百度技术沙龙30期:推荐引擎实践:策略篇_赵岷
- 格式:pdf
- 大小:4.70 MB
- 文档页数:52
基于机器学习的个性化推荐系统研究与实践个性化推荐系统是一种利用机器学习技术为用户提供个性化推荐信息的系统,通过分析用户的历史行为数据和偏好,为用户推荐他们可能感兴趣的产品或内容。
随着互联网的快速发展,个性化推荐系统在各个领域都得到了广泛应用,如电子商务、社交网络、音乐和视频平台等。
本文将探讨基于机器学习的个性化推荐系统的研究与实践。
一、个性化推荐系统的作用和挑战个性化推荐系统的出现,大大提高了用户体验,帮助用户快速找到符合自己需求的信息,节约了用户的时间。
然而,个性化推荐系统也面临一些挑战,如数据稀疏性、冷启动问题和推荐算法的准确性等。
1. 数据稀疏性用户行为数据通常是稀疏的,即用户对大部分物品没有行为数据。
这就导致了推荐系统很难准确地为用户推荐他们感兴趣的物品。
解决数据稀疏性问题是个性化推荐系统面临的首要挑战之一。
2. 冷启动问题冷启动问题是指新用户和新物品的推荐问题。
对于新用户,由于缺乏用户的历史行为数据,推荐系统很难准确地为其进行个性化推荐。
对于新物品,缺乏用户的行为数据也导致了推荐系统很难为其做出准确的推荐。
3. 推荐算法的准确性推荐算法的准确性直接影响着推荐系统的效果。
对于不同的应用场景,需要选择合适的推荐算法,如基于内容的推荐、协同过滤推荐、深度学习推荐等。
如何设计一个准确性高、性能好的推荐算法是个性化推荐系统研究的核心问题。
二、基于机器学习的个性化推荐系统技术机器学习技术在个性化推荐系统中发挥着重要作用。
基于机器学习的个性化推荐系统通常包括数据收集、特征工程、模型训练和推荐结果生成等步骤。
1. 数据收集数据收集是个性化推荐系统的第一步,通过收集用户的行为数据和偏好数据,构建用户行为数据集和物品特征数据集。
数据的质量对推荐系统的性能有很大影响,因此需要对数据进行清洗和预处理。
2. 特征工程特征工程是机器学习模型训练的关键一环,通过对用户和物品的特征进行提取和转换,构建特征向量表示用户和物品。
百度如何通过人工智能技术创新推动搜索引擎发展(案例)随着人工智能技术的迅猛发展,百度作为中国最大的互联网公司之一,积极探索人工智能在搜索引擎领域的应用,不断推动搜索技术的革新和升级。
本文将通过案例分析百度如何利用人工智能技术实现搜索引擎的创新发展。
一、自然语言处理技术在搜索中的应用自然语言处理技术(Natural Language Processing, NLP)是人工智能领域的重要支撑技术之一。
百度利用NLP技术实现搜索引擎对用户查询的理解和解析,进一步提高搜索结果的准确性和相关性。
以百度智能搜索为例,用户可以通过自然语言输入查询,例如:“我想找一家附近的西餐厅”,而不仅仅是传统的关键词搜索。
百度通过深度学习等技术,将用户的自然语言查询转化为机器可以理解的形式,如地理位置和用户意图信息,从而更好地满足用户的需求,提供更加精准的搜索结果。
二、图像识别技术在搜索中的应用图像识别技术(Image Recognition)是人工智能技术中的热门方向之一。
百度结合图像识别技术,将其应用于搜索引擎领域,为用户提供更加便捷的搜索方式。
举例来说,百度推出的“百度糯米”App可利用图像识别技术,实现用户通过拍照搜素周边餐厅、商铺等信息。
当用户拍摄照片后,百度通过图像识别算法分析照片中的特征,识别出物体或场景,然后根据识别结果展示相关的搜索结果。
这种创新的搜索方式不仅提高了用户的搜索体验,还为商家提供了更多的曝光机会。
三、人工智能机器学习在搜索中的应用机器学习(Machine Learning)作为人工智能的核心,已经成为百度搜索引擎中不可或缺的一环。
百度利用机器学习技术,不断提升搜索算法的准确性和智能化水平,为用户提供更加个性化和精准的搜索结果。
例如,百度搜索引擎通过学习用户的搜索行为和偏好,进行个性化推荐,使得用户可以更快找到自己感兴趣的内容。
同时,机器学习技术还可以通过分析大数据,挖掘并理解更深层次的搜索需求,从而为用户提供更加准确的答案。
推荐引擎原理及发展综述摘要:推荐引擎是一种利用机器学习和数据挖掘技术实现的推荐系统,其主要目标是为用户提供个性化的推荐服务。
本文将综述推荐引擎的原理和发展历程,包括推荐引擎的工作流程、常用的算法、评价指标以及在不同领域的应用情况。
最后,对未来推荐引擎的发展趋势进行展望。
关键词:推荐引擎、机器学习、数据挖掘、个性化推荐、评价指标、应用正文:一、引言随着互联网和移动互联网的快速发展,人们越来越依赖于计算机系统和网络技术来获取信息和进行交互。
然而,随着信息量的爆炸式增长,如何有效地为每个用户提供个性化的服务成为了一个难题。
推荐引擎在这个背景下应运而生,它可以根据用户的兴趣、历史行为、社交网络等信息,进行智能的推荐,提高用户的信息获取效率和满意度。
