《离散数学》-教案.doc
- 格式:doc
- 大小:748.01 KB
- 文档页数:27
《离散》公开课教案
离散公开课教案
一、教学目标
- 了解离散数学的基本概念和应用领域。
- 掌握离散数学中常用的逻辑、集合论和图论等基础知识。
- 培养学生的逻辑思维和问题解决能力。
二、教学内容
1. 离散数学简介
- 离散数学的定义和作用
- 离散数学在计算机科学、信息技术等领域的应用
2. 逻辑与命题
- 逻辑与命题的基本概念
- 命题的逻辑运算(与、或、非)
- 命题的真值表和推理规则
3. 集合论
- 集合的定义和表示方法
- 集合的基本运算(交、并、差、补)
- 集合的性质和特征
4. 图论
- 图的基本概念和术语
- 图的表示方法(邻接矩阵、邻接表)
- 常见的图算法(深度优先搜索、广度优先搜索)
三、教学方法
1. 授课讲解:通过讲解离散数学的基本概念和原理,帮助学生建立起相关知识框架。
2. 例题演示:通过解析一些典型的例题,引导学生掌握离散数学的基本方法和技巧。
3. 小组讨论:组织学生进行小组讨论,让学生在合作中研究、思考和解决问题。
4. 实践应用:通过实际问题的应用,让学生将离散数学的知识应用到实际情境中去。
四、教学评价
1. 每节课结束后进行小测验,检查学生对当堂课程的掌握情况。
2. 课堂参与度:评估学生在讨论和实践环节中的积极参与度。
3. 作业完成情况:评估学生对作业内容的完成情况和质量。
五、参考资料
1. 《离散数学导论》
2. 《离散数学(第2版)》
3. 《离散数学及其应用》
注:以上教案仅供参考,具体教学内容和方法可根据实际情况
进行调整。
离散数学教案一、教案引言离散数学作为计算机科学及相关领域的基础学科,对培养学生的逻辑思维能力和问题解决能力具有重要作用。
本教案旨在介绍离散数学课程的重点内容和教学方法,以帮助教师在教学中实现教学目标,提高学生的学习成效。
二、教学目标1. 了解离散数学的基本概念和方法,包括集合论、逻辑推理、图论等内容;2. 掌握离散数学的基本技能,包括集合的运算、证明方法、图的遍历等;3. 发展学生的逻辑思维和问题解决能力,培养学生的数学建模能力;4. 提高学生的团队合作和沟通能力,培养学生的创新意识。
三、教学内容1. 集合论1.1 集合与元素1.2 集合的运算1.3 集合的关系1.4 集合的应用2. 逻辑与证明2.1 命题与命题联结词2.2 命题的真值与命题的合取、析取、蕴含、等价关系2.3 命题逻辑的推理定律2.4 命题与谓词的等价关系2.5 谓词逻辑的推理定律3. 图论3.1 图的概念与性质3.2 图的表示方法3.3 图的遍历算法3.4 图的连通性与最小生成树3.5 图的应用四、教学方法1. 概念讲解与例题演练相结合:通过简洁清晰的讲解,引导学生理解离散数学的基本概念和方法,并通过大量的例题演练巩固学生的知识掌握能力。
2. 问题引导与探究学习:引导学生通过解决实际问题来理解和应用离散数学的原理和方法,培养学生的问题解决能力和数学建模能力。
3. 团队合作与讨论学习:组织学生进行小组活动,鼓励学生在团队合作中分享思路、互相讨论、共同解决问题,培养学生的合作意识和沟通能力。
4. 案例分析与实践应用:选取具体的案例,让学生将离散数学的知识应用于实际问题中,提升学生的学习兴趣和创新意识。
五、教学评估与反馈1. 课堂练习:通过课堂练习,检验学生对离散数学知识的掌握情况,及时发现和纠正学生的错误和不足。
2. 作业评定:通过布置作业并进行评定,评估学生对离散数学知识和方法的应用能力和问题解决能力。
3. 课后讨论与反馈:鼓励学生课后进行小组讨论,并提供及时的反馈和指导,加深学生对重点内容的理解和掌握程度。
《离散数学》教学大纲一、课程的性质和任务课程性质:离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是与信息网络及多媒体技术专业的一门必修课。
主要任务:使学生掌握离散数学的基本理论、基本知识;培养学生的抽象思维和慎密概括的能力。
二、课时分配序号课题教学时数小计讲课习题课及单元测验—-命题逻辑2102谓词逻辑12102三集合862四关系12102五图论20182六机动4总计685410三、课程教学内容第一章命题逻辑理解命题与命题公式概念;掌握命题联结词概念及真值表;会求命题公式真值表;掌握等价重言式和蕴含重言式;理解对偶与对偶原理;掌握命题演算的揄规则和证明方法;会求命题公式的标准形式。
重点:命题与命题公式概念;命题联结词;重言式;对偶;命题演算的推理规则和证明方法;命题公式的标准形式。
难点:重言式;命题演算的推理规则和证明方法;命题公式的标准形式。
