海水中有色金属资源的利用
- 格式:ppt
- 大小:3.70 MB
- 文档页数:13
第三单元海水中的化学一、海洋化学资源1、海水中的物质(1)海水由96.5%的水和3.5%的溶解的盐组成。
①海水中主要有4种金属离子(Na+、Mg2+、Ca2+、K+)和2种酸根离子(Cl-、SO42-)。
当把海水蒸干时,任一金属离子和酸根离子都可以结合构成一种盐,故海水中主要的盐有:Na2SO4、NaCl、MgSO4、MgCl、CaSO4、CaCl、K2SO4、KCl。
②海水之最:含量最多的金属离子:Na+,含量最多的非金属离子或酸根离子:Cl-含量最多的非金属元素:O,含量最多的金属元素:Na海水盐分中含量最多的非金属元素:Cl。
(2)海水制镁Ⅰ.流程:Ⅱ.化学方程式:①MaCl2+Ca(OH)2=Mg(OH)2↓+CaCl2②Mg(OH)2+2HCl=2H2O+MgCl2③MgCl2通电Mg+Cl2↑注意:①海水中原本就有氯化镁,为什么要先加石灰乳生成氢氧化镁沉淀,再加盐酸得到氯化镁呢?海水中氯化镁的含量很低,要想得到它,首先要设法使之富集。
提取镁时,如果直接以海水为原料,则将其中的氯化镁转化为沉淀的过程就是为了使镁元素富集;如果以卤水为原料,则在海水晒盐阶段就经过了一次富集,转化为沉淀的目的即可使镁元素进一步富集,又可除去其中的氯化钠等杂质。
②从海水中提取镁时,选择石灰乳做沉淀剂的原因是什么?因为石灰乳价廉易得,大海中富含贝壳,它们的主要成分为碳酸钙,可就地取材通过大海制得石灰乳,反应的化学方程式为:CaCO3高温CaO+CO2↑、CaO+H2O=Ca(OH)22、海底矿物(1)可燃冰①可燃冰——天然气水合物——固体——极易燃烧②形成:由天然气(主要成分是CH4)和水在低温、高压条件下形成的冰状固体。
③优点:燃烧产生的热量比同等条件下的煤或石油产生的热量多得多。
燃烧后几乎不产生任何残渣或废气,被科学家誉为“未来能源”、“21世纪能源”。
注意:①纯净的天然气水合物呈白色,形似白雪,可以像固体酒精一样直接被点燃,被形象的称为“可燃冰”。
第五节 海水中镁的提取及镁盐的常见用途自然界中的镁主要以化合态的形式存在于地壳和海水中。
海水中镁的总储量约 为1.8x 1015t,目前世界上60%的镁是从海水中提取的。
目前大部分国家从海水中提取镁的方法是:将石灰乳加入海水沉淀池中,得到 氢氧化镁沉淀,再将氢氧化镁与盐酸反应,蒸发结晶可获得六水合氯化镁晶体 <Mg CI 26H 2O )。
将六水合氯化镁晶体在一定条件下加热生成无水氯化镁,电解熔融的 氯化镁可以得到金属镁。
<石灰乳可利用海边大量存在的贝壳煅烧成石灰制得。
)成品: 2______________ 6 你知道吗从海水中提取镁的流程1 /镁及其化合物在生产、生活及科研中应用广泛镁合金是以镁为基加入其他元素组成的合金。
其特点是:密度小 <1.8g/cm 3左 右),比强度高,比弹性模量大,散热好,消震性好,承受冲击载荷能力比铝合金 大,耐有机物和碱的腐蚀性能好。
主要合金元素有铝、锌、锰、铈、钍以及少量锆 或镉等。
目前使用最广的是镁铝合金,其次是镁锰合金和镁锌锆合金。
它是实用金属中的最轻的金属,镁的比重大约是铝的 2/3,是铁的1/4金属镁及镁合金以其在吸噪声、电磁屏蔽、防辐射、抗震减震等方面的特殊性能, 成为机械制造、电子工业、航天航空、军工装备领域不可缺少的重要原材料。
