高中数学必修空间几何体知识点
- 格式:doc
- 大小:1.55 MB
- 文档页数:20
高中数学必修二·空间几何体1.1空间几何体的构造 棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。
圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。
圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。
高中数学空间几何体的三视图和直观图知识点1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.。
可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
高中立体几何知识点总结高中立体几何知识点总结1点在线面用属于,线在面内用包含。
四个公理是基础,推证演算巧周旋。
空间之中两条线,平行相交和异面。
线线平行同方向,等角定理进空间。
判定线和面平行,面中找条平行线。
已知线与面平行,过线作面找交线。
要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。
已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。
判定线和面垂直,线垂面中两交线。
两线垂直同一面,相互平行共伸展。
两面垂直同一线,一面平行另一面。
要让面与面垂直,面过另面一垂线。
面面垂直成直角,线面垂直记心间。
一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。
空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。
引进向量新工具,计算证明开新篇。
空间建系求坐标,向量运算更简便。
知识创新无止境,学问思辨勇攀登。
多面体和旋转体,上述内容的延续。
扮演载体新角色,位置关系全在里。
算面积来求体积,基本公式是依据。
规则形体用公式,非规形体靠化归。
展开分割好办法,化难为易新天地。
高中立体几何知识点总结2三角函数。
注意归一公式、诱导公式的正确性数列题。
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
空间几何体1、 多面体的定义:由几个多边形围成的封闭立体叫多面体。
2、 棱柱定义:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
基本性质:侧面都是平行四边形;两个底面及平行于底面的截面都是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
棱柱的分类:侧棱与底面不垂直的的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱。
直棱柱侧面都是矩形;直棱柱侧棱与高相等;正棱柱的侧面都是全等的矩形。
底面是平行四边形的棱柱叫做平行六面体;底面是矩形的直棱柱是长方体。
祖暅原理:夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
侧面积和体积公式:S Cl =侧(C 为垂直于侧棱的直截面的周长,l 为侧棱长),V Sh =(S 为底面面积,h 为高)3、 棱锥(1) 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(2) 基本性质:如果一个棱锥被平行于底面的一个平面所截,那么侧棱和高被这个平面分成比例线段;截面与底面都是相似多边形;截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
4、 正棱锥(1) 定义:如果一个棱锥的底面是多边形,且顶点在诺面的射影是底面的中心,这个棱锥叫做正棱锥; (2) 基本性质:各侧棱相等,各侧面都是全等的等腰三角形;正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。
高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
高中数学空间几何体知识点总结一、空间几何体的基本概念1、空间几何体的定义:在空间中,由一些平面和曲面所围成的封闭图形称为空间几何体。
2、空间几何体的分类:空间几何体可分为多面体和旋转体两大类。
多面体是由平面多边形围成的立体图形,而旋转体则是由平面图形绕其中一边旋转形成的。
二、空间几何体的表面积和体积1、空间几何体的表面积:表面积是指空间几何体的所有外露平面的面积之和。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,表面积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算表面积。
2、空间几何体的体积:体积是指空间几何体所占空间的大小。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,体积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算体积。
三、空间几何体的视图和直观图1、空间几何体的视图:视图是指从空间几何体的某一个方向看过去所得到的图形。
常见的视图包括主视图、俯视图、左视图等。
在求解空间几何体的体积或表面积时,通过视图可以帮助我们更好地理解空间几何体的形状和结构。
2、空间几何体的直观图:直观图是指用平行投影的方法将空间几何体投影到一个平面上所得到的图形。
直观图可以反映空间几何体的整体结构和相互关系,是求解空间几何问题的重要工具。
四、空间几何体的常见问题1、空间几何体的形状识别:在解决空间几何问题时,首先需要识别空间几何体的形状。
这可以通过观察空间几何体的特征、测量其边长和角度等方法来实现。
2、空间几何体的表面积和体积计算:表面积和体积是空间几何体的两个重要属性。
对于一些规则的空间几何体,其表面积和体积的计算公式相对简单。
对于不规则的空间几何体,需要采用拆分和组合的方法,将它们分解成简单的几何体来计算表面积和体积。
3、空间几何体的相交问题:当两个或多个空间几何体相交时,会产生交线或交面的问题。
第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
棱台用表示上、下底面各顶点的字母来表示,如下图,棱台ABCD-A 1B 1C 1D 1由三棱锥、四棱锥、五棱锥…截得的棱台,分别叫做三棱台,四棱台,五棱台…特殊的棱锥-由正棱锥截得的棱台叫正棱台上下底面平行,其余各面是梯形,且侧棱延长后交于一点。
三棱台 四棱台 正棱台定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。
用表示它的轴的字母表示,如圆柱OO1。
4.圆锥定义图形表示性质以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。