二、推荐引擎的原理推荐引擎的工作流程一般包括数据采集、预处理、推荐模型、评估和反馈等环节。
数据采集:推荐引擎需要大量的数据来训练模型和生成推荐结果,数据来源包括用户行为数据、物品属性数据、用户画像数据、社交网络数据等。
预处理:数据预处理是为了使数据符合模型的要求,包括去重、去噪、归一化、特征提取等。
推荐模型:推荐引擎的核心是推荐模型,目前常用的算法包括协同过滤、基于内容的推荐、深度学习等。
评估:评估推荐引擎的指标包括准确率、召回率、覆盖率、多样性、新颖度等。
反馈:用户对推荐结果的反馈可以对推荐系统进行改进和优化。
三、推荐引擎的发展历程推荐引擎的早期发展主要依靠基于规则的方法和基于内容的推荐方法,随着人工智能和机器学习技术的快速发展,协同过滤成为了推荐引擎的主流方法。
同时,深度学习的广泛应用也为推荐引擎的发展带来了新的机遇和挑战,推荐引擎开始从传统的物品推荐转向更广泛的服务推荐和场景推荐。
在不同领域,推荐引擎的应用场景也越来越多样化,包括电商、社交网络、音乐、视频等领域。
四、推荐引擎的评价指标常用的推荐引擎评价指标包括准确率、召回率、覆盖率、多样性和新颖性等。
准确率是指推荐结果中命中用户真实兴趣的比例;召回率是指推荐系统能够找出用户真实兴趣的比例;覆盖率是指推荐系统能够推荐的物品占总物品数的比例;多样性是指推荐结果之间的差异程度;新颖性是指推荐结果的新奇程度。
第1篇一、基础概念与算法1. 请简述推荐系统的基本概念和主要目标。
2. 推荐系统中的协同过滤算法有哪几种类型?请分别简述它们的原理。
3. 请简述基于内容的推荐算法的基本原理。
4. 请简述基于模型的推荐算法的基本原理。
5. 请简述推荐系统中的冷启动问题,以及解决方法。
6. 请简述推荐系统中的反馈攻击问题,以及解决方法。
7. 请简述推荐系统中的多样性、新颖性和覆盖度等评价指标。
8. 请简述推荐系统中的在线学习算法,以及应用场景。
9. 请简述推荐系统中的多目标优化问题,以及解决方法。
10. 请简述推荐系统中的个性化推荐算法,以及应用场景。
二、推荐算法实现1. 请简述如何实现基于内容的推荐算法。
2. 请简述如何实现基于模型的推荐算法。
3. 请简述如何实现协同过滤推荐算法。
4. 请简述如何实现基于知识图谱的推荐算法。
5. 请简述如何实现基于深度学习的推荐算法。
6. 请简述如何实现基于用户画像的推荐算法。
7. 请简述如何实现基于标签的推荐算法。
8. 请简述如何实现基于兴趣的推荐算法。
9. 请简述如何实现基于行为的推荐算法。
10. 请简述如何实现基于社交网络的推荐算法。
三、推荐系统架构与优化1. 请简述推荐系统的基本架构,包括数据采集、预处理、特征工程、模型训练、推荐生成等环节。
2. 请简述如何优化推荐系统的数据采集和预处理环节。
3. 请简述如何优化推荐系统的特征工程环节。
4. 请简述如何优化推荐系统的模型训练环节。
5. 请简述如何优化推荐系统的推荐生成环节。
6. 请简述如何优化推荐系统的个性化推荐算法。
7. 请简述如何优化推荐系统的多样性、新颖性和覆盖度等评价指标。
8. 请简述如何优化推荐系统的在线学习算法。
9. 请简述如何优化推荐系统的多目标优化问题。
10. 请简述如何优化推荐系统的实时推荐算法。
四、推荐系统应用场景1. 请简述推荐系统在电子商务领域的应用场景。
2. 请简述推荐系统在视频网站领域的应用场景。
卢绪霞 LU Xuxia山东工艺美术学院,山东济南 250399 (Shandong University of Art & Design,250399 Jinan Shandong)07摘要:“图案者工艺之母”是近代中国设计理论、实践、教育发展的典范成果,同时也是理解中国式现代化设计道路开端的重要命题。
近代,在工艺兴国的民族呼声下,“图案者工艺之母”理论紧随生产工艺的发展而发展,具有极大地实践应用价值,鲜明地体现出了现代设计理论与实践融合发展的特征。
“图案者工艺之母”的理论生成与实践应用互动,不仅促进了设计与产业的融合,更进一步引发了学人关于现代设计本体的哲思。
关键词:设计文献;图案者工艺之母;平面图案;立体图案Abstract: "Pattern as the mother of craftsmanship" is an achievement of modern Chinese design theory, practice and education development, and also an important proposition to understand the beginning of the Chinese path to modernization design. In modern times, under the national call for the rejuvenation of the country through