电容式电压互感器(CVT)介损试验中的容升现象分析
- 格式:pdf
- 大小:199.73 KB
- 文档页数:5
电容式电压互感器介损测量异常分析及处理发表时间:2015-11-02T17:02:58.663Z 来源:《电力设备》第03期供稿作者:邱会有[导读] 揭阳供电局在测量电容式电压互感器的分压电容器的介损时,一定要认真检查测量线是否接触良好.(揭阳供电局)摘要:针对电容式电压互感器δ端子绝缘下降,引线接触不良造成介损测量异常,本文结合现场试验结果和理论分析,找出了其解决办法。
关键词:CVT;介质损耗;测量误差;自激法1.前言近年来,电容式电压互感器(以下简称CVT)以其优良的价格及性能比受到电力系统的青睐,并有逐步取代电磁式电压互感器的趋势。
由于大部分CVT都是安装在户外,运行三、五年后,其一次接线板周围通常都会生锈以及二次端子受潮,这给现场试验带来很大的干扰。
特别是CVT的δ端子绝缘下降,引线接触不良都会导致在试验中往往其测量值分散性较大,本文就从这两个方面的问题,结合试验实际,并进行理论分析,找出了相应的解决办法。
测量CVT介损采用辅助绕组加压的自激法,试验接线如图2(测Cl、),图3(测C2,)所示。
2.δ端子绝缘的下降使C1介损异常2.1 测试异常结果2013年5月12日,某变电站一条110kV出线CVT预试,其型号为TYD110/-0.01,1996年投运。
介损试验原理接线采用图2、图3。
测C1绝缘时将XT接地端打开,摇表L端接CVT上端,E端接XT端;测C2绝缘时同样将XT接地端打开,摇表L端接δ端,E端接XT端。
试验结果见表1表1中C1、C2电容量的测得值可计算出总的电容量为9860pF,与铭牌标称值相比误差仅-0.3%,说明电容量合格。
从表1测得的介损和绝缘数据看:上节电容C1介损严重超标,而绝缘却非常高;下节电容C2介损合格,绝缘却很低。
根据介质损耗原理:C2在绝缘很低的情况下,其介损应该较大,但实际测试结果并非如此。
2.2 异常结果分析根据C2的异常结果,首先对其绝缘异常降低进行原因分析与查找,将CVT二次接线板(XT、δ端子与二次共用一接线板)上的所有引线全部拆开,测得δ端子对地绝缘为40MΩ,XT对地绝缘为20MΩ,几个二次绕组对地绝缘均为20MΩ左右,由此可判断,CVT二次引出接线板外表面或CVT电磁单元受潮或脏污。
CVT介质损耗负值的解决方法介质损耗角正切值又称介质损耗因数或简称介损。
测量介质损耗因数是一项灵敏度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。
例如:某台变压器的套管,正常tg值为0.5%,而当受潮后tg值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。
由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电力设备交接和预防性试验中都得到了广泛的应用。
变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。
电容式电压互感器(简称CVT)由电容分压器和电磁单元组成,从结构上讲,分为分装式和叠装式两种。
前者的电容分压器和电磁单元由外部连线连接在一起(现场很少用);后者的电容分压器和电磁单元内部已通过分压器的抽压端子与电磁单元的高压端连接在一起。
对于叠装式CVT,又有中间抽压端子和无中间抽压端子之分,有中间抽压端子的CVT在现场和工厂一样也可以采用常规法进行测量,无中间抽压端子的CVT在现场无法采用工厂的常规测量方法,而用户现场测量方法又不统一,有的方法测出的数据不能真实地反映CVT 的绝缘状况,出现负值就是其中一种状况。
本次着重讨论负值的生成及解决方法。
CVT的电气原理如图1所示。
电容分压器由高压电容器C1和中压电容器C2组成,其中对于110 kV CVT C1由一节耦合电容器、220 kV CVT C1由二节耦合电容器、500 kV CVT C1一般由三、四节耦合电容器组成;电磁单元位于油箱内,由中间变压器、谐振电抗器、阻尼器和避雷器组成,二次绕组端子、电容分压器低压端、接地端及保护间隙等位于端子箱内。
图3接线是某厂家向用户推荐的测量方法,也是我们现场最常用测量方法,其本意是测量C1和C2的整体介损和电容量。
