浮阀塔设计及负荷性能计算
- 格式:xlsx
- 大小:126.05 KB
- 文档页数:1
化工原理课程设计Ⅱ——浮阀塔的选型设计专业班级:姓名:学号:指导教师:成绩:目录前言--------------------------------------------------------1设计任务书------------------------------------------------2 设计计算及验算------------------------------------------3 塔板工艺尺寸计算---------------------------------------------3 塔的流体力学验算---------------------------------------------7 塔板负荷性能图------------------------------------------------9 分析与讨论-----------------------------------------------13 结果列表--------------------------------------------------14化工原理课程设计任务书拟建一浮阀塔用以分离甲醇—水混合物,决定采用F1型浮阀(重阀),是根据以下条件做出浮阀塔的设计计算。
已知条件:要求:1.进行塔的工艺计算和验算2.绘制负荷性能图3.绘制塔板的结构图4.将结果列成汇总表5.分析并讨论前言浮阀塔结构简单,有两种结构型式,即条状浮阀和盘式浮阀,它们的操作和性能基本是一致的,只是结构上有区别,其中以盘式浮阀应用最为普遍。
盘式浮阀塔板结构,是在带降液装置的塔板上开有许多升气孔,每个孔的上方装有可浮动的盘式阀片。
为了控制阀片的浮动范围,在阀片的上方有一个十字型或依靠阀片的三条支腿。
前者称十字架型,后者称V型。
目前因V型结构简单,因而被广泛使用,当上升蒸汽量变化时,阀片随之升降,使阀片的开度不同,所以塔的工作弹性较大。
浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。
气相流量V s = 1.27m3/s;液相流量L s = 0.01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL = 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。
设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度。
适宜空塔速度u一般为最大允许气速u F的0.6~0.8倍即:u=(0.6~0.8)u F式中C可由史密斯关联图查得,液气动能参数为:取板间距H T=0.6m,板上液层高度h L=0.083m,图中的参变量值H T-h L=0.6-0.083 =0.517m。
根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20 =0.1。
由所给出的工艺条件校正得:最大允许气速:取安全系数为0.7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;实际塔截面积:实际空塔速度:安全系数:在0.6~0.8范围间,合适。
(二)溢流装置选用单流型降液管,不设进口堰。
1)降液管尺寸取溢流堰长l w=0.7D,即l w/D=0.7,由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2)弓形降液管宽度:W d=0.15×1.4=0.21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。
2)溢流堰尺寸由以上设计数据可求出:溢流堰长l w=0.7×1.4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:h w=h L-h ow =0.083-0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u0′= 0.228m/s;降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F0 = 11,阀孔气速为:每层塔板上浮阀个数:(个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。
浮阀(F1)塔的设计计算板式塔设计中,一般按防止出现过量雾沫夹带液泛的原则,首先确定液泛气速,然后根据它选取一适宜的设计气速来计算所需的塔径。
关于液泛气速这一极限值,理论上由悬浮于气流中的液滴的受力平衡关系导出如下:()246223fv pV L pu dg d ρπξρρπ=-式中:f u --液泛气速,m/s ;p d --液滴直径,m ;l v ρρ、 --气、液相密度,kg/m 3ξ---阻力系数 得: vv l p f g d u ρξρρ.3)(4-=但实际上,气液两相在塔板接触所形成的液滴直径、阻力系数均为未知,所以又将这些难以确定的变量和常数合并,使上式变为:VVL f cu ρρρ-= m/s 对于筛板塔、浮阀塔、及泡罩塔,式中的C 值可从Smith 图查得。
此图是按液体表面张力20=σN/m 时的经验数据绘出的,若塔内液体表面张力为其他数值时,应在图上查出的C 值后,按下式进行校正:2.020)20(σσ=C C C 20---表面张力为20mN/m 时的C 值,从Smith 图查得;σC --表面张力为σ时的C 值; σ --物系的表面张力,mN/m 。
求出U f 后,按u=(0.6~0.8)U f 确定设计的空塔气速。
按下式求出塔径:uV D Sπ4=Vs —设计条件下的气相流量;D---塔径u---空塔气速,m/s 。
浮阀塔的设计、计算是在半个多世纪大量的实验、工业化应用总结的基础上形成的标准化设计。
1、对于浮阀塔,根据四十多种物系在不同操作条件下的工业实验结果,得出阀孔动能因子F 0与操作状况的关系如下:阀孔动能因子:G o O u F ρ=F 0—阀孔动能因子,Pa 0.5 U 0---阀孔气速,m/sv ρ--气相密度,kg/m 3F 0反映密度为v ρ的气体以U 0速度通过阀孔时动能的大小。
综合考虑了F 0对塔效率、阻力降和生产能力的影响,根据经验可取F 0=8~12,即阀孔刚全开时作为设计点。
