手机中智能传感器
- 格式:doc
- 大小:687.00 KB
- 文档页数:10
智能传感器技术在当今科技飞速发展的时代,智能传感器技术正以惊人的速度改变着我们的生活和工作方式。
从智能手机中的各种感应功能,到工业生产线上的精密监测,再到医疗领域的健康监测设备,智能传感器无处不在,发挥着至关重要的作用。
那么,什么是智能传感器技术呢?简单来说,智能传感器是一种具有信息处理能力的传感器。
它不仅能够感知物理世界中的各种参数,如温度、湿度、压力、光线等,还能够对这些感知到的数据进行处理、分析和传输。
与传统传感器相比,智能传感器具有更高的精度、更强的稳定性、更低的功耗以及更智能的功能。
智能传感器技术的核心在于其集成了多种先进的技术。
首先是微机电系统(MEMS)技术,它使得传感器能够在微小的尺寸上实现复杂的结构和功能。
通过 MEMS 技术,可以制造出体积小、重量轻、成本低的传感器,从而广泛应用于各种便携式设备和物联网终端。
其次是传感器融合技术,即将多个不同类型的传感器集成在一起,通过数据融合算法,实现更全面、更准确的感知。
例如,在智能手机中,通常会集成加速度传感器、陀螺仪、磁力计等多种传感器,以实现精确的定位和运动检测。
此外,智能传感器还融合了人工智能算法,能够对感知到的数据进行深度学习和模式识别,从而提取出更有价值的信息。
智能传感器技术的应用领域非常广泛。
在工业领域,智能传感器被用于生产过程的监控和质量控制。
例如,在汽车制造工厂中,智能传感器可以实时监测生产线上的设备运行状态,提前发现潜在的故障,提高生产效率和产品质量。
在农业领域,智能传感器可以监测土壤湿度、温度、酸碱度等参数,为精准农业提供数据支持,实现水资源和肥料的合理使用,提高农作物的产量和质量。
在医疗领域,智能传感器更是发挥着重要作用。
智能手环、智能手表等可穿戴设备中的传感器可以实时监测人体的心率、血压、睡眠质量等健康指标,为个人健康管理提供依据。
同时,在医院中,智能传感器也被用于医疗设备的监测和病人的监护,提高医疗服务的质量和安全性。
「移动智能终端中传感器种类及功能调研」移动智能终端(如智能手机和平板电脑)的普及为人们的生活带来了很多便利。
其中一个重要的因素就是其内置的各种传感器,这些传感器能够感知和收集各种环境信息,为用户提供更多的交互选择和个性化服务。
本文将对移动智能终端中常见的传感器种类和功能进行调研和介绍。
首先,光线传感器是一种常见的传感器,在手机和平板电脑中广泛使用。
它能够感知周围的光线强度,以便为用户自动调节屏幕亮度和背光等参数,提供更好的视觉体验和节省电池功耗。
其次,重力传感器也是移动智能终端中常见的传感器之一、它能够感知重力的方向和大小,通过这一信息可以实现设备的屏幕旋转、姿势检测等功能。
比如,当用户将手机旋转为横向时,设备会智能地将屏幕内容进行旋转。
加速度传感器是另一种常见的传感器,在手机和平板电脑中广泛应用于游戏和运动应用中。
它能够感知设备在三个维度上的加速度,通过这些数据可以计算出用户的步数、跑步速度、跳跃高度等信息,为用户提供更多的健康运动服务和游戏体验。
磁力传感器是一种用于感知附近磁场的传感器。
它在手机中常用于指南针应用,能够感知地球磁场的方向,为用户提供准确的方向和导航指示。
磁力传感器也可以用于检测附近的金属物体,如手机壳的磁力开关,以实现智能唤醒和休眠等功能。
接下来,陀螺仪传感器是一种用于感知设备角速度和旋转角度的传感器。
它常用于游戏和虚拟现实应用中,能够实时感知设备的旋转和移动,为用户提供更真实的游戏体验和虚拟空间导航。
温度传感器是一种用于感知周围环境温度的传感器。
它在手机中常用于监测设备温度,以防止过热和保护设备。
温度传感器也可以用于室内温度监测等应用领域。
湿度传感器是一种用于感知周围湿度水分含量的传感器。
它常用于气象应用和室内湿度监测,为用户提供更准确的天气和环境信息。