实际上由于电磁单元的存在,使测量结果产生偏小的误差,有时甚至会出现负值。
我们知道一般介质损耗角出现负值的原因有下面几条:一是仪器接地不好;二是标准电容器的介损过大;三是高压引线和测量线没有完全接触到导体;四是空气湿度过高;五也有可能是干扰过大的原因导致,总之一般来讲出现介损值为负数的情况不是太有可能是CVT设备本身的问题,而是测量问题。
电容式电压互感器介损分析报告报告材料报告材料:电容式电压互感器介损分析报告一、引言电容式电压互感器是一种重要的电力测量仪器,广泛应用于电力系统中。
介损是电容式电压互感器的关键性能指标之一,直接影响其测量的准确性和稳定性。
本报告旨在对一台电容式电压互感器进行介损分析,提出可能的原因并进行解决方案。
二、实验过程和结果分析1.实验过程通过对电容式电压互感器进行试验,得到其介损值。
实验条件包括设定电源电压、测量电容式电压互感器的电流和电压,并记录相关数据。
2.实验结果分析根据实验所得数据计算出电容式电压互感器的介损值,并与其设计参数进行对比。
如果实验结果与设计参数相差较大,则需要进一步分析原因。
三、原因分析1.设计问题:电容式电压互感器的介损与其设计参数直接相关。
如果在设计阶段出现问题,例如选择不合适的材料、参数计算不准确等,都有可能导致实际介损与设计介损不一致。
2.制造问题:制造过程中,材料选择、工艺参数控制等方面可能存在问题,导致电容式电压互感器的性能不符合设计要求。
例如,绝缘材料的不均匀性、焊接接触不良等都可能引起介损增大。
3.维护问题:电容式电压互感器在使用过程中,如果维护不当或受到外力损坏,都有可能导致介损的增加。
例如,绝缘材料老化、绝缘损坏、接线不良等都会对介损造成影响。
四、解决方案1.设计优化:在设计阶段,通过改进参数计算方法、优化材料选择等方式,提高电容式电压互感器的设计准确性和性能稳定性,从而减小介损。
2.加强质量控制:在制造过程中,加强质量控制,严格控制原材料的质量和工艺参数的控制。
例如,在选择绝缘材料时要保证其均匀性,焊接工艺要保证接触良好等。
3.定期维护:电容式电压互感器在使用过程中要定期进行维护,保持其正常运行状态。
例如,定期检查绝缘材料的老化情况,及时更换损坏的部件,确保接线良好等。
五、总结通过对电容式电压互感器的介损分析,我们可以定位问题的原因,并提出相应的解决方案。
通过优化设计、加强质量控制和定期维护,可以提高电容式电压互感器的性能,使其满足实际需求。
电容式电压互感器介损测试方法分析摘要:随着电容式电压互感器(CVT)在电力系统中的广泛应用,其检测手段也有多种。
本文主要结合实际介绍了电容式电压互感器的电容量及介损测试的方法及要点,根据不同的实际情况,采用不同的接线方法,通过分析各种方法的特点,结合实际测试,得出一些结论,为电容式电压互感器介损测试提供参考。
关键词:电容式电压互感器;介损;测试引言介质损耗是测量CVT绝缘好坏手段,CVT绝缘受潮,老化内部损伤都可以通过tanN值反应,测量同时可测出电容值并反应CVT内串联电容器组及连接部位是否牢固有无击穿,损坏及放电现象。
CVT分为单元式结构和整体式结构,其中整体式结构有整体封闭式和瓷套上引出分压电容抽头两种类型,本文将针对不同结构CVT介绍正接线,反接线和自激法,对测量结果做出分析。
电容式电压互感器CVT主要由电容部分和电磁部分组成,电容部分由主电容器组(C1)和分压电容器(C2)构成电容分压器,电容器之间会有分压抽头引出以方便介损测量。
电磁部分由中间变压器(T1),补偿电抗器(L),阻尼器(R0),保护间隙(P)组成。
工作时,一次电压通过CVT中的电容分压器将一次高压将低到一定水平通过后面的中间变压器处理转变为可供二次设备保护,测量,计量用的小电压,这种内部结构从一次侧看CVT呈容性可有效避免如串级式电压互感器(电磁式互感器一次呈感性)与电源侧开关断口电容结构形成谐振回路防止了谐振过电压出现。
电容分压器(C2)的低压端(N)与地之间可接入载波耦合器(J)它的阻抗值在工频(50Hz)时极小可视为短路,N端在不作载波通讯时必须接地。
为补偿电容分压器(C2)的容性阻抗串入补偿电抗器(L)使CVT在工频下回路中电感和分压电容的等效电容处于谐振中从而减小CVT回路自身的阻抗提高了测量精度和带负荷的能力。
