.在二次根式运算中,乘法分配律依然能够应用.(2)自己举例验证平方差公式和完全平方公式是否能够应用于二次根式的运算.小组讨论后,全班交流.[知识拓展](1)适用于二次根式的乘法公式:①平方差公式:(a+b)(a-b)=a2-b2;②完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.(2)乘法公式的变式:①位置变化:(x+y)(-y+x)=x2-y2;②符号变化:(-x+y)(-x-y)=(-x)2-y2=x2-y2;③指数变化:(x2+y2)(x2-y2)=x4-y4;④系数变化:(2a+b)(2a-b)=4a2-b2;⑤换式变化:[xy+(z+m)][xy-(z+m)]=(xy)2-(z+m)2=x2y2-(z2+2zm+m2)=x2y2-z2-2zm-m2;⑥增项变化:(x-y+z)(x-y-z)=(x-y)2-z2=x2-2xy+y2-z2;⑦连用公式变化:(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4;⑧逆用公式变化:(x-y+z)2-(x+y-z)2=[(x-y+z)+(x+y-z)][(x-y+z)-(x+y-z)]=2x(-2y+2z)=-4xy+4xz.怎样计算(-2)(2-)?同桌讨论,类比(a-2b)(2a-b)的计算方法计算上式.(-2)(2-)=×2-×-2×2+2×=6--4+4=-5+10.教师明确:二次根式的混合运算顺序与有理数中的运算顺序一样:先乘方,再乘除,最后加减;有括号时先算括号内的.我们直接使用这些运算律和公式来解决一些问题.(教材例3)计算:(1)(+)×;(2)(4-3)÷2.引导学生先观察式子的特点,确定:(1)属于“多项式×单项式”,直接用乘法分配律计算;(2)属于“多项式除以单项式”,“用多项式的每一项除以单项式,再将结果加在一起”即可.解:(1)(+)×=×+×=+=4+3.(2)(4-3)÷2=4÷2-3÷2=2-.(教材例4)计算:(1)(+3)(-5);(2)(+)(-).学生观察发现,两个都是“多项式×多项式”的类型,能够根据整式乘法中多项式乘多项式的法则计算即可,而(2)根据平方差公式计算更简便.解:(1)(+3)(-5)=()2+3-5-15=2-2-15=-13-2.(2)(+)(-)=()2-()2=5-3=2.[知识拓展](1)像(+)与(-)乘积能够使用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式,就属于互为有理化因式.一般常见的互为有理化的两个代数式有如下几种情形:①和;②+和-;③a+和a-;④m+n和m-n.(2)分母有理化是指把分母中的根号化去,通常在分子、分母上同乘一个二次根式,达到化去分母中的根号的目的.把分母有理化得==. [设计意图]通过例题训练,使学生逐步形成类比意识,理解新旧知识的联系.师生共同回顾本节课所学主要内容:关于二次根式的四则混合运算,实质上就是实数的混合运算.(1)运算顺序与有理式的运算顺序相同;(2)运算律仍然适用;(3)与多项式的乘法和因式分解类似,能够利用乘法公式与因式分解的方法来简化二次根式的相关运算.1.下列各式计算准确的是 ()A.-2=-B.=4a(a>0)C.=×D.÷=解析:-2=(1-2)=-,故选项A准确;=2a(a>0),故选项B错误;与无意义,故选项C错误;÷=,故选项D错误.故选A.2.下列计算准确的是 ()A.(3-2)(3+2)=9-2×3=3B.(2+)(-)=2x-yC.(3-)2=32-()2=6D.(+)(-)=1解析:(3-2)(3+2)=9-8=1,所以A选项错误;(2+)(-)=2x-2+-y=2x--y,所以B选项错误;(3-)2=9-6+3=12-6,所以C选项错误;(+)(-)=(+)(-)=x+1-x=1,所以D选项准确.故选D.3.(2019·孝感中考)已知x=2-,则代数式(7+4)x2+(2+)x+的值是 ()A.0B.C.2+D.2-解析:把x=2-代入代数式(7+4)x2+(2+)x+得:(7+4)(2-)2+(2+)(2-)+=(7+4)(7-4)+4-3+=49-48+1+=2+.故选C.4.计算:(1)×;(2)-;(3)÷-×+.解:(1)原式=×+×-3×=+10-15=-4. (2)原式=-=3+2--1=2+. (3)原式=-+2=4+.第2课时1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用2.二次根式的混合运算3.例题讲解例1例2一、教材作业【必做题】教材第14页练习第1,2题;教材第15页习题16.3第4题.【选做题】教材第15页习题16.3第6,7,8,9题.二、课后作业【基础巩固】1.化简-(1-)的结果是 ()A.3B.-3C.D.-2.如图所示,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+等于 ()A. B.2 C.3 D.23.计算(-)+的值是 .4.计算-(5-)的值为 .【水平提升】5.计算:--+|2-|.6.计算:(1)-2;(2)+-;(3)(5+2)(5-2);(4).7.先化简,再求值:+÷,其中a=1+.8.已知x=-1,y=+1,求+的值.【拓展探究】9.已知4x2+y2-4x-6y+10=0,求x+y2-的值.10.(2019·山西中考)阅读与计算:阅读以下材料,并完成相对应的任务.