信号与系统 MATLAB实验报告
- 格式:doc
- 大小:148.00 KB
- 文档页数:15
信号与系统MATLAB实验报告实验目的本实验旨在通过MATLAB软件进行信号与系统的相关实验,探究信号与系统的特性与应用。
实验步骤1. 准备工作在正式进行实验之前,我们需要做一些准备工作。
首先,确保已经安装好MATLAB软件,并且熟悉基本的操作方法。
其次,准备好实验所需的信号与系统数据,可以是已知的标准信号,也可以是自己采集的实际信号。
2. 信号的生成与显示使用MATLAB编写代码,生成不同类型的信号。
例如,可以生成正弦信号、方波信号、三角波信号等。
通过绘制信号波形图,观察不同信号的特点和变化。
t = 0:0.1:10; % 时间范围f = 1; % 信号频率s = sin(2*pi*f*t); % 正弦信号plot(t, s); % 绘制信号波形图3. 系统的建模与分析根据实验需求,建立相应的系统模型。
可以是线性时不变系统,也可以是非线性时变系统。
通过MATLAB进行模型的建立和分析,包括系统的时域特性、频域特性、稳定性等。
sys = tf([1, 2], [1, 3, 2]); % 系统传递函数模型step(sys); % 绘制系统的阶跃响应图4. 信号与系统的运算对于给定的信号和系统,进行信号与系统的运算。
例如,进行信号的卷积运算、系统的响应计算等。
通过MATLAB实现运算,并分析结果的意义与应用。
x = [1, 2, 3]; % 输入信号h = [4, 5, 6]; % 系统响应y = conv(x, h); % 信号的卷积运算plot(y); % 绘制卷积结果的波形图5. 实验结果分析根据实验数据和分析结果,对实验进行结果总结与分析。
可以从信号的特性、系统的特性、运算结果等方面进行综合性的讨论和分析。
实验总结通过本次实验,我们学习了如何在MATLAB中进行信号与系统的实验。
通过生成信号、建立系统模型、进行运算分析等步骤,我们深入理解了信号与系统的基本原理和应用方法。
通过实验数据和结果分析,我们对信号与系统有了更深刻的认识,并掌握了MATLAB在信号与系统实验中的应用技巧。
实验一 基本信号的产生与运算一、 实验目的学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。
二、 实验原理MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。
这些信号是信号处理的基础。
1、 利用MATLAB 产生下列连续信号并作图。
(1)51),1(2)(<<---=t t u t x (2)300),32sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、>> t=-1:0.02:5; >> x=(t>1);>> plot(t,-2*x);>> axis([-1,5,-3,1]);>> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');(2)、>> t=0:0.02:30;>> x=exp(-0.3*t).*sin(2/3*t);>> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰axis([0,15,-0.2,0.6]);(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x);>> title('杨婕婕朱艺星');>>xlabel('x=cos(100*t)+cos(3000*t)');因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t);plot(t,x);title('杨婕婕')>> t=-0.1:0.0001:0.1;x=cos(100*t)+cos(3000*t);>> plot(t,x);title('杨婕婕朱艺星');>> xlabel('x=cos(100*t)+cos(3000*t)');(4)、t=0:0.01:200;>> x=cos(0.1*pi*t).*cos(0.8*pi*t);>> plot(t,x);>> title('杨婕婕朱艺星');>> xlabel('x=cos(0.1*pi*t).*cos(0.8*pi*t)');因为为周期函数,可以将横坐标t间隔扩大以便于观察图像>> axis([0,30,-1,1]);2、利用MATLAB 产生下列离散序列并作图。
信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
实验报告实验课程:信号与系统—Matlab综合实验学生姓名:学号:专业班级:2012年5月20日基本编程与simulink仿真实验1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++10011-8015012n n n n n n 。
实验程序:Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End实验结果;qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1)ans=4.6170e+004。
1-2试利用两种方式求解微分方程响应(1)用simulink对下列微分方程进行系统仿真并得到输出波形。
(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。
)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d tt t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况!试验过程(1)(2)a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r tt t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。