除了以上传感器外,移动智能终端中还包括接近传感器、气压传感器、心率传感器等多种传感器。
这些传感器的功能各不相同,但都能为用户提供各种个性化服务和交互体验。
新型传感器在智能手机中的应用智能手机作为我们日常生活中不可或缺的一部分,已经成为人们交流、工作、娱乐的重要工具。
随着科技的不断发展,新型传感器的应用也逐渐在智能手机中得到了广泛应用。
本文将介绍新型传感器在智能手机中的应用领域,并探讨其对我们日常生活带来的影响。
一、指纹传感器指纹传感器是一种用于识别指纹的传感器,通过对指纹进行扫描和匹配,可以用于解锁手机、支付验证等多种应用场景。
相比传统的密码锁或图案解锁,指纹传感器更加安全可靠。
用户只需将手指轻轻触碰指纹传感器,即可完成解锁,方便快捷。
二、环境光传感器环境光传感器可感知周围环境的光强度,并自动调节手机屏幕的亮度,以提供更加舒适的使用体验。
在强光环境下,传感器会增加屏幕亮度,以保证内容清晰可见;在暗光环境下,传感器会降低屏幕亮度,以节省电量并减少眼睛的疲劳感。
三、加速度传感器加速度传感器可以感知手机的加速度和重力变化,从而实现多种功能。
例如,当我们跳动手机时,加速度传感器会自动旋转屏幕的方向;在游戏中,加速度传感器可以用于体感控制,让玩家更加身临其境;此外,加速度传感器还可以用于健康监测,通过监测用户的步数和运动状态,实现计步、计算卡路里消耗等功能。
四、陀螺仪传感器陀螺仪传感器可以感知手机的旋转和方向变化,为手机提供姿态传感能力。
在游戏中,陀螺仪传感器可以用于实现更加精准的动作控制;在导航应用中,陀螺仪传感器可以提供更加准确的方向感知;同时,陀螺仪传感器还可以用于增强现实应用,实现与虚拟物体的交互。
五、心率传感器心率传感器可以通过手机与用户之间的接触,测量用户的心率,并提供实时心率监测和健康分析。
这对于关注健康的用户来说尤为重要。
心率传感器可以帮助我们了解自己的身体状况,及时发现异常情况,并采取相应的措施。
六、气压传感器气压传感器可以感知大气压力的变化,通过与GPS等技术相结合,实现高度测量和气象预报等功能。
例如,气压传感器可以用于追踪爬山高度,在户外探险中提供可靠的高度信息;同时,气压传感器还可以结合气象数据,为用户提供准确的天气预报,帮助用户合理安排日程。
智能手机都有些什么传感器
如今,智能手机在生活中得到广泛应用,其功能也越来越多,比如可以装很多的实用软件等等。
此外,吸引消费者的另一原因是它带有很多的传感器,可以感应很多外部信息,比如现在很多产品都带有磁传感器,陀螺仪,加速传感器,接近传感器,气压传感器等。
磁传感器、加速度传感器和陀螺仪通常称为惯性传感器,常用于各种设备或终端中实现姿态检测,运动检测等。
加速度传感器利用重力加速度,可以用于检测设备的倾斜角度,但是它会受到运动加速度的影响,使倾角测量不够准确,所以通常需利用陀螺仪和磁传感器补偿。
同时磁传感器测量方位角时,也是利用地磁场,当系统中电流变化或周围有导磁材料时,以及当设备倾斜时,测量出的方位角也不准确,这时需要用加速度传感器(倾角传感器)和陀螺仪进行补偿。
而陀螺仪,只有运动时才输出角速率,静态时输出为0,它也很难单独地确定设备的姿态。
所以在实际应用中,通常应用三轴磁传感器、三轴加速度传感器和三轴陀螺仪一起确定设备的姿态,以及实现运动检测。
PNI公司的新款数据融合处理芯片SENtral,是惯性导航传感器数据融合的数据处理中心,是首款超低功耗、同时处理9轴惯性传感器的集成电路。
该芯片同时处理九轴惯性传感器数据--3轴加速度传感器,3轴磁传感器,3轴陀螺仪,依托PNI研究与设计传感器数据融合技术的专家20多年的经验。
手机里的传感器实例解析智能手机给用户带来的体验绝对不仅仅是第三方扩展功能,还有它依靠硬件基础所实现的人机交互体验,比如说屏幕旋转,甩动手机切歌换壁纸等等。
很多人都不解在听筒旁边的几个小黑点是做什么用的,其实它们就是这些人性化功能的硬件基石,这些统称为“传感器”的配备感知着智能手机对光线,距离,重力,方向等方面的变化,并能让我们获得更加智能化人性化的使用体验。