斐波那契(约1175~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列的一列数称为数列).后来人们在研究它的过程中,发现了很多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数能够用表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【答案与解析】1.A(解析:原式=-+3=3.故选A.)2.C(解析:根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.由题意得x=1-(-1)=2-,原式=-x+=-2++=2-2+=2-2+(+1)=3.故选C.)3.2(解析:原式=2-+=2.)4.-2+2(解析:二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式实行合并.-(5-)=3+-5+=-2+2.)5.解:原式=2--2+2-=.6.解:(1)-2=+1-2=-1=1. (2)+-=+-=+2-10=+2-10=-. (3)(5+2)(5-2)=52-(2)2=25-12=13.(4)=12-2××+=12-8+=.7.解:原式=+×=+=,当a=1+时,原式===.8.解:因为x+y=-1++1=2,xy=(-1)(+1)=2,所以+====4.9.解:∵4x2+y2-4x-6y+10=0,∴4x2-4x+1+y2-6y+9=0.∴(2x-1)2+(y-3)2=0.∴x=,y=3.原式=x+y2-x2+5x =2x+-x+5=x+6.当x=,y=3时,原式=×+6=+3.10.解:第1个数:当n=1时,n-==×=1.第2个数:当n=2时,n-===××1=1.教学中强调了前面学过的运算法则和运算律对二次根式同样适用,反映了数学理论的一贯性,使学生在学习中感到所学并不难.整节课,始终以练习为主,通过例题练习,将新旧知识紧密联系在一起,并持续巩固运算法则和运算律在二次根式的运算中的使用.过度注重了探究整式的乘法法则和公式在二次根式的混合运算中仍然适用的问题,让学生使用法则和公式计算二次根式的混合运算的练习时间较少,一些学生还容易出现运算顺序出现错误和错用公式的现象.适当增加变式练习,增加二次根式混合运算的例题,提升分析问题和解决问题的水平,真正达到灵活使用因式分解、约分等技巧,使用运算律使计算简便的目的.练习(教材第14页)1.解:(1)(+)=+. (2)(+)÷=+=4+2. (3)(+3)(+2)=5+2+3+6=11+5. (4)(+)(-)=()2-()2=6-2=4.2.解:(1)(4+)(4-)=42-()2=16-7=9. (2)(+)(-)=()2-()2=a-b. (3)(+2)2=()2+4+22=7+4. (4)(2-)2=(2)2-2×2+()2=22-4.习题16.3(教材第15页)1.解:计算均不准确.理由如下:(1)(2)题不能合并,因为它们不是同类二次根式;(3)题在合并同类二次根式时,误把的系数看作0,并去掉,导致运算错误;(4)题是二次根式化简错误,==.2.解:(1)2+=4+3=7. (2)-=3-=. (3)+6=2+3=5. (4)a2+3a=2a2+15a2=17a2.3.解:(1)-+=3-4+=0. (2)-+-=5-3+4-6=-. (3)(+)-(-)=(3+3)-(2-5)=3+3-2+5=8+.(4)(+)-(+)=+--=--.4.解:(1)(+5)=×+5×=+5=6+10. (2)(2+3)×(2-3)=(2)2-(3)2=12-18=-6.(3)(5+2)2=(5)2+(2)2+2×5×2=75+20+20=95+20. (4)+÷=÷+÷=+=+.5.解:5-+=-+3=,∵≈2.236,∴原式=≈×2.236≈7.83.6.解:∵x=+1,y=-1,∴x+y=(+1)+(-1)=2,x-y=(+1)-(-1)=2.(1)x2+2xy+y2=(x+y)2=(2)2=12.(2)x2-y2=(x+y)·(x-y)=2×2=4.7.解:如图所示,作AB边上的高CD,∵∠ACB=90°,CB=CA=a,∴△ABC,△ACD,△BCD都是等腰直角三角形,∴CD=BD=AD=AB,若设CD=BD=AD=x,则AB=2x,S△ABC=S△ACD+S△BCD,∴a 2=x2+x2,∴x2=a2,∴x=a(x=-a不符合题意,舍去),∴AB=2x=2×a=a.8.解:∵a+=,∴=()2,∴a2++2=10,∴a2+=8,∴a2+-2=6,即=6,∴a-=±.9.提示:(1)x1=,x2=-. (2)x1=-5+2,x2=-5-2.复习题16(教材第19页)1.解:(1)由二次根式的意义,可知3+x≥0,∴x≥-3,∴当x≥-3时,在实数范围内有意义. (2)由二次根式的意义及分母不能为0,可知2x-1>0,∴x>,∴当x>时,在实数范围内有意义. (3)由二次根式的意义及分母不能为0,可知2-3x>0,∴x<,∴当x<时,在实数范围内有意义. (4)由二次根式的意义及分母不能为0,可知(x-1)2>0,∴x≠1,∴当x≠1时,在实数范围内有意义.2.解:(1)==10. (2)==2. (3)===. (4)==. (5)=··=xy. (6)==.3.解:(1)-=-=2---=-. (2)2×÷5=(×÷)=×==. (3)(2+)(2-)=(2)2-()2=12-6=6.(4)(2-3)÷=2÷-3÷=2-3=4-=-. (5)(2+3)2=(2)2+2×2×3+(3)2=8+12+27=35+12.