第一章 原子核的基本性质
- 格式:ppt
- 大小:1.39 MB
- 文档页数:43
原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。
(P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。
(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。
(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。
(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。
(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。
2、影响原子核稳定性的因素有哪些。
(P3~5)核内质子数和中子数之间的比例;质子数和中子数的奇偶性。
3、关于原子核半径的计算及单核子体积。
(P6)R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径单核子体积:A r R V 3033434ππ==4、核力的特点。
(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程内具有排斥芯;5.核力还与自旋有关。
5、关于原子核结合能、比结合能物理意义的理解。
(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆= 表明核子结合成原子核时会释放的能量。
比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。
6、关于库仑势垒的理解和计算。
(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。
原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。
(P2)核素:核具有一定质子数和中子数以及特定能态的一种原子核或原子。
(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。
(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。
(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。
(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。
2、影响原子核稳定性的因素有哪些。
(P3~5)核质子数和中子数之间的比例;质子数和中子数的奇偶性。
3、关于原子核半径的计算及单核子体积。
(P6)R =r 0A 1/3 fm r 0=1.20 fm电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径 单核子体积:A r R V 3033434ππ==4、核力的特点。
(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程具有排斥芯;5.核力还与自旋有关。
5、关于原子核结合能、比结合能物理意义的理解。
(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆=表明核子结合成原子核时会释放的能量。
比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。
6、关于库仑势垒的理解和计算。
(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。
(第一章)原子核物理基础引言(P1)1.1895年X射线1896年放射性这三大发现揭开了近代物理的序幕,物质结构的研究开始进入微观领域。
1897年电子2.放射性现象1896年法国科学家贝克勒尔(Becquerel A.H)发现的天然放射性现象是人类第一次观察到核变化的情况,通常人们把这一重大发现看成是原子核物理的开端。
3.20世纪50年代,逐步形成了研究物质结构的三个分支学科,即原子物理、原子核物理和粒子物理,这三者各有独立的研究领域和对象,但又紧密关联。
本章重点论述原子核物理这一领域。
第一节原子和原子核的基本性质(P1-6)1.到目前为止,包括人工制造的不稳定元素在内,人们已经知道了100多种元素。
2.1911年卢瑟福(Rutherford R.C.)根据α粒子的散射实验提出了原子的核式模型的假设,即原子是由原子核和核外电子组成。
补充:1898年, 卢瑟福(Rutherford)在“贝可勒尔射线”中发现了α、β粒子,后来证实了α射线是氦原子核,β射线是电子。
3.原子就被分成两部分来处理:核外电子的运动构成了原子物理学的主要内容,而原子核则成了另一门学科——原子核物理学的主要研究对象。