手机里的传感器实例解析机身顶部的光线/距离感应器今天我们就来聊聊这些众多的传感器,它们虽然不似处理器RAM内存等重要核心硬件一样被经常摆上台面,但智能手机的不少细节功能都离不开这些传感器。
相信并不见得每个人都对它们了如指掌,大多数用户都是存在着一知半解的现象。
接下来让我们通过实际演示和通俗解释,来为大家一一展示这些藏在手机当中的传感器究竟有什么用处,以便你能更好的掌控并使用到自己手机的最大效率。
光线/距离传感器光线传感器:手机屏幕显示亮度忽明忽暗这个现象,很多人都碰到过甚至一度被误认为手机质量问题,其实它就是由手机的光线传感器所感知。
手机当中有一个设置叫做“自动调节亮度”,如果你选择该功能之后,在光线传感器的感知下手机会自动感应当下环境光线的强弱程度,并且会自动调节屏幕显示的明暗效果。
当光线强时屏幕显示就变的更加明亮,当光线弱时屏幕显示则会变得偏暗,以让用户眼睛获得更适应的视觉感观。
并且相比恒定级别的亮度显示,光线传感器还可以达到节省电量的效果。
开启自动亮度利用光线传感器来调节手机亮度光线感应器可以有效感知所处环境光线的强弱距离传感器:当你进行通话手机放置在耳边或者脸庞时,手机屏幕会自动关闭变黑,这不是手机坏了,而是距离传感器在起作用。
它会及时判断手机处于什么样的状态,当你打电话时会自动黑屏以防止你在通话过程中耳朵或者脸颊肉不小心触碰到挂断键或者产生其它操作,同时还可以有效节省电量。
这点在手机普遍都是电容屏幕的当下显得尤为实用,因为在通话时人脸或者耳朵这些皮肤接触比较容易造成误操作。
Android手机中的智能传感器及其应用随着技术的进步,手机已经不再是一个简单的通信工具,而是具有综合功能的便携式电子设备。
手机的虚拟功能,比如交互、游戏、都是通过处理器强大的计算能力来实现的,但与现实结合的功能,则是通过传感器来实现。
本文介绍了几种手机中常见的传感器的原理和用途。
Android智能手机自推出以来,其内置传感器逐渐增多,传感器所能实现的功能也日益多样化,极大的满足了用户对智能手机功能的需求,从依赖于重力传感器的各种游戏,到依靠距离传感器实现的通话灭屏,再到指南针功能下的电子罗盘等等,小小的一个Android智能手机以各种传感器为依托实现了许多有趣的功能。
1.距离传感器这个传感器在手机上的应用是当我们打电话时,手机屏幕会自动熄灭,同时触摸屏无效,能够防止误操作。
当脸离开屏幕时屏幕灯会自动开启,并且自动解锁,因此距离传感器位于手机屏幕上方。
这个对于待机手机较短的智能手机来说是相当实用的,现在很多智能手机都装备的这个传感器。
距离传感器和光线传感器位置如图.1图1.距离和光线传感器距离传感器原理:红外LED灯发射红外线,被近距离物体反射后,红外探测器通过接收到红外线的强度,并测量光脉冲从发射到被物体反射回来的时间,测定距离,一般有效距离在10cm内。
距离传感器同时拥有发射和接受装置,一般体积较大。
2.光线传感器光线传感器,也就是感光器,是能够根据周围光亮明暗程度来调节屏幕明暗的装置。
光线传感器可以使用光敏三极管作为感光元件,接受外界光线时,会产生强弱不等的电流,从而感知环境光亮度。
在光线强的地方手机屏幕会变暗,达到节电并更好观看屏幕的效果,在光线暗的地方自动将屏幕变亮。
可以在工具设置中设置自动调节屏幕亮度。
这个传感器也主要起到节省手机电力的作用,自动调节屏幕亮度也能起到保护眼睛的作用。
光线传感器位置如图1 光线传感器和距离传感器一般都是放在一起的,位于手机正面听筒周围,这样就存在一个问题,手机的额头上开了太多洞或黑色长条不太好看,所以一些厂商为了减少开孔、或者隐藏开孔,将两个传感器集成到一个窗口下,或者使用黑色面板,黑色面板的手机可以轻易隐藏这两个传感器。
3.方向传感器方向传感器就是陀螺仪,陀螺仪的测量物理量是偏转,倾斜时的转动角度。