craftsmanship, this theory has developed closely with the development of production technology, and has great practical application value, vividly refl ecting the characteristics of the integration and development of modern design theory and practice. The interaction between the theoretical generation and its practical application not only promotes the integration of design and industry, but also further triggers scholars' philosophical thinking about the essence of modern design.Key words: design literature ;pattern as the mother of craftsmanship ;fl at pattern ;three-dimensional pattern中图分类号:J509 文献标识码:A doi:10.3963/j.issn.2095-0705.2024.01.007收稿日期:2023-10-10作者简介:卢绪霞(1991─),女,博士,山东工艺美术学院讲师,研究方向为设计艺术历史与理论。
推荐引擎作者:刘露来源:《百科知识》2010年第22期对于搜索引擎,相信大家都不会感到陌生。
但是说到推荐引擎,可能就有人不是很清楚了。
通常用户上网行为可以分成两类:搜索和浏览。
当用户清楚地知道自己要找什么时,他可以通过搜索引擎去搜索相关的内容;如果用户并不清楚要找什么,只是逛一逛,此时他就是在浏览,他可能会愿意“听听”多种建议,推荐引擎便粉墨登场了。
推荐引擎技术是建立在搜索引擎技术基础之上的新的信息传播方式,它致力于解决搜索引擎无法深刻了解用户的问题;解决用户的个人化信息问题;解决用户的潜在信息需求问题;解决信息的垂直单向传播问题。
根据推荐方式,推荐引擎可以分为以下几类:个性化推荐——根据用户过去在网站的行为进行推荐;社会化推荐——根据类似用户过去在网站的行为进行推荐;基于产品的推荐——基于产品本身的特性进行推荐;以上3种方式的结合。
推荐引擎利用特殊的信息过滤技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。
通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。
参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社区环境。
推荐引擎是建立在对每一个用户的信息和行为深刻了解的基础之上,为用户提供个人化信息的技术。
它不是被动等待用户的搜索请求,而是为用户主动推送最相关的信息。
推荐引擎结合搜索引擎技术,可以为用户提供更加精准的信息解决方案。
随着互联网上数据和内容的不断增长,人们越来越重视推荐引擎在互联网应用中的作用。
可想而知,由于互联网上的数据过多,用户很难找到自己想要的信息,通过提供搜索功能来解决这个问题是远远不够的。
推荐引擎可以通过分析用户的行为来预测用户的喜好,使用户能更容易找到他们潜在需要的信息。
实际上,推荐引擎并不是一个新概念,一些大型的电子商务网站很多年前就采用了推荐引擎技术。
比如世界最大的B2C网站——亚马逊商城很早就使用协同过滤的算法来匹配顾客的购买习惯,从而过滤掉大量的商品信息,而只推荐顾客愿意购买的商品。
专利名称:基于人工智能的词汇类别挖掘方法、装置及存储介质
专利类型:发明专利
发明人:赵岷
申请号:CN201710854428.6
申请日:20170920
公开号:CN107885719A
公开日:
20180406
专利内容由知识产权出版社提供
摘要:本发明公开了基于人工智能的词汇类别挖掘方法、装置及存储介质,其中方法包括:从待挖掘语料中挖掘出包含主语的主语句,并将每个主语句中的主语分别作为一个词汇,建立词汇与其所在主语句之间的对应关系;从挖掘出的主语句中筛选出主语描述句,主语描述句为能够体现其对应的词汇所属类别的主语句;针对每个词汇,分别通过对词汇对应的主语描述句进行分析,确定出词汇所属的类别。
应用本发明所述方案,能够节省人力成本,提高挖掘效率,并具有普遍适用性。
申请人:北京百度网讯科技有限公司
地址:100085 北京市海淀区上地十街10号百度大厦2层
国籍:CN
代理机构:北京鸿德海业知识产权代理事务所(普通合伙)
代理人:袁媛
更多信息请下载全文后查看。