中间变压器(T1)工作在磁化特性线性段输出低电压供给保护与测量设备其低压端(Xt)在设备运行时与接地端短接并禁止开路,阻尼器(R0)起抑制铁磁谐振保护设备绝缘作用它并联在二次绕组(da,dn)中,该绕组提供零序保护电压额定输出100V也称剩余电压绕组用作高压输电线路某相出现单相接地时给保护器零序电压报警。
电容式电压互感器试验中介损值偏大原因分析摘要:本文介绍了220kV电容式电压互感器预试中介损值偏大原因的排查过程,并以此情况展开关于电容式电压互感器介质损耗试验原理、试验方法、抗干扰方法的简要论述。
关键词:电压互感器;介损;试验方法;抗干扰前言:徐州某电厂二期升压站2612出线电容式电压互感器(电容式电压互感器简称CVT,以下均称CVT)在2017年10月6日预防性试验时,发现C相下节C1介损值为0.938%,电容量为87.11nF,根据规程标准及历史值对比,严重超标,介于天气、环境干扰、试验方式方法等原因(试验时,信号线Cx、自激线没有悬空,从地面草丛上走过,10月6号试验时为晴天,但10月5号还在下雨,连续下了好多天)试验人员选择排查干扰、试验走线方式等方面再次进行试验,力求减小干扰和误差,测出最真实的数据。
正文:一.介质损耗试验原理及作用1.原理电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。
如果介质损耗很大,会使电介质温度升高,促使材料发生老化,如果介质温度不断上升,甚至会把电介质融化、烧焦,丧失绝缘能力,导致热击穿,因此,电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。
然而不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗的大小来衡量对比设备好坏。
因此引入了介质损耗因数tgδ(又称介质损失角正切值)的概念。
介质损耗因数的定义是:如果取得试品的电流相量和电压相量,则可以得到如下相量图:试验前把二次绕组线拆掉,最后一个绕组没有接线,是用连片短接起来的,做试验时要把此连片拆掉,阻尼连片甩开,大N点甩开不让其接地即可(这时大X点接地可以不动,只要把大N点单独脱开即可,因为正常运行时,大N点和大X点是连在一起一块接地的)做上节时介损桥高压线接上面(只接芯线,屏蔽线悬空),信号线(试品输入Cx线)接中间,(也只接芯线,屏蔽线要悬空,注意,在做上节的介损时,信号线的接线特别要注意,只接芯线即可,屏蔽线不要接,如果接上,介损会很大,是不接的10倍关系,而且是超标的,此处注意。
电容式电压互感器电容元件损坏分析摘要:通过对500kV电容式电压互感器故障原因进行分析,提出一种通过监测二次电压相对变化情况来发现设备故障的方法。
这种方法可以及时有效的发现电容式电压互感器内部电容元件击穿故障,便于运行人员及早采取对应措施。
关键词:电容式电压互感器,二次电压,相对比较法,故障0引言电容式电压互感器(Capacitor Voltage Transformer,以下简称CVT)是由电容分压器和中间变压器组成的电气设备,它主要用于测量、继电保护、同步检测、长距离通信、遥测和监控等方面。
随着电网的快速发展,500kV主网的形成,500kV电压互感器基本上已全部采用电容式电压互感器,但是,由于受设计水平、制造工艺等多种因素的影响,存在一定的质量问题,严重时将会导致主绝缘击穿,甚至引起电容器爆炸,威胁电网的安全运行。
由于容性设备的绝缘在线监测技术尚不成熟,而500kV设备例行停电试验周期又比较长,难以及时发现设备缺陷故障,因此对于运行中的500kV电容式电压互感器二次电压的监测就显得尤为重要。
1 CVT原理简介电容式电压互感器,由电容分压器(包括主电容器C1,分压电容器C2)、中间变压器(T)、补偿电抗器L、保护装置RP及阻尼器Z等元件组成,它利用电容分压器将输电电压降到中压(10~20 kV),再经过中间变压器降压到100V或100/√3 V供给计量仪表和继电保护装置。
2 CVT异常情况2.1发现异常2010年9月16日,在对榆社500kV开闭站榆电一线进行例行试验工作中,测得榆电一线C相电压互感器中节电容器介损0.289%(超过规程要求的最大值0.2%),且电容量比原始值增加2.86%,后台二次电压显示偏高。
同时发现榆电一线B相电压互感器上节、中节电容量增大、且B相后台二次电压显示偏高。