化工原理课程设计––––浮阀式精馏塔的设计学校:班级:姓名:学号:指导教师:时间:课程设计任务书一、设计题目:分离苯—甲苯混合液的浮阀式精馏塔二、设计的原始数据及分离要求1、原料的规格及分离要求:(1)、生产能力:年处理苯—甲苯混合液6.0万吨(2)、年开工率:8000小时(3)、原料组成:苯含量45%(质量分率)(4)、进料热状况:饱和液体(5)、分离要求:塔顶苯含量不低于95%(质量分率)塔底苯含量不高于5%(质量分率)2、生产条件:(1)操作条件:常压(2)操作温度:原料和产品均为常温(25℃)(3)塔顶冷凝器:用循环水冷却(进口温度28℃)(4)塔底在沸器:用饱和水蒸气加热(5)回流比:取最小回流比的1.4倍三、设计要求:1、编制设计说明书(1)流程的确定及说明(2)精馏塔的设计计算(3)浮阀塔盘结构设计和计算(4)对设计结果讨论(5)参考文献2、绘制精馏系统工艺流程图四、指导教师:李英杰五、设计时间:2011年12月目录前言---------------------------------------------------------------------------------4 1.精馏塔的物料衡算----------------------------------------------------------------5 1.1原料液及塔顶、塔底产品的摩尔分率---------------------------------------5 1.2.原料液及塔顶、塔底产品的平均摩尔质量--------------------------------51.3.物料衡算-------------------------------------------------------------------52.塔板数的确定---------------------------------------------------------------------5 2.1.理论板层数NT的求取-----------------------------------------------------5 2.2最小回流比及操作回流比----------------------------------------------------5 2.3精馏塔的气、液相负荷-------------------------------------------------------6 2.4操作线方程-------------------------------------------------------------------62.5塔的有效高度-----------------------------------------------------------------63.精馏塔的塔体工艺尺寸计算------------------------------------------------------73.1精流段塔体工艺尺寸计算---------------------------------------------------73.2塔经的计算------------------------------------------------------------------73.3 溢流装置-----------------------------------------------------------------------------------84.塔板负荷性计算--------------------------------------------------------------------------------114.1. 雾沫夹带线----------------------------------------------------------------------------114.2漏液线------------------------------------------------------------------------------------124.3液相负荷上限线-------------------------------------------------------------------------124.4液相负荷下限线-------------------------------------------------------------------------12 参考目录----------------------------------------------------------------------------14前言在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。
设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际生产天数:330天(一年中有一个月检修)精馏塔塔顶压强:4kPa加热方式:间接加热第一章塔板工艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表面张力表1-4 苯、甲苯的摩尔定比热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算 (1)苯的摩尔质量:78.11AM/kg km ol甲苯的摩尔质量:B M =92.13/kg km ol(2)原料液及塔顶、塔底产品的摩尔分数 塔顶易挥发组分质量分数,摩尔分数 釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代入数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ; 釜底产品(釜液)流量W=35.70 kmol/h 。
2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。
有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,自此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最大的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段气相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线方程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段气相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线方程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。