东京理工大学的Takashi Yabe 博士指出,用上述方法提取镁的成本很高,能耗 巨大,生产1公斤的镁大致需要消耗 10公斤的煤,同时还会产生不小的二氧化碳排 放。
为了改进这一流程,Yabe 博士研发出了一种只利用可再生能源的工艺。
他的方法是利用高强度太阳能产生激光,从而以极高的温度燃烧海水,从中提取出氧化镁, 最终可制的镁。
Yabe 博士称,海水当中的镁的储量巨大,至少够全世界消耗 30万年。
他进一步解释称,利用太阳能产生激光是必须的,因为仅靠太阳能无法产生 3700摄氏度的高温,而这个温度是提取海水中镁的必备条件。
海洋资源的开发与利用在我们所居住的这颗蓝色星球上,海洋占据了约 71%的表面积,蕴藏着极为丰富和多样的资源。
海洋不仅是生命的摇篮,也是人类未来发展的重要宝库。
对海洋资源的合理开发与利用,已经成为当今世界各国关注的焦点和竞相探索的领域。
海洋中的资源种类繁多,首先映入眼帘的是丰富的生物资源。
从微小的浮游生物到巨大的鲸鱼,海洋中的生物种类不计其数。
这些生物不仅为人类提供了食物来源,如各类海鲜,还具有极高的药用价值。
例如,一些海洋生物体内含有的特殊成分,经过科学研究和开发,可以用于治疗多种疾病。
此外,海洋生物资源还包括各种藻类和微生物,它们在生物科技、环保等领域有着广阔的应用前景。
海洋中的矿产资源同样令人瞩目。
石油和天然气是大家熟知的海洋矿产,许多国家通过海上钻井平台进行开采,为能源供应提供了重要保障。
除了油气资源,海底还蕴藏着大量的金属矿产,如锰结核、钴结壳、热液硫化物等。
其中,锰结核富含锰、铁、镍、钴等多种金属元素,具有极高的经济价值。
随着陆地矿产资源的逐渐枯竭,海洋矿产资源的开发显得愈发重要。
水资源也是海洋的重要组成部分。
虽然海水不能直接饮用,但通过海水淡化技术,我们可以将其转化为淡水资源,缓解一些地区的水资源短缺问题。
目前,海水淡化技术不断发展和完善,成本逐渐降低,应用范围也在不断扩大。
海洋的能源资源潜力巨大。
潮汐能、波浪能、海流能等都是可再生的清洁能源。
潮汐发电利用了潮汐的涨落产生的能量,已经在一些地区得到了应用。
波浪能和海流能的开发虽然还面临一些技术难题,但随着科技的进步,未来有望成为重要的能源来源。
然而,海洋资源的开发并非一帆风顺,面临着诸多挑战和问题。
首先是技术难题。
海洋环境复杂多变,开发海洋资源需要先进的技术和设备支持。
例如,深海采矿需要具备能够承受巨大水压、精确定位和高效采集的技术装备,目前这些技术仍有待进一步突破。
其次是环境保护问题。
海洋生态系统十分脆弱,不当的开发活动可能会对海洋环境造成严重破坏,导致生物多样性减少、海洋污染等问题。
海水中蕴含着丰富的元素,元素周期表中列出的110多种元素,有80多种在海水中能找到。
这些元素大部分以盐的形式存在,其中NaCl的含量较高,食盐主要是用海水晒盐的方法获得,氯碱工业就是以食盐为原料进行生产的。
从海水中还可以提取出MgCl2,然后电解MgCl2得到金属镁,还能提炼出溴、碘等,可以说,海水是一个巨大的化学资源宝库。
【重点难点】重点:从海水中获取NaCl、Mg、Br2。
难点:氯碱工业,提取镁、溴的化学原理。