该设备型号为TYD3500/-0.005H, 2004年出厂。
初步判断介损超标、电容量增大有两种可能:1.部分元件被击穿使电阻增大,从而导致介损增大,相应的电容量也增大;2.内部元件有受潮现象,同样引起电阻增大而使介损增大、电容量增大。
电容式电压互感器电容、介损测试原理和注意事项前言电容式电压互感器(capacitor voltage transformer,CVT)与传统电磁式电压互感器相比具有体积小、冲击绝缘强度高、电场强度裕度大,可防止因电压互感器铁心饱和引起铁磁谐振,而且电容部分可兼作耦合电容器用于高频载波通信等诸多优点。
目前,在CVT在110 kV及以上电力系统中得到广泛应用【1】。
CVT的电容和介损测试作为其预防性试验项目之一,可发现存在的缺陷故障,是判断CVT 的运行状况的重要方法。
目前,我国大量使用的是无中间抽头的叠装式CVT,由于设备安装现场的限制和各节电容的电气位置不同,测量方法也不同。
本文主要分析介绍了各节电容器测量原理,并提出了现场测试时的几点注意事项1 CVT电气原理图无中间抽压端子的叠装式CVT电气原理图如图1所示。
其中,高压电容器C1由耦合电容C11、C12、C13串联组成,C2为分压电容器。
T为中间变压器,F 为保护装置,L为补偿电抗器,Z为阻尼电抗器,N为电容分压电容器低压端子,X为电磁单元低压端子, 1a、1n、2a、2n、3a、3n 为二次绕组,da~dn为剩余电压绕组。
整套CVT由电容分压器和电磁单元两部分组成(以图中虚线为界),下节分压电容器C2和电磁单元在产品出厂时连为一体,并且C11与C2中间无试验用连接线引出。
在额定频率下,补偿电抗器 L的感抗值近似等于分压器两部分电容并联(C1+C2)的容抗值。
根据谐振原理使中压变压器高压端与母线电压的比值为C1/(C1+C2)。
图1 CVT 的电气原理图Fig. 1 Electrical schematic diagram of CVT2 各节电容的测量方法2.1 上节耦合电容C13测量原理拆除高压母线工作量大,对一次设备的安全也构成一定威胁。
而进行现场介损测试时母线是停电并接地的,所以C13满足西林电桥反接线法的试验条件—“被试品的一极是固定接地的”。
电容式电压互感器介质损耗试验分析摘要:本文介绍了电容式电压互感器介质损耗的原理,首先介绍了电容式电压互感器的结构,再从介质损耗分类和高压介损仪工作原理两个方面来介绍介质损耗的原理,最后举例说明高压介损仪监测绝缘的缺陷。
关键词:电容式电压互感器介质损耗高压介损仪电介质(绝缘材料)在有外加电压作用下,会使部分电能转变为热能,使电介质发热。
电介质损耗的电能被称为介质损耗。
介质损耗过大会造成绝缘温度上升,且损耗愈大,温度就愈高,如果介质温度高得能使绝缘体烧焦、熔化,那么绝缘体就会失去绝缘性能而被热击穿,甚至产生爆炸。
电流互感器的爆炸事故主要是由于绝缘局部放电或是受潮,聚集大量能量形成热击穿,使设备内部压力不断增加,以致超过外瓷套的强度造成的。
介质损耗的测量可以发现电力设备绝缘劣化变质、整体受潮以及小体积被试设备贯通和未贯通的局部缺陷,在电力设备交接、电工制造及预防性试验中得到了广泛应用。
一、电容式电压互感器结构用于继电保护、电压测量、载波通讯的电容式电压互感器,简称CVT,已取代电磁式电压互感器,在35~500kV变电站的母线和线路上都获得了广泛应用。
由于设备处于高电压运行环境,其绝缘状态会受到外部潮气和污秽侵蚀的影响,会遭到系统操作或雷电等过电压的侵害,于是需要人们对CVT进行常规预防性试验,测量其绝缘的介质损失角正切,诊断其运行状态,以保证其安全、准确、可靠地运行,这成为电力行业的一项重要任务。
CVT可以分成两个主要部件:一是电容分压器,由高压电容器C1及中压电容器C2组成,110kV CVT的C1(C11、C12、C13)、C2共装于一个瓷套内,110kV以上产品为C,分别装于多个瓷套,并且一部分C1与C2装于一个瓷套内;二是电磁单元,外形是一个铁壳箱体,内部有中间变压器、补偿电抗器、阻尼器及补偿电抗器两端的限压器,靠电磁感应原理给出二次电压输出,达到测量母线或线路电压的目的。
由于C2上的电压会随负荷发生变化,为此在分压回路中串接一个电感L,使之与电容(C1十C2)产生串联谐振,借以补偿负荷电流流过电容所产生的电压降,使电容分压器输出电压稳定,不受负荷电流变化的影响。