原子和原子核是物质结构互相关联又泾渭分明的两个层次。
4.关于电子:(1)电子是由英国科学家汤姆逊(Thomson J.J.)于1897年发现的,也是人类发现的第一个微观粒子。
(2)电子性质:①电子带负电,电子电荷的值为e=1.602 177 33×10-19CPS: 电荷是量子化的,即任何电荷只能是e的整数倍。
②电子的质量为m e=9.109 389 7×10-31kg补充:质子质量:1.6726231×10-27kg;中子质量:1.6749273×10-27kg5.原子核性质:(1)原子核带正电荷,原子核的电荷集中了原子的全部正电荷。
(2)原子核的质量远远超过核外电子的总质量;(3)原子核的线度只有几十飞米,而密度高达108t/cm3PS:1fm=10-15m=10-13cm 1nm=10-9m6.关于原子(1)原子的大小是由核外运动的电子所占的空间范围来表征的;(2)原子的大小即半径约为10-8cm的量级。
原子核物理基础概论原子核是原子的中心体。
研究这个中心体的性质、特征、结构和变化等问题的一门学科称为原子核物理学。
一、原子核物理的发展简史1.1886年 Bequenel发现天然放射性。
进一步研究表明,放射性衰变具有统计性质;放射性元素经过衰变(α,β, );一种元素会变成另一种元素,从而突破了人们头脑中元素不可改变的观点。
2.1911年 Rutherford α粒子散射实验,由α粒子的大角度散射确定了原子的核式结构模型。
3.1919年α粒子实验首次观察到人工核反应(人工核蜕变)。
使人们意识到用原子核轰击另外的原子核可以实现核反应,就象化学反应一样。
4.1932年查德威克中子的发现表明原子核由质子和中子构成,中子不带电荷,易进入原子核引起核反应。
在这件大事中,实际上有我国物理学家的贡献。
根据杨振宁先生的一篇文章介绍,我国物理学家赵忠尧在1931年发表了一篇文章,文中预言了中子的存在,但查德威克看了之后未引用,故失去了获得诺贝尔奖的机会。
5.20世纪40年代核物理进入大发展阶段(引用科学史材料):(1)1939年Hahn发现核裂变现象;(2)1942年Fermi建立第一座链式反应堆,这是人类利用原子能的开端;(3)加速器的发展,为核物理理论和核技术提供了各种各样的粒子流,便于进行各种各样的研究;(4)射线探测器技术的提高和核电子学的发展,改变了人类获取实验数据的能力;(5)计算机技术的发展和应用,一方面进一步改进了人们获取数据,处理核数据的能力,另一方面提供了在理论上模拟各种核物理过程的工具。
例如模拟反应堆中中子的减速、慢化过程等物理过程。
二、核物理的主要研究内容核物理学可以分为理论和应用两个方面。
理论方面是对原子核的结构、核力及核反应等问题的研究。
同其它基础研究一样,是为了了解自然、掌握自然规律,为更好地改造自然而开辟道路的。
另一方面是原子能和各种核技术的应用,包括民用与军用。
这两方面的研究相互联系,相互促进,相互推动向前发展。
原子核物理学是研究原子核的结构、性质、形成以及相互作用的物理分支。
这一领域涉及从基本粒子到宇宙尺度的广泛现象,是现代物理学中极为重要的组成部分。
原子核物理学是研究原子核内部结构、性质以及相互作用的科学。
自从1932年詹姆斯·查德威克发现中子以来,原子核物理学得到了迅速的发展。
这一领域的研究不仅对基础科学具有重要意义,而且对核能、核技术以及核医学等应用领域有着深远的影响。
一、原子核的基本性质1. 组成与结构原子核由质子和中子组成,这两种粒子统称为核子。
质子带有正电荷,中子不带电。
原子核的大小约为10^15米,远小于原子的大小。
2. 质量与结合能原子核的质量小于组成它的核子的质量之和,这种质量的亏损称为质量亏损。
根据爱因斯坦的质能方程E=mc^2,质量亏损对应着原子核的结合能,即核子结合在一起所释放的能量。
3. 电荷与自旋原子核带有正电荷,其大小等于核内质子的数目。
原子核具有自旋角动量,其大小取决于核子数和核子的排列方式。
二、原子核的稳定性与放射性1. 稳定性条件原子核的稳定性取决于其质子与中子的比例。
在轻核区域,质子与中子的比例接近1:1,而在重核区域,中子的数目多于质子。
原子核的稳定性还受到其自旋和形状的影响。
2. 放射性衰变不稳定的原子核会自发地发生放射性衰变,释放出粒子或电磁辐射。
常见的放射性衰变类型有α衰变、β衰变、γ衰变等。
α衰变:原子核释放出一个α粒子(两个质子和两个中子组成的粒子),转变为一个新的原子核。
β衰变:原子核中的一个中子转变为一个质子,同时释放出一个电子和一个反中微子,或者一个质子转变为一个中子,同时释放出一个正电子和一个中微子。
γ衰变:原子核从激发态跃迁到基态时,释放出γ射线。
三、原子核反应与核能1. 核反应核反应是指原子核之间或原子核与粒子之间的相互作用。
核反应可以是自然的,也可以是人工引发的。
常见的核反应有核裂变、核聚变等。
核裂变:重核在中子的轰击下分裂成两个或多个轻核,同时释放出大量能量。