实验程序:a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');运行结果如下:3-2;请编写一个自定义函数[F,tF}=intl(f,tf,a)实现数值积分,其中f和tf分别用列矢量表示待积函数的抽样值和抽样时间,a表示积分的起始时间,F和tF分别表示积分结果的抽样值和抽样时间。
MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。
由于盘算历程啰嗦,最适适用MATLAB 盘算。
通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。
任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。
-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。
基波频率Ω。
2、确定系统函数 )(Ω jn H。
3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。
matlab信号与系统实验报告Matlab信号与系统实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础课程,对于理解和应用各种信号处理技术具有重要意义。
本实验报告旨在通过使用Matlab软件,对信号与系统的基本概念和实验进行探讨和分析。
实验一:信号的基本特性分析在信号与系统的研究中,我们首先需要了解信号的基本特性。
通过Matlab软件,我们可以方便地对不同类型的信号进行分析和处理。
在本实验中,我们选择了常见的正弦信号和方波信号进行分析。
首先,我们生成了一个频率为1kHz,幅度为2V的正弦信号,并绘制了其时域波形图和频谱图。
通过观察时域波形图,我们可以看到正弦信号具有周期性和连续性的特点。
而通过频谱图,我们可以看到正弦信号在频域上只有一个峰值,说明其是单频信号。
接下来,我们生成了一个频率为1kHz,幅度为2V,占空比为50%的方波信号,并绘制了其时域波形图和频谱图。
与正弦信号不同,方波信号具有分段常值的特点。
通过频谱图,我们可以看到方波信号在频域上存在多个谐波分量,说明其是由多个频率的正弦信号叠加而成。
实验二:系统的时域响应分析在信号与系统中,系统的时域响应是描述系统对输入信号进行处理的重要指标。
通过Matlab软件,我们可以方便地分析和绘制系统的时域响应。
在本实验中,我们选择了一个一阶低通滤波器作为系统,输入信号为一个频率为1kHz,幅度为2V的正弦信号。
通过绘制输入信号和输出信号的时域波形图,我们可以观察到系统对输入信号进行了滤波处理,输出信号的幅度和相位发生了变化。
此外,我们还可以通过改变系统的参数,如截止频率和阶数,来观察系统的时域响应的变化。
通过对比不同参数下的输出信号波形图,我们可以得出不同参数对系统响应的影响。
实验三:系统的频域响应分析除了时域响应,频域响应也是描述系统特性的重要指标。
通过Matlab软件,我们可以方便地进行系统的频域响应分析。
在本实验中,我们选择了一个二阶巴特沃斯低通滤波器作为系统,输入信号为一个频率为1kHz,幅度为2V的正弦信号。
信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。
通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。
实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。
在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。
通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。
实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。
这就需要进行信号的采样和重构。
在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。
实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。
在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。
此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。
实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。
在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。
通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。
实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。
在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。
通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。
信号与系统实验报告实验一、信号基本运算的MATLAB 实现一、实验目的学习如何利用Matlab 实现信号的基本运算,掌握信号的基本运算的原理,加深对书本知识的理解。
二、实验材料PC 机一台三、实验内容1、(1)编写如图Exercise1.1所示波形的MATLAB 函数。
(2)试画出f(t),f(0.5t),f(1-2t)的波形。