【知识讲解】地壳中含有丰富的元素,而海水占地球表面的70%以上,其中蕴含的元素更丰富,研究海水中的化学资源,就能从海水中得到很多有用的物质。
一、海水——化学元素宝库1、海水中含丰富的元素元素周期表中的110多种元素,海水中含有80多种,而且海水的量又比较多,故有些元素的含量极其丰富,有很大的开采、使用价值。
2、海水中各种元素的来源海水中的这些元素,是通过河流、大气及海底火山活动等途径,从地球的其他圈层进入海洋的。
由陆地河流和大气进入海洋的物质,90%是由江河输入海洋的,10%由冰和大气尘埃输入。
虽然来源不同,输入海洋的物质的数量随地理位置和时间的不同而有所变化,但海水的浩大,还能使某一海区海水的性质趋于一致。
3、海水中的常量元素和微量元素(1)常量元素:每升海水中含量大于1mg 的元素为常量元素。
常见的常量元素有Cl、Na、Mg、S、Ca、K、C、Sr、Br、B、F这11种元素,它们的总量占海水所溶解物质总量的99.9%。
Cl、Na两种元素的含量最高,海水中NaCl 的含量特别丰富。
(2)微量元素:每升海水中含量低于1mg的元素称为微量元素。
虽然微量元素的含量较低,但由于海水的质量很大,故含的这些元素的质量也很可观,还是有很大的开采价值,如:海水中锂元素的含量达到2.5×1011吨,而锂可用于制造心脏起博器中的锂电池,是热核反应的重要材料之一。
铀元素(235U)用做制原子弹和核反应堆的燃料,1kg235U全部裂变释放的能量相当于2500吨优质煤燃烧释放出的能量,故铀的使用价值相当大。
【高中化学】高中化学知识点:海水资源的综合利用海水资源的综合利用:浩瀚的海洋是个巨大的资源宝库,它不仅孕育着无数的生命,还孕育着丰富的矿产,而海水本身含有大量的化学物质,又是宝贵的化学资源。
可从海水中提取大量的食盐、镁、溴、碘、钾等有用物质,海水素有“液体工业原料”之美誉。
海水制盐:(1)海水制盐的方法:从海水中得到食盐的方法有蒸发法(盐田法)、电渗析法等。
目前,以蒸发法(盐田法)为主。
(2)海水晒盐的基本原理:水分不断冷却,氯化钠等盐结晶划出。
(3)海水晒盐的流程氯碱工业:(1)食盐水的精制(2)电极反应阴极:阳极:总反应::(3)主要设备色谱法膜电解槽一一阳极用金属钛(表面涂抹存有钛、绑氧化物层)做成,阴极用碳钢(覆有镍镀层)做成。
阳离子膜具备挑选借由性,只容许na+借由,而cl-、oh一和气体无法借由。
(4)产品及用途烧碱:可以用作造纸、玻璃、肥皂等工业氯气:可用于制农药、有机合成、氯化物的合成氢气:可以用作金属炼钢、有机合成、盐酸的制备海水提溴:(1)氯化氯化氧化溴离子,在ph=3.5的酸性条件下效果最好,所以在氯化之前要将海水酸化。
(2)吹起出来当海水中的br一被氧化成br2以后,用空气将其吹出。
另外,也可以用水蒸气,使溴和水蒸气一起蒸出。
(3)稀释目前比较多的是用二氧化硫作还原剂,使溴单质转化为hbr,再用氯气将其氧化得到溴产品。
化学方程式如下:海水加镁:(1)工艺流程(2)主要化学反应①制备石灰乳:②结晶③制备从海水中抽取重水:提取重水的方法:蒸馏法、电解法、化学交换法、吸附法等。
常用方法:化学交换法(硫化氢一水双温交换法)铀和重水目前就是核能研发中的关键原料,从海水中抽取铀和重水对一个国家来说具备战略意义,化学在研发海洋药物方面也将充分发挥越来越小的促进作用。
潮汐能、波浪能也就是越来越受到重视的新型能源。