陀螺仪传感器最早应用于航空、航天和航海等领域。
随着陀螺仪传感器成本的下降,现在很多智能手机都集成有陀螺。
陀螺仪是一种用来传感与维持方向的装置,基于角动量守恒的理论设计出来的。
陀螺仪主要是由一个位于轴心且可旋转的轮子构成,一旦开始旋转,由于轮子的角动量,陀螺仪就具有了抗拒方向改变的能力。
在手机上,仅用液体测平和加速度计没办法测量或重构出完整的3D动作,因此现在的手机大多采用三轴陀螺仪作为方位测量传感器。
三轴陀螺仪可以替代三个单轴陀螺仪,可同时测定6个方向的位置、移动轨迹及加速度。
陀螺仪则可以对转动,偏转的动作做很好的测量,这样就可以精确分析判断出使用者的实际动作。
而后根据动作,可以对手机做相应的操作!三轴陀螺仪的原理如图2。
图2.陀螺仪目前手机中采用的三轴陀螺仪用途主要体现在游戏的操控上,有了三轴陀螺仪,我们在玩《现代战争》等射击游戏时,可以完全摒弃以前通过方向按键来控制游戏的操控方式,我们只需要通过转到手机,既可以达到改变方向的目的,使游戏体验更加真实、操作更加灵活。
4.重力传感器与加速度传感器重力传感器是根据压电效应的原理来工作的,所谓的压电效应就是“对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应”。
手机重力感应技术是利用压电效应实现的,简单来说是测量内部一片重物(重物和压电片做成一体)重力正交两个方向的分力大小,来判定水平方向。
通过对力敏感的传感器,感受手机在变换姿势时,重心的变化,使手机光标变化位置从而实现选择的功能。
如图3所示。
图3.重力传感器重力感应器是由苹果公司率先开发的一种设备,现在基本所有的智能手机都带有这个传感器了。
重力传感器可以实现自动转动屏幕,在查看图片和拍照时有很好的用户体验。
与重力传感器相同,加速度传感器也是压电效应,原理也相似,有的厂商就将两个传感器集成为一个。
加速度传感器通过三个维度确定加速度方向,功耗小,但精度低。
加速度传感器用于测量手机在3D角度上的加速度,可用于计步和防摔保护。
人在走路时身体会上下运动,这就有了一个加速度。
手机中的加速度传感器能够检测这一动作。
传感器输出的电信号经过处理后确定人走的步数,从而确定运动量。
防摔保护也是利用加速度传感器设计的。
利用加速度传感器检测自由落体状态,从而对迷你硬盘实施必要的保护。
大家知道,硬盘在读取数据时,磁头与碟片之间的间距很小,因此,外界的轻微振动就会对硬盘产生很坏的后果,使数据丢失。
而利用加速度传感器可以检测自由落体状态。
当检测到自由落体状态时,让磁头复位,以减少硬盘的受损程度。
5.磁场传感器磁力传感器简称为M-sensor,返回x、y、z三轴的环境磁场数据。
地球的磁场像一个条形磁体一样由磁南极指向磁北极。
在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。
通过测量三个方向上磁场的强度确定方向。
磁力传感器的主要应用时指南针,要实现电子指南针功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器。
随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块LSM303DLH,这是一款成本低、性能高的电子指南针模块。
6.摄像头摄像头是一种光电转换装置,拍摄景物时通过镜头,将生成的光学图像投射到感光元件上,然后光学图像被转换成电信号,电信号再经过模数转换变为数字信号,数字信号经过DSP加工处理,再被送到手机处理器中进行处理,最终转换成手机屏幕上能够看到的图像。
摄像图的成像原理与凸透镜的成像原理相似,当物体在2倍焦距外时可在1~2倍焦距之间成倒立缩小的实像,所以感光板位于镜头的一倍到两倍焦距之间。
光路原理图如图4。
图4.摄像头光路图摄像头除了拍照片和视频外还可以结合图像处理技术实现更复杂的功能。