特高压电容式电压互感器介损和电容测量方法分析苏陈云;黄震【摘要】电容式电压互感器(CVT)的电容量和介质损耗角的测量是检验设备绝缘性能的一项重要试验,特高压1 000kV CVT因其具有自身独有的特性,其试验方法也具有特殊性.比较系统地介绍了特高压变电站中2种不同结构的500 kV CVT电容量和介损的测量方法.主要针对1 000kV电容式电压互感器结构特殊性采用了一种新的试验方法,通过现场试验,测试结果符合特高压交流试验示范工程电气设备交接试验标准要求,证明采用外高压、内标准、正接法测量CVT中压臂电容C2是可行的.%The measuring of dielectric loss and capacitance of capacitive voltage transformer is important for equipment insulation level. The test on ultra-high voltage 1 000 kV capacitive voltage transformer is different than other transformers. The method to measure two different structural 500 kV CVT is systematically introduced. Furthermore, a new test method of 1 000 kV CVT is proposed according to particular feature of 1 000 kV CVT. The method use external standard capacitor, internal high voltage and positive connection to measure C2 capacitor of CVT. The test results meet standards of UHV AC pilot project hand-over regulations according to the on-site test, which proves the validity of proposed method.【期刊名称】《中国电力》【年(卷),期】2012(045)004【总页数】4页(P38-41)【关键词】电容式电压互感器;介损;电容;自激法【作者】苏陈云;黄震【作者单位】湖南省送变电建设公司调试所,湖南长沙410000;湖南省送变电建设公司调试所,湖南长沙410000【正文语种】中文【中图分类】TM451+.2近年来,由于电容式电压互感器绝缘结构合理,绝缘强度较高,又能充分利用载波信号所必需的耦合电容器,在110 kV及以上电压等级中运用越来越广泛。
电容式电压互感器(CVT)介质损耗测量探讨摘要:电容式电压互感器(CVT)在高电压等级中应用越来越广泛,对其电容量和tgδ的准确测量是我们准确分析判断其绝缘状况的关键。
本文以纳雍发电二厂500kVTYD2500/√3—0.005H型CVT为列,比较了几种仪器不同方法测量电容量和tgδ的优劣。
关键词:电容式电压互感器(CVT),介质损耗,测量与常规的电磁式电压互感器相比,电容式电压互感器(以下简称CVT)具有简单、性能优越、无串联铁磁谐振问题等优势,在高电压等级中运用广泛。
电容量和介质损耗角正切值tgδ测量是CVT预防性试验的主要项目,对电容量和tgδ的准确测定是发现CVT绝缘缺陷的重要手段。
纳雍发电总厂二厂500kV电压互感器为桂林电容器总厂生产的TYD2500/√3—0.005H型CVT,其中电容分压器C1部分由3节电容C11、C12、C13组成,现场实际中集成在CVT二次接线底座内。
纳雍发电总厂2010年以前均采用金迪D2618E型介质损耗测试仪,其常规的测量方法只能测出电容分压器总的电容量和总的tgδ值,不利于我们对CVT绝缘状况的分析把握。
2014年采用上海思创HV9001全自动抗干扰介损测试仪,在工频高压下运用正接线、反接线、CVT自激法可分别测量电容分压器C1:C11、C12、C13及中压电容器C2各自电容量和tgδ值,使我们能更好的分析判断CVT的绝缘状况,但由于现场测量时外界电网强工频电场的干扰,介质损耗测量重复性、稳定性较差。