吉林化工学院化工原理课程设计吉林化工学院化工原理课程设计题目苯-甲苯二元物系浮阀精馏塔设计吉林化工学院化工原理课程设计目录设计任务书 (1)摘要 (2)前言 (3)第一章工艺部分 (I)§1.1精馏塔物料衡算 (4)§1.2有关理论板的设计计算 (6)§1.3有关实际板的设计计算 (7)第二章板式塔主要工艺尺寸的设计计算 (9)§2.1物性及塔的工艺条件的设计 (9)§2.2塔和塔板主要工艺尺寸的计算....................................................错误!未定义书签。
§2.3塔板流体力学计算 (16)§2.4塔板负荷性能图 (18)第三章辅助设备及选型 (23)§3.1接管 (23)§3.2筒体与封头 (24)§3.3除沫器 (24)§3.4裙座 (24)§3.5人孔 (24)§3.6塔总高度的设计 (25)第四章辅助设备计算 ······················································································错误!未定义书签。
3.6.F1型浮阀塔板设计3.6.1溢流装置选用单溢流方形降液管,不设进口堰,各项计算如下: 3.6.1.1.堰长l w :取堰长l w =0.66D=0.66×0.8=0.528 3.6.1.2.出口堰高h w :h w =h L -h ow ,2'32.84()1000h ow wL h E l = ,近似取E=1,L h =Ls ×3600=0.0022×3600=7.92m 3/s 因为l w =0.528,故h ow =0.015m 则 h w =h L -h ow =0.07-0.015=0.055m3.6.1.3弓形降液管宽度W d 和面积A f :由l w /D =0.528/0.8=0.66,查弓形降液管的宽度和面积图可得,A f /A T =0.0721,W d /D=0.124故A f =0.0721×0.502=0.0362m 2,W d =0.124×0.8=0.0992m 验算液体在降液管中的停留时间:s L H A h T f 40.7)0022.03600/(45.00362.03600/3600=⨯⨯⨯=⨯=θ s 5>θ故降液管尺寸可用。
3.6.1.4降液管底隙高度h o'00s w L h l u = 可取降液管底隙处液体流速取u o '=0.13m/s 则 h o =0.0022/(0.66*0.13) =0.0256mw o h h >合理同理可得出其他回流比的各项计算,总结果如下表:表3-17 溢流装置参数表R堰上液层高度h 0w /m堰长l w /m出口堰高h w /m降液管宽度W d /m降液管的面积A f /m 2停留时间θ/S 底隙高度h o /mR 1 0.0150.528 0.0550.09920.03627.40 0.0256R 2 0.017 0.792 0.053 0.145 0.0815 11.83 0.030 R 30.0180.7920.0520.1450.081510.790.0333.6.2塔板布置及浮阀数目与排列选用F1型重阀,阀孔直径d 0=39mm ,底边孔中心距t=75mm取阀孔动能因子F 0=10 ,孔速s m F u V /99.401.4/10/00===ρ每一层塔板上的浮阀数N :8.91)99.4*039.0*4/14.3/(547.0)*4//(2020===u d V N s π取边缘区域宽度W c =0.06m W s =0.10m塔板上的鼓泡面积2222arcsin 180a x A x R x R R π⎡⎤=-+⎢⎥⎣⎦R=D/2-W c ==0.5-0.05=0.45m x=D/2-(W d +W s )=0.5-(0.0992+0.10)=0.3008m 把数据代入得Aa=0.4978浮阀排列方式采用等腰三角形叉排,取同一排的孔心距t=75mm=0.075m 则估算排间距mm t N Aa t 73)075.0*8.91/(4978.0)*/('=== 考虑到塔的直径较大,必须采用分块式塔板,而各分块版的支撑与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用73mm ,而应小于此值。
Vs=2.4m3/s,Ls=0.0052m3/sρv=1.14kg/m3,ρL=1060kg/m3表面张力σ=27.19mN/m精馏塔工艺尺寸的计算2.1 塔体主要工艺尺寸的计算2.1.1 塔径的计算欲求塔径应先求出空塔气速u,而u=(安全系数)×u maxu max=C√ρL−ρVρV式中C可由史密斯关联图查出,其横坐标的数值为L h V h (ρLρV)0.5=0.0052×36002.4×3600(10601.14)0.5=0.0661取板间距H T=0.45m,取板上液层高度h L=0.07m,则H T-h L=0.45-0.07=0.38m查得C20=0.082C=C20(σL20)0.2=0.082×(27.1920)0.2=0.08719u max= C√ρL−ρVρV =0.08719√1060−1.141.14=2.657m/s取安全系数为0.6,则空塔气速为u=0.6u max=1.594m/s塔径D=√4V sπu =√4×2.43.14×1.594=1.384m按标准塔径圆整为D=1.4m,则塔截面积 A T=π4D2=1.539m2实际空塔气速 u=Vs/AT=2.4/1.539=1.559m/s 2.2 塔板主要工艺尺寸的计算2.2.1 溢流装置计算选用单溢流弓形降液管,不设进口堰。
(1)堰长l W:取堰长l W=0.66D,即l W =0.66×1.4=0.924m(2)出口堰高h W :h W =h L -h OW采用平直堰,近似取E=1,堰上液层高度h OW =2.841000E(L h l W )23⁄=2.841000×1×(0.0052×36000.924)23⁄=0.0211m h W =h L -h OW =0.07-0.0211=0.0489m(3)弓形降液管宽度W d 和面积A f ,由图弓形降液管的宽度与面积查得:A fA T =0.072,W d D =0.124A f = 0.072A T =0.072×1.539=0.111m 2W d =0.124D=0.124×1.4=0.174m液体在降液管中停留时间,即θ=3600H T A f L h =H T A f L s=0.111×0.450.0052=9.6s ﹥5s ,故降液管尺寸可用。