第二章谓词逻辑掌握个体、谓词与命题函数概念;掌握量词概念;理解谓词公式概念,能进行自然语言与符号语言间的翻译;掌握谓词演算的推理理论和推理方法。
重点:个体、谓词与命题函数;量词;谓词公式与翻译;谓词演算。
难点:谓词演算。
第三章集合掌握集合基本概念;掌握集合的运算与运算定律;掌握集合对称美;理解集合的划分与覆盖;理解容斥原理,会利用容斥原理解决实际问题。
重点:集合基本概念;集合的运算与运算定律;对称差;容斥原理的应用。
特点:幕集;对称差;集合的划分与覆盖;容斥原理的应用。
第四章关系掌握序偶与笛卡尔积概念;掌握关系,关系矩阵和关系图;掌握关系的;掌握关系的性质;掌握关系的闭包运算;理解等价关系与等价类;理解偏序概念,会作哈斯图。
重点:序偶与笛卡尔积;关系;关系的运算;关系的性质;关系的闭包运算; 等价关系,偏序及哈斯图。
难点:关系概念;关系的运算、性质、闭包运算;偏序及哈斯图。
第五章图论理解图的基本概念;理解路与圈和连通性;了解图的矩阵表示;理解有向图与可达性矩阵;了解欧拉图与哈密尔顿图;掌握树的概念;掌握根树及其应用;了解平面图概念,掌握欧拉公式。
3.1集合的基本概念一.、教学目的.1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集,在具体情境中了解全集与空集的含义;3.了解幂集的含义,并能计算一个集合的幂集.二、教学重难点:1.重点(1):集合中的元素具有的性质(2)理解两集合的包含关系及计算幂集.2.难点:理解集合相等的含义以及理解符号∈与的区别和联系。
三、教学方法:讲授法及描绘讲述法。
四、教学安排:2课时。
五、教学过程:一、元素与集合1.集合:一些可以确定的可分辨的事物构成的整体。
(集合是一个不能精确定义的基本概念.一般来说,把具有共同性质的一些东西,汇集成一整体,就形成了一个集合)。
简单数集:自然数集合(包括0)—N整数集—Z有理数集—Q实数集—R复数集—C2.元素:如果一个特定的事物属于这个集合,则称为这个集合的元素。
给出一个集合的方法:(1)列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来,例如:A={a,b,c,d}(2)用谓词概括该集合中元素的属性,如B={x︳x∈Z∧3<x≤6}3.集合中元素的特征:(1)确定性。
对于一个具体的集合来说,气元素是确定的,即一个元素或者在此集合中或者不在此集合中,两者必居其一且仅居其一(2)互异性。
集合中的元素彼此互不相同,没有重复的元素。
例如:集合{1,3,4}={1,3,4,4}(3)无序性。
集合中的元素是无序的。
例如:集合{1,2,3}={3,1,2}(4)抽象性。
集合中的元素是抽象的,甚至可以【是集合,也就是说一个集合可以作为另一个集合的元素。
例如:A={a,{b,c},d,{{d}}},其中a∈A,{b,c}∈A,d∈A,{{d}}∈A,但b A,{d} A4.练习例:判断下列说法是否正确,并说明理由。
(1)著名科学家组成一个集合(×)——“著名科学家”没有明确标准(2)数轴上到原点的距离大于1的点的全体组成一个集合(√)——数轴上任意一点到原点的距离要么等于1或小于1,要么大于1,所以是正确的(3)1,3/2,6/4,︱1/2︱,0.5 这些数组成的集合有5个元素(×)→因为3/2=6/4,︱-1/2︱=0.5由显异性知,这个集合只有3个元素。
第一章集合论一、教学内容及要求授课学时:2教学内容1.1 集合的基本概念集合的概念及其表示;集合与集合之间的包含、真包含和相等关系的定义,数学描述及判定和证明方法;空集、全集和幂集三个特殊集合的定义、性质以及幂集的计算算法。
1.2 集合的运算集合运算的定义、性质及证明1.3 无限集可数集合和不可数集合的概念。
1.4 与集合相关的应用与集合相关的简单应用实例。
基本要求1)能正确地用枚举法或叙述法表示一个集合,会画文氏图。
2)能判定元素与集合的属于关系。
3)能利用集合与集合关系的判定与证明方法证明两个集合之间的包含、相等、和真包含的关系。
4)能熟练计算集合之间的并、交、差、补运算,掌握集合运算的定律;5)能熟练地计算P(A)。
6)理解集合的归纳法表示。
7)理解集合的对称差运算。
8)了解集合的递归指定法表示。
9)了解无限集的基本概念。
10)了解集合的简单应用。
能力培养通过课堂讲解和课后实践作业,培养学生的抽象思维和问题解决能力。
二、教学重点、难点及解决办法教学重点:集合的概念及集合间关系的证明;集合的表示方法:列举法、描述法和文氏图;集合运算及定律和幂集P(A)的计算。
教学难点:从集合与元素两个角度去分析集合;集合与集合关系的证明和无限集基数的理解。