(6)===-2××+=-+=5-.4.解:由题意可知a2=96×12,∴a===24(负值已舍去).5.解:∵x=-1,∴x2+5x-6=(-1)2+5(-1)-6=5-2+1+5-5-6=3-5.6.解:∵x=2-,∴(7+4)x2+(2+)x+=(7+4)(2-)2+(2+)(2-)+=(7+4)(7-4)+22-()2+=72-(4)2+4-3+=49-4 8+1+=2+.7.解:由Q=I2Rt,得I=,当R=5,t=1,Q=30时,I==≈2.45(A).8.解:∵==3,且是整数,n是正整数,∴n的最小值为21.9.解:(1)略. (2)由题意可知由①得OD=OA,把OD=OA代入②中,得OC=OA,把OC=OA代入③中,得OB=OA,∴OB=OA,OC=OA,OD=OA.10.解:三个式子都成立,举例:=5,=6,=7 .规律:=n .证明如下:左边===n =右边,所以结论=n 成立.。
16.3 二次根式的混合运算(第一课时)一、教学内容人教版八年级下册16.3二次根式的混合运算二、教学目标1.核心素养通过学习二次根式的加、减、乘、除混合运算的学习,培养学生的运算能力、推理能力和应用意识.2.知识与技能(1).能根据运算律和相关法则进行二次根式的四则运算;(2).能运用二次根式的混合运算解决实际问题。
3.过程与方法从有理数的运算法则和整式的运算规律过渡到二次根式,运用类比等思想方法。
4.情感态度与价值观体验数的扩充过程中运算性质和运算律的一致性以及数式的通性。
5.教学重点与教学难点根据运算律和相关法则进行二次根式的混合运算。
二、教学过程1.复习回顾计算: (1)12121321⨯÷ (2)12273+- 2.复习引入学生活动:请同学们完成下列各题:计算:(1)(2x+y )·x (2)(2x+3y )(2x-3y )老师点评:这些内容是八年级上册整式运算.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.3.探索新知若x =3,y =2;则(32+2)·3和(32+32)(32-32)运算规律是否仍成立呢?•仍成立.老师点评:整式运算中的x 、y 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(32+2)×3 (2)(64-23)÷22分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(32+2)×3=32×3+2×3=6+6解:(64-23)÷22 =64÷22-23÷22=2332- 例2.计算(1)(2+3)×)52(- (2)(32+32)(32-32)(3)2327)15)(15()3(332-+--++- 分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)(2+3)×)52(-=152523)2(2--+=15222-- =2213--(2)(32+32)(32-32) =22)23()32(-=1812-=6-(3)2327)15)(15()3(332-+--++- =23331533+---+- =333-三、巩固练习课本练习1、2.四、拓展探索例3.已知23+=x ,23-=y ,求下列各式的值:(1)222y xy x ++; (2)22y x -; (3)20182017y x •例4.请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+n n 25125151表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+n n 25125151=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+25125151=15×5=1;第2个数,当n =2时,⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+n n 25125151 =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+2225125151 =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-++25125125125151 =15×1×5=1方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.五、归纳小结1.运算顺序:先算乘方(或开方),再算乘除,最后算加减,有括号的先算括号内的,与有理数的运算顺序一样。
人教八下数学《16.3.2二次根式的混合运算》教学设计教学目标:1. 能够运用二次根式进行混合运算。
2. 熟练掌握二次根式的加减乘除运算规则。
3. 能够解决与二次根式相关的实际问题。
教学重点:1. 理解二次根式的运算规则。
2. 能够正确应用二次根式的运算规则进行混合运算。
教学难点:能够解决与二次根式相关的实际问题。
教学准备:1. 教材:人教版八年级下册数学教材。
2. 粉笔、黑板、教学PPT等教学辅助工具。
教学过程:Step 1 导入(5分钟)通过回顾前面所学二次根式的加减乘除运算规则,引导学生回忆并复习已学内容。
Step 2 新知呈现(10分钟)通过一个实际问题引入二次根式的混合运算,例如:小明每个月的零花钱是200元,他每天使用的是20元,问他使用了多少天后,剩下的零花钱可以买到一本价格为√80元的书籍。