2017年引进济南泛华电子AI-6000E型介质损耗测量仪,在变频高压下运用正接线、反接线、CVT自激法可分别测量电容分压器C1:C11、C12、C13及中压电容器C2各自电容量和tgδ值,由于采用变频测量技术,能有效过滤50Hz异频干扰信号,从而能更准确地测量出CVT的各部分电容量和tgδ值,便于我们对CVT绝缘状况的分析把握,避免事故发生。
由于在现场实际工作中母线拆除困难,且连接螺栓的频繁拆接,有可能会产生接触不良导致发热的情况,带来安全隐患,因此实际试验时我们一般将母线通过接地刀闸接地,采用反接线的测量方式测量。
随着长治地区电网的日益发展,系统中原来结构简单、功能单一的老式电容器、放大量一体式电容式电压互感器新替代,由于其结构的特殊性,常规的试验方法已不再适于这种结构新颖的电容式电压互感器,从最初的长治变电站110kV南母及库西110kV126#线路使用电容式电压互感器至今220kV候堡变电站、220kV苏店变电站全站使用已有五年,在大量的试验过程中我们积累了丰富的经验,目前最常采用的试验方法是自激磁法,但在试验过程中却发现由于其试验方法的特殊性,在介质损耗测试过程中易产生容升现象,容升的产生会对设备造成损害,引起试验数据的不准确,下边就试验过程中的容升现象作进一步的探讨。
一体式电容式电压互感器(简称CVT),由于其电容分压器与中间变压器在油箱内部连接,通常无中压抽头可供测量。
因此,测量主电容C1或分压电容C2的介质损和电容量必须采用“自激磁法”,即利用中间变压器作为电源,低压侧励磁,标准电容器CN分别与C1或C2相串联,组成标准电容臂,分别测量电容C2或C1的介质损和电容量。
见下图。
现场应用“自激法”进行试验时,若无高压测量装置,仅在中间变压器低压侧用变比折算电压的方式监测电压时,应充分考虑容升现象可能会造成设备绝缘损坏,或中间变压器绕组因过负荷而烧毁。
表一为现场一台110kV CVT的实测数据。
由表一可见,应用“自激磁法”测量CVT介质损和电容量时,容升电压占有相当大的比重,尤其是在测量C2中,容升电压占试验电压的74%,达到低压侧按变比折算电压的三倍左右,因此,如果不考虑容升现象,仅按变比在低压侧以U2=U 试/K=2500/127=19.7V的电压进行升压时,则高压侧实际电压将达到被试设备不能承受的程度,因此产生的电流极有可能会烧毁中间变压器绕组。
那么,究竟是什么原因造成容升电压的呢?根据CVT的基本工作原理我们知道,电容分压器分压电容C2上的电压只有在接近开路状态下,其两端电压U2才满足U2=UC1/(C1+C2)上并接负载(普通表计),则由于负载的有限阻抗与分压电容C2相并联,从而导致C2上的电压降低,不能满足测量要求。
220kV电容式电压互感器介质损耗因数及电容量测试分析摘要:目前,电容式电压互感器(CVT)在电网中应用越来越普及,其中,220kV电压等级的CVT在结构上具有典型意义。
根据相关规程规定,例行试验时要进行耦合电容器的介质损耗因数(tanδ)和电容量测试,以检查互感器中是否存在受潮、绝缘老化等缺陷。
关键词:220kV电容式;电压互感器;介质损耗因数;电容量测试一、介质损耗原理分析(一)介质损耗分类按绝缘资料介质损耗的物理性质,能够分为以下几种根本形式:(1)漏电导损耗:任何电介质总有必定的导电才能。
所以,在电压效果下电介质中流过走漏(电导)电流,构成能量损耗。
这种损耗在交、直流电压效果下都存在。
(2)极化损耗:电介质在沟通电压效果下,发作周期性的极化。
此刻介质中的带电质点(主要是离子)在交变电场效果下,做往复有限位移并重新摆放,这种损耗称为极化损耗。
如果电源频率添加,质点往复运动的频率也添加,极化损耗增大。
在沟通电压效果下,电介质(指不均匀的)的夹层极化重复引起电荷重新散布(吸收电流),这个进程也要耗费能量。
(3)部分放电损耗:常用的固体绝缘资料中总有气隙(或油隙)。
绝缘资料各层的电场强度几乎与该层资料的相对电容率(介电系数)ε成反比。
气体的介电系数较固体绝缘资料低得多,所以气隙部分的电场强度较大。
但是,气隙的耐压强度却远低于固体绝缘资料。
(二)高压介损仪工作原理经过一个可程控的调频调幅变频电源,发生40~70Hz可调的正弦波,经过激磁变压器,驱动谐振回路作业,最终输出实验要求的电压,加到被试电流互感器上。