解:程序如下: 实验结果: function yt = f2(t)yt=tripuls(t,4,0.5); t=-3:0.01:5; subplot(311) plot(t,tx(t)) title('f£¨t£©') subplot(312) plot(t,tx(0.5*t)) title('f(0.5t)') subplot(313) plot(t,tx(-2*t)) title('f(-2t)') 2、画出如图exercise1.2所示序列f[2k]、f[-k]和f[k+2],f[k-2]的波形。
并求f[k]的和。
解:程序如下:function f=ls(k)f=3.*(k==-2)+1.*(k==-1)+(-2).*(k==0)+(-1).*(k==1)+2.*(k==2)+(-3).*(k==3);Exercise 1.1-3f[k] kExercise1.2k=-5:0.01:10;subplot(321)stem(k,ls(k)) 实验结果:title('f[k]')subplot(322)stem(k,ls(2*k))title('f[2k]')subplot(323)stem(k,ls(-1*k))title('f[-k]')subplot(324)stem(k,ls(k+2))title('f[k+2]')subplot(325)stem(k,ls(k-2))title('f[k-2]')subplot(326)plot(k,sum(ls(-2:3)))title('Sum f[k]')3、解:程序如下:function y=tx(t)y=0.*(t>=2|t<-1)+(2-t).*(t>=1&t<2)+1.*(t>=-1&t<1); t=-5:0.01:5; 实验结果:ft1=tripuls(t-3,2,0.5);subplot(311)plot(t,ft1)title('f(t)')ft1=tripuls(-t-3,2,0.5);subplot(312)plot(t,ft1)title('f(-t)')ft1=tripuls(-2*t-2,2,0.5);subplot(313)plot(t,ft1)title('f(1-2t)')。
《信号与系统》MATLAB 实验报告院系: 专业:年级: 班号:姓名: 学号:实验时间:实验地点:实验一 连续时间信号的表示及可视化实验题目:)()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及);)()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。
解题分析:以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。
实验程序:(1))()(t t f δ=t=-1:0.01:3 %设定时间变量t 的范围及步长f=dirac(t) %调用冲激函数dirac ()plot(t,f) %用plot 函数绘制连续函数axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围(2))()(t t f ε=t=-1:0.01:3 %设定时间变量t 的范围及步长f=heaviside(t) %调用阶跃函数heaviside ()plot(t,f) %用plot 函数绘制连续函数title('f(t)=heaviside(t)') %用title 函数设置图形的名称axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围(3)at e t f =)(a=1时:t=-5:0.01:5 %设定时间变量t 的范围及步长f=exp(t) %调用指数函数exp ()plot(t,f) %用plot 函数绘制连续函数title('f=exp(t)') %用title 函数设置图形的名称axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的范围a=2时:t=-5:0.01:5f=exp(2*t) %调用指数函数exp ()plot(t,f)title('f=exp(2*t)')axis([-5,5,-1,100])a=-2时:t=-5:0.01:5f=exp(-2*t)plot(t,f)title('f=exp(-2*t)')axis([-5,5,-1,100])(4))()(t R t f =t=-5:0.01:5f=rectpuls(t,2) %用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为aplot(t,f)title('f=R(t)')axis([-5 5 -0.5 1.5])(5))()(t Sa t f ω=ω=1时:t=-20:0.01:20f=sin(t)./t %调用正弦函数sin (),并用sin (t )./t 实现抽样函数plot(t,f)title('f(t)=Sa(t)')axis([-20,-20,-0.5,1.1])ω=5时:t=-20:0.01:20f=sin(5*t)./(5*t)plot(t,f)title('f(t)=Sa(5*t)')axis([-20,-20,-0.5,1.1])(6))2()(ft Sin t f π=ω=1时:t=-10:0.01:10f=sin(t) %调用正弦函数sin ()plot(t,f);title('f=sin(t)')axis([-10,10,-2,2])ω=5时:t=-10:0.01:10f=sin(5*t)plot(t,f);title('f=sin(5*t)')axis([-10,10,-2,2])实验结果;(1)(2)(3)a=1时:a=2时:a=-2时:(4)(5)ω=1时:ω=5时:(6)ω=1时:ω=5时:实验心得体会:(1)在 MATLAB中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。
在MATLAB 中t = t1: p: t2的命令定义时间范围向量,t1为信号起始时间,t2为终止时间,p为时间间隔。
(2)plot( )函数可用于连续函数的绘制。