教师引导学生分析题意,提取关键信息,引导学生通过二次根式的加减乘除运算规则来解决问题。
Step 3. 解题方法讲解(10分钟)根据问题的特点,教师讲解解决问题的思路和方法:1. 首先将根号去掉,进行运算。
2. 然后再化简计算。
Step 4. 合作探究(15分钟)教师组织学生分小组讨论,完成一些类似的练习题,例如:1. 计算:2√3 + 3√2 - √6 + 4√3 - √2。
2. 解方程:√x + 3 = 5。
Step 5. 拓展应用(10分钟)教师带领学生通过一道拓展应用题目,如:一个矩形的长和宽分别是√2 cm和2√2 cm,求这个矩形的面积。
Step 6. 小结(5分钟)对本节课所学的内容进行总结,强调二次根式的混合运算方法以及应用。
Step 7. 课堂练习(10分钟)布置相关练习题,加深学生对二次根式的混合运算的理解和掌握。
Step 8. 课后作业(5分钟)布置课后作业,巩固所学内容。
部审人教版八年级数学下册教学设计16.3 第1课时《二次根式的加减》一. 教材分析人教版八年级数学下册第16.3节《二次根式的加减》是建立在学生已经掌握了二次根式的性质和运算法则的基础之上。
本节内容主要让学生掌握二次根式的加减运算法则,并能够灵活运用这些法则解决实际问题。
教材通过具体的例子引导学生总结出二次根式加减的法则,并配有丰富的练习题供学生巩固所学知识。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质、运算法则以及实数的运算。
但是对于部分学生来说,对于二次根式的加减运算仍然存在一定的困难,特别是在理解二次根式加减的法则和将其应用到实际问题中。
因此,在教学过程中,需要关注这部分学生的学习情况,通过具体例子和练习题让学生加深对二次根式加减运算法则的理解。
三. 教学目标1.让学生掌握二次根式的加减运算法则。
2.培养学生将二次根式的加减运算应用到实际问题中的能力。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.教学重点:二次根式的加减运算法则。
2.教学难点:理解二次根式加减的法则,并将其应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和探索二次根式的加减运算法则,激发学生的学习兴趣和主动性。
同时,结合具体的例子和练习题,让学生在实践中掌握二次根式的加减运算方法。
六. 教学准备1.准备相关的教学PPT或者黑板。
2.准备一些具体的例子和练习题。
七. 教学过程1.导入(5分钟)通过提问的方式引导学生回顾二次根式的性质和运算法则,为新课的学习做好铺垫。
2.呈现(10分钟)通过具体的例子,引导学生总结出二次根式的加减运算法则。
可以使用PPT或者黑板展示例子,让学生直观地看到二次根式的加减过程。
3.操练(10分钟)让学生分组合作,解决一些关于二次根式加减的实际问题。
可以设置不同难度的问题,以满足不同学生的需求。
4.巩固(10分钟)通过一些练习题,让学生巩固刚刚学到的二次根式的加减运算法则。
16.3.2二次根式的加减乘除混合运算
教学目标
含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.
重点与难点
重点
二次根式的加减乘除混合运算.
难点
由整式运算知识迁移到含二次根式的运算.
教学设计
一、复习导入
(学生活动):请同学们完成下列各题.
计算:
(1)(3x 2+2x +2)·4x;
(2)(4x 2-2xy)÷(-2xy);
(3)(3a +2b)(3a -2b);
(4)(2x +1)2+(2x -1)2.
二、新课教授
由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.
【例1】计算: (1)(8+3)×6;
(2)(42-36)÷2 2.
分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32;
(2)(42-36)÷2 2
=42÷22-36÷22=2-32
3. 【例2】计算:
(1)(2+3)(2-5);
(2)(5+3)(5-3);
(3)(3-2)2.
分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a,3当作b,就可以类比(a+b)(a-b)=a2-b2,第(3)题可类比(a-b)2=a2-2ab+b2来计算.
解:(1)(2+3)(2-5)
=(2)2+32-52-15
=2+32-52-15
=-13-22;
(2)(5+3)(5-3)
=(5)2-(3)2=5-3=2;
(3)(3-2)2
=(3)2-2×3×2+(2)2
=5-2 6.
三、巩固练习
教材第14页练习第1,2题.
【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a-b;(3)7+43;(4)22-410.
四、课堂小结
本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.
作业习题16.3 4、6题
设计意图
1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式算式的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。