经过电流互感器的三相被试回路的电流信号,以及规范回路的电流信号,经过高压介损测量板高精度实时高速采样,并经单片机剖析计算,然后得出被试品的电容量及介损值。
二、测量方法(一)正接法被试品不接地,桥体E端接地,在需求屏蔽的场合,E端也能够用于屏蔽。
此刻,桥体处于地电位,R3、C4可安全调理。
各种介损测验仪器正接法接线办法根本一致,这儿以济南泛华AL6000—自动抗干扰精密介质损耗测验仪为例介绍。
关于电容式电压互感器电容和介损试验的探析目前,针对电容式电压互感器时常会出现故障的问题,经常以相关试验来排除故障。
本文首先从结构上对电容式互感器进行论述,进而基于高压西林电桥的原理分别对电容式电压互感器和介损试验的连接方式以及试验等进行了浅析,对试验中应该注意的问题进行了提出和介绍了在试验中各种样式进行接线的功效。
标签:电容式电压;互感器;电容;介损试验0 引言电容式电压互感器相比其它的互感器,有着自己独特的优势。
因为电容式互感器轻巧,体积较小,价格便宜等优势而得到了广泛的应用[1]。
但电容式互感器在运行中也同样存在安全隐患,这些隐患严重的会导致电压互感器爆炸,面对这些高风险的隐患需要做好预防工作。
预防性试验对电容式互感器检测出存在的风险是非常重要的,进行预防性的试验需要注意诸多问题,一旦出错会造成电容式互感器的损坏。
掌握准确的试验方法和流程对试验的成功起到至关重要的作用,因此本论文将对此进行简要的探析。
1 电容式互感器的结构特点电容式互感器主要是由两部分组成,分别是电容分压器和电磁单元。
分压器部分是由3台某型号的耦合电容器,和1台某型号的分压电容器叠装串联组成。
在每台电容器的内部,芯子是由多个电容元件组成的。
电容式互感器的底座是由油箱组成的,这种油箱底座和分压电容器重叠在一起。
如图1所示,某电容互感器的电气原理图:由图N点是电容分压器的低端,X点是补偿器电抗器低压端。
电容器分压器的低端和补偿器电抗器的低压端被引出来连接到油箱前方的出现的盒子内,这个中间连接着载波装置。
整个组成还和S(电压的保护球隙)相互并聯。
在电容式互感器相互运行时,电容器互感器的低端可以与大地相连接。
当载波装置在运行时退出,电容分压器应该与补偿电抗器低压端之间可以进行短接而且还可以进行接地。
2 电容式互感器的试验分析在进行试验之前要准确了解相关的规范,其中在《试验规程》中对电容式互感器有着明确的规定,要求对每一节的电容器的电容量及电磁单元进行测量。
电容式电压互感器(CVT)自激法测量分析【摘要】对于电容器电压互感器(CVT)介质损耗因数以及电容量的测量,通常采用自激法对其加压并测试。
本文就自激法的原理及其可能产生的误差和试验中的注意事项进行了分析。
【关键词】CVT 自激法介质损耗因数电容量Abstract: For the capacitor voltage transformer (CVT) dielectric loss factor and capacitance measurement, usually using pressure and test its self-excited method. In this paper, since the principle of the excitation method and its possible errors and experimental precautions were analyzed.Keywords: CVT self-excitation method, the dielectric loss factor and capacitance0.概述在电力设备预防性试验规程中,设备绝缘材料的介质损耗因数和电容量测量是一项十分重要的试验内容,介损值的大小对于判断设备的绝缘状态有着举足轻重的作用。
电容式电压互感器通常也称为CVT,由于其具有绝缘强度高、结构简单、重量轻、造价低等一系列优点,广泛应用于电力系统中的电压测量、功率测量、继电保护和载波通讯。
目前现场测试CVT的介质损耗因数和电容量普遍采用的是“自激法”,但这种方法施加电压低,有时难以准确判断设备的真实绝缘状况。
本文对自激法的原理和测量可能出现的误差进行了分析。
1、CVT结构分析1.1综述电容式电压互感器(以下简称CVT)由电容分压器和电磁单元两部分组成,其电气连接原理图见图1.1。
电磁单元又包括:中间变压器,补偿电抗器以及抑制铁磁谐振的阻尼负荷。