(3)用axis()函数限制坐标范围,可使图像更加匀称美观。
改进想法:本题中函数的表示方法都不只一种。
如阶跃函数可以借助符号函数来实现可视化。
其程序和结果如下:t=-5:0.05:5f=sign(t) %调用符号函数sign()axis([-5,5,-1.1,1.1])ff=1/2+1/2*f %运用阶跃函数与符号函数的关系,表示出阶跃函数ff plot(t,ff)axis([-5,5,-0.1,1.1])实验二 离散时间信号的表示及可视化实验题目:)()(n n f δ=;)()(n n f ε=;an e n f =)((分别取00<>a a 及);)()(n R n f N =(分别取不同的N 值);)()(ωn Sa n f =;)()(ωn Sin n f =(分别取不同的ω值);解题分析:以上各类离散函数,可仿照连续函数的可视化,先运用n =n1: p: n2的命令定义自变量的范围及步长,然后调用对应的函数,建立f 与t 的关系,最后调用stem ()函数绘制图像,并用axis ()函数限制其坐标范围。
实验程序:(1))()(n n f δ=n=-5:0.5:5 %设定时间变量n 的范围及步长f=dirac(n)stem(n,f) %调用stem ()绘制离散函数title('f=dirac(t)')axis([-5,5,-3,10]) %用axis 函数规定横纵坐标的范围(2))()(n n f ε=n=-5:0.5:5f=heaviside(n)stem(n,f)title('f=Heaviside(t)')axis([-5,5,-0.5,1.5])(3)an e n f =)(a=1时:n=-5:0.5:5f=exp(n)stem(n,f)title('f=exp(n)')a=2时:n=-5:0.5:5f=exp(2*n)stem(n,f)title('f=exp(2*n)')a=-2时:n=-5:0.5:5f=exp(-2*n)stem(n,f)title('f=exp(-2*n)')(4))()(n R n f N =n=-5:0.5:5f=rectpuls(n,2)stem(n,f)title('f=R(n)')axis([-5,5,-0.5,1.5])(5))()(ωn Sa n f =ω=1时:n=-20:0.5:20f=sin(n)./(n)stem(n,f)title('f=Sa(n)')axis([-20,-20,-0.5,1.1])ω=5时:n=-20:0.5:20f=sin(5*n)./(5*n)stem(n,f)title('f=Sa(5*n)')axis([-20,-20,-1,5])(6))()(ωn Sin n f =ω=1时:n=-5:0.5:5f=sin(n)stem(n,f)title('f=sin(n)')axis([-5,5,-2,2])ω=5时:n=-5:0.5:5f=sin(5*n)stem(n,f)title('f=sin(5*n)')axis([-5,5,-2,2])实验结果;(1)(2)(3)a=1时:a=2时:a=-2时:(4)(5)ω=1时:ω=5时:(6)ω=1时:ω=5时:实验心得体会:用plot ()函数可以绘制离散序列,但是与连续序列有所不同,需要在括号内加上'.'。
但是plot ()画出来的函数图像不直观,显得很凌乱。
改进想法:(1)对于离散函数,如果使用stem(n,f, '.')函数,绘图效果更好。
如抽样函数的程序:n=-20:0.5:20f=sin(n)./(n)stem(n,f,'.')title('f=Sa(n)')axis([-20,-20,-0.5,1.1])绘图结果如下:对比可知此法做出的图像更加清晰美观。
(2)MATLAB 可以自动地根据曲线数据的范围选择合适的坐标系,从而使得曲线尽可能清晰地显示出来,一般情况下不必选择坐标系。
但是,如果对 MATLAB 自动产生的坐标轴不满意,可以利用 axis 命令对坐标轴进行调整。
实验三 系统的时域求解实验题目:1.设)10()()(),()9.0()(--==n u n u n x n u n h n ,求)(*)()(n h n x n y =,并画出)(n x 、)(n h 、)(n y 波形。
2.求因果线性移不变系统)2()()2(81.0)(--+-=n x n x n y n y 的单位抽样响应)(n h ,并绘出)(ωj e H 的幅频及相频特性曲线。
解题分析:1.用heaviside ()和exp()函数 表示出x(n) 和h(n),然后调用conv()函数实现x(n) 和h(n)的卷积y(n)。
并且分别将三个函数图像绘出。
2.通过给矩阵a ,b 赋值,建立系统差分方程,然后调用impz()函数求系统的冲激响应,再用函数freqs(b,a)进行系统频率响应的分析。
实验程序:(1)n=-10:20 %设置变量范围,默认步长为1f=heaviside(n)x=heaviside(n)-heaviside(n-10) %阶跃函数直接相减figure(1) %产生图像窗口1stem(n,x) %绘制函数xtitle('x(n)')h=0.9.^n.*f %函数h的表达式figure(2) %产生图像窗口2stem(n,h) %绘制函数htitle('h(n)')n1=-20:40y=conv(h,x) %调用conv()函数求h和x的卷积figure(3) %产生图像窗口3stem(y) %绘制函数ytitle('y(n)=x(n)*h(n)')(2)a=[1 0 -0.81] %描述系统的差分方程的系数b=[1 0 -1] %描述系统的差分方程的系数figure(1)h=impz(n,m,-10:10) %调用impz()函数求系统的冲激响应stem(h) %绘制函数h的离散序列title('h(n)')figure(2)freqs(b,a) %对连续系统频率响应H(jw)进行分析的函数freqs()实验结果;(1)(2)实验心得体会:(1)计算离散序列的卷积时,应考虑其结果的横坐标范围的改变。