例如可以使用闪光灯拍摄手指的透光照片,可以用于测量心率。
原理是:人的血液中的血氧含量在每次心跳前后是不同的,血氧含量高时血液为鲜红色,氧气被消耗后为暗红色。
手机的强光灯照到手指上,摄像头拍到手指颜色周期性的变化,对拍摄到的图像进行处理,从而算出心率。
一款手机测心率软件截图如下。
图5.测量心率7.触摸屏-矩阵式传感器现在所有的智能手机都配备了触摸屏,主流触摸屏是电阻式触摸屏和电容式触摸屏。
电阻屏是感知手指的压力,电容屏是感应手指与屏幕之间的耦合电容。
由于电容屏的灵敏度高,智能手机越来越趋向于使用电容屏。
电容屏-顾名思义就是利用电容效应识别触摸位置的设备。
电容屏的玻璃下有紧密排布的微小电容,当手指靠近屏幕时会与屏幕下的极板形成耦合电容,使流过C P的电流变化,控制芯片读取电流的变化就能推算出触电的位置。
图6.电容触摸屏一块屏幕有许多微小的电容组成,一个小的电容都可以看作一个电容传感器,因此一块屏幕就是一个电容传感器矩阵,利用这个传感器矩阵可以定义和识别在屏幕上的各种操作,例如两指单击、双指下滑、三指缩放等,这些操作都可以被识别,并根据动作完成对应操作。
图7.一款定义手势的软件8.摄像头测心率的实现原理摄像头测心率最原始的原理是“光电容积脉搏波描记法”。
光电容积脉搏波描记法是借光电手段在活体组织中检测血液容积变化的一种无创检测方法。
皮肤内的血液容积在心脏作用下呈搏动性变化。
当心脏收缩时外周血容量最多,光吸收量也最大,检测到的光强度最小;而在心脏舒张时,检测到的光强度最大使光接收器接收到的光强度随之呈脉动性变化。
将此光强度变化信号转换成电信号,便可获得容积脉搏血流的变化。
通过手机摄像头检测到的图像明暗变化是可见光在手指上透过光线多少的反映。
拍摄到的画面如何识别出收缩和舒张是软件设计的关键。
摄像头拍到的画面如下图。
图8.单帧彩色图由于本例中只有两类图片,图像的主色为红色,可采用红色得RGB值作为灰度来区分这两种图片,将此图片转化为灰度图后如下。
使用java计算图片灰度值的代码如下。
public void grayImage() throws IOException{File file = new File(System.getProperty("user.dir")+"/test.jpg");BufferedImage image = ImageIO.read(file);int width = image.getWidth();int height = image.getHeight();BufferedImage grayImage = newBufferedImage(width,height,BufferedImage.TYPE_BYTE_GRAY);for(int i= 0 ; i < width ; i++){for(int j = 0 ; j < height; j++){int rgb = image.getRGB(i, j);grayImage.setRGB(i, j, rgb);}}File newFile = new File(System.getProperty("user.dir")+"/method1.jpg");ImageIO.write(grayImage, "jpg", newFile);}图9.单帧灰度图图9.灰度图直方图将灰度直方图的所有灰度的值相加记为画面全部灰度值之和,由画面全部灰度值之和作为因变量,时间作为自变量绘制的脉率图像。
取第一幅图作为灰度坐标零点,绘制的图像如下。
图10.灰度随时间变化图上图表明手机拍到的手指画面会随着时间变化灰度和呈周期变化,找出此波在1分钟内变化的次数就能大致算出心率。
9.展望手机中的智能传感器越来越趋向于微型化、数字化、智能化、多功能化、系统化、网络化发展,未来的仿生传感器也开始在手机中集成,如人脸识别和指纹识别,相信在不远的将来智能手机中的传感器将为我们的智能生活提供更加便利的服务。