用表示它的轴的字母表示,如圆锥SO。
定义图形表示性质用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几何体叫做圆台。
用表示它的轴的字母表示,如圆台OO′7.球的结构特征1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。
(1)半圆的半径叫做球的半径。
(2)半圆的圆心叫做球心。
(3)半圆的直径叫做球的直径。
2、球的表示:用表示球心的字母表示,如球O3、球的性质(1)用一个平面去截球,截面是圆面;用一个平面去截球面,截线是圆。
大圆---截面过圆心,半径等于球半径;小圆---截面不过圆心。
(2)球心和截面的圆心的连线垂直于截面。
(3)球心到截面的距离d与球的半径R及截面的半径r,有下面的关系:22 r R d =-解题方法:将立体中相关问题转化为平面几何问题棱锥内由某些线段组成的直角三角形,在计算有关问题时很重要,它是将立体中相关问题转化为平面几何问题的根据,如图2-7中的△AOE,△AOC,△ACE及△OCE.这四个直角三角形中,若知道AE、AC、AO、OE、OC及CE 这六条线段中的若干条时,则可以通过这些直角三角形间的关系求出其他线段.总结三、空间几何体的三视图和直观图1、中心投影与平行投影2、三视图正视图——从正面看到的图侧视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:位置:正视图侧视图俯视图大小:长对正,高平齐,宽相等.3、直观图-----斜二测画法重点:用斜二测画法画水平放置的平面图形的直观图,步骤如下:⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O. 画直观图时,把它们画对应的x'轴与y'轴,两轴交于点O' ,且使∠x'O'y' =45º(或135º),它们确定的平面表示水平面.⑵已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段;⑶已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的一半.例1 用斜二测画法画水平放置的正六边形的直观图.说明:1. 保持平行关系不变.2.水平长度保持不变;纵向长度取其一半.例3 用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A'B'C'D'的直观图.四、 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2Srl r ππ=+4 圆台的表面积22S rl r Rl R ππππ=+++5 球的表面积24SR π=6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)(二)空间几何体的体积 1柱体的体积 VS h =⨯底2锥体的体积 13V S h =⨯底 3台体的体积1)3V S S h =++⨯下上(4球体的体积343V R π=222rrl S ππ+=第二讲 点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系一、平面1、平面及其表示2、平面的基本性质 ①公理1:②公理2:不共线的三点确定一个平面③公理3:A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭P l P l P ααββ∈⎫⇒⋂=∈⎬∈⎭则二、点与面、直线位置关系1、点与平面有2种位置关系2、点与直线有2种位置关系三、空间中直线与直线之间的位置关系1、异面直线2、直线与直线的位置关系⎧⎧⎨⎪⎨⎩⎪⎩相交共面平行异面3、公理4和定理 公理4:定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
12A B αα∈⎧⎨∉⎩、、12A lB l∈⎧⎨∉⎩、、131223l l l l l l ⎫⇒⎬⎭P P P4、求异面直线所成角的步骤: ①作:作平行线得到相交直线;②证:证明作出的角即为所求的异面直线所成的角; ③构造三角形求出该角。
提示:1、作平行线常见方法有:直接平移,中位线,平行四边形。
2、异面直线所的角的范围是 。
四、空间中直线与平面之间的位置关系位置关系公共点有无数个公共点有且只有一个公共点没有公共点符号表示图形表示五、空间中平面与平面之间的位置关系位置关系 两个平面平行 两个平面相交 公共点 没有公共点有一条公共直线符号表示αβP a αβ=I图形表示(000,90⎤⎦a α直线与平面平行a α直线与平面相交a 直线在平面内a α⊂a αP a Aα=I直线、平面平行的判定及其性质一、线面平行1、判定:(线线平行,则线面平行)2、性质:(线面平行,则线线平行)二、面面平行1、判定:(线面平行,则面面平行)2、性质1:(面面平行,则线面平行) b a b b a ααα⊄⎫⎪⊂⇒⎬⎪⎭P P a a a b b αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭P P a b a b P a b βββααα⊂⎫⎪⊂⎪⎪⋂=⇒⎬⎪⎪⎪⎭P P P a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭P I P I性质2:m m αββα⎫⇒⎬⊂⎭P P (面面平行,则线面平行)说明(1)判定直线与平面平行的方法:①利用定义:证明直线与平面无公共点。
②利用判定定理:从直线与直线平行等到直线与平面平行。
③利用面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一个平面。
(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法结合。
②利用判定定理。
③证明两个平面垂直于同一个平面。
④证明两个平面同时平行于第三个平面。
三、线线平行、面面平行、面面平行间的关系直线与平面垂直的判定及其性质一、直线与平面所成的角00--0,180l αβ⎡⎤∈⎣⎦二、二面角三、线面垂直1、判定:2、性质1:0,90α⎡⎤∈⎣⎦,PO AO PA l αααα⊥∴∴∠Q 证明过程为在平面上的投影,为直线与平面所成的角。
,,--BO l AO l BOA l αβ⊥⊥∴∠Q 证明过程是二面角的平面角。
a b a b A l l a l bααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭a ab b αα⊥⎫⇒⎬⊥⎭P四、面面垂直1、判定:文字表达:一个平面过另一个平面的垂线,则这两个平面垂直。
2、性质:说明:(1)判定直线与平面垂直的方法: ①利用定义(可用反证法)。
②利用判定定理。
③利用性质定理。
④结合平行关系: (2)判定平面与平面垂直的方法:①利用定义判断(证)二面角的平面角是直角。
②利用平面与平面垂直的判定定理。
l l αβαβ⊥⎫⇒⊥⎬⊥⎭AB AB AB CD αβαββα⊥⎫⎪⋂⎪⇒⊥⎬⊂⎪⎪⊥⎭,a b a b αα⊥⇒⊥P。