解决办法:1)在教学过程中,为了加强学生对一个集合“双重身份”的理解,可以通过实例教学法,让学生具体体会一个集合的“双重身份”带来的问题及解决办法;2)对于新概念—幂集,让学生编程实现求一个集合的幂集,从而加深对幂集的理解。
初步建立学生的发散思维能力以及实际动手编写程序的能力。
三、教学设计从集合伦论的创始人康托尔到集合论的最终完备,让学生明白科学研究的道路是坎坷的,但为全人类做出自己的贡献是有价值和意义的,从而要树立为科学献身的精神和爱国主义情怀。
从集合的定义入手,结合高中阶段对集合的认识,指出当时定义存在的不足,提出新的定义方法;重点介绍大学阶段学习集合的主要意义和内容,关注重点概念的理解;介绍属于关系与包含关系之间的区别与联系,特别是一个集合“双重身份”的理解;强调集合的基本运算,特别是幂集的计算;集合与集合包含、真包含和相等关系的数学描述及相应的证明方法。
离散数学教案一、教学目标通过本节课的学习,学生能够:1. 理解离散数学的基本概念和基础知识;2. 掌握离散数学中常用的逻辑、集合和函数等概念及其应用;3. 能够运用离散数学的方法解决实际问题。
二、教学内容1. 离散数学的概述- 离散数学的定义和特点- 离散数学在计算机科学、信息技术等领域的应用2. 逻辑与证明- 命题逻辑的基本概念- 命题逻辑的运算与推理规则- 数理逻辑的基本概念- 数理逻辑的运算与推理规则- 证明方法与常用证明技巧3. 集合与图论- 集合的基本概念- 集合的运算与关系- 图的基本概念和性质- 图的表示方法与应用4. 函数与关系- 函数的定义与性质- 函数的运算与特性- 逆函数与复合函数- 关系与关系矩阵5. 组合数学- 排列与组合的基本概念- 排列与组合的计算方法- 组合数学在密码学和编码中的应用三、教学过程1. 教师引入通过引入一个实际问题,介绍离散数学在解决问题中的重要性和应用场景。
2. 知识讲解依次讲解离散数学的概述、逻辑与证明、集合与图论、函数与关系以及组合数学等知识点,结合具体例子进行说明和展示,引导学生理解和掌握相关概念和方法。
3. 思维拓展训练给学生提供一些离散数学相关的思维拓展训练题,鼓励学生独立思考和解决问题,培养其离散数学思维能力。
4. 实践应用结合实际案例,让学生运用所学的离散数学知识,分析和解决实际问题,锻炼学生的应用能力和实践能力。
5. 总结归纳教师对本节课的内容进行总结和归纳,提醒学生重点和难点,巩固学生对离散数学的理解和掌握。
四、教学资源1. 教材:离散数学教材、相关参考书2. 多媒体教具:电脑、投影仪3. 练习题:离散数学练习题集五、教学评价1. 完成课堂练习和作业,检验学生对于离散数学知识的掌握情况;2. 参与思维拓展训练和实践应用活动,评估学生的思维能力和应用能力;3. 课堂表现和课后反馈,了解学生对于教学内容的理解和反馈,及时调整教学方法和策略。
离散数学教案一、教学目标通过本节课的学习,学生将能够:1. 了解离散数学的基本概念和重要性;2. 掌握离散数学中的基本运算规则;3. 理解离散数学在计算机科学和信息技术中的应用。
二、教学内容1. 离散数学的基本概念a. 离散数学的定义和特点b. 与连续数学的区别与联系2. 离散数学中的基本运算规则a. 集合的定义和运算b. 逻辑运算c. 排列与组合3. 离散数学的应用a. 离散数学在计算机科学中的重要性和应用领域b. 离散数学在信息技术中的应用案例分析三、教学过程1. 导入在课堂开始前,通过提问或引入一些相关问题的方式,引起学生的兴趣和思考离散数学的应用场景。
2. 概念介绍和讲解逐步介绍离散数学的定义、离散数学与连续数学的区别,以及离散数学在计算机科学和信息技术中的重要性。
3. 基本运算规则的学习通过示例和练习,教授集合的定义、集合的运算、逻辑运算、排列与组合等基本运算规则,并着重强调它们在离散数学中的应用。
4. 应用案例分析结合实际案例,对离散数学在计算机科学和信息技术中的应用进行分析和讨论。
可以使用图表、演示等形式,提高学生对离散数学应用的理解和实际运用能力。
5. 总结与扩展对本节课的内容进行总结,强调离散数学在计算机科学和信息技术中的重要性,并提供相关扩展资料供学生深入学习和研究。
四、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,包括问题回答和举手提问等。
2. 练习和作业:布置相关的练习和作业,检验学生对离散数学的理解和应用能力。
3. 学习笔记:鼓励学生做好课堂笔记,评价学生对离散数学知识的整理和梳理能力。
五、教学资源1. PowerPoint演示文稿:包含离散数学的基本概念、基本运算规则和应用案例。
2. 练习和作业册:提供相关练习和作业,让学生巩固所学知识。
注意:以上教案仅为示例,具体的教学流程和内容可根据实际情况进行调整和修改。
祝您教学顺利!。