4.3 一次函数的图象 第3课时
- 格式:doc
- 大小:450.34 KB
- 文档页数:2
4.3 一次函数的图象第1课时正比例函数的图象和性质【知识与技能】1.使学生能用两点法画出正比例函数的图象.2.初步了解正比例函数图象的性质.【过程与方法】通过画正比例函数的图象,探索正比例函数图象的性质,培养观察能力,体会用数形结合的方式思考问题.【情感态度】1.在学习中学会主动参与、积极思维,并获得成功的体验,锻炼克服困难的意志.2.通过动手操作,培养严谨的学习态度,并养成善于观察、善于归纳的学习习惯.【教学重点】正确理解正比例函数的图象及性质.【教学难点】通过对正比例函数图象的观察,发现正比例函数图象的性质.一、创设情境,导入新课上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图象叫做该函数的图象.假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可在直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合.本节课我们研究一下正比例函数的图象及性质.【教学说明】复习旧知识,顺其自然地引出新知识,让学生对正比例函数的图象形成初步认识.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题正比例函数的图象及性质探究教材第122页“探究”【教学说明】通过让学生取值,作出正比例函数的图象,明白作正比例函数图象的方法和步骤.例:教材第123页“例1”【教学说明】让学生弄清正比例函数的图象是一条直线,并且可以采用两点法作出来,使复杂的问题简单化.做一做:教材第123页“做一做”【教学说明】从特殊到一般,让学生观察、归纳总结得出正比例函数图象的性质,培养学生能对所学知识进行提炼概括的能力.例:教材第123页“例2”【教学说明】在实际问题中,经历写出正比例函数的表达式和用两点法画正比例函数图象,既巩固了所学知识,又让学生明白对于实际问题中的正比例函数图象是一条线段,而不是直线.三、运用新知,深化理解1.已知正比例函数y=(1-2m)x的图象经过第二、四象限,则m的取值范围是()A.m>12B.m<12C.m<0D.m>02.P1(x1,y1),P2(x2,y2)是正比例函数y=-12x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y23.函数y=-32x的图象是一条经过原点及点(2,)的直线,这条直线经过第象限,当x增大时,y随之.4.一水管向容器为100立方米的空水池注水,注水时间t与注入的水量Q的关系如下表:(2)求自变量t的取值范围,并画出图象;(3)当t=40分钟时,求水量Q的值是多少?【教学说明】让学生独立完成,加深对知识的理解和运用,了解学生的掌握情况,对有困难的学生及时给予辅导,纠正错误,并进行针对性地强化.在完成上述题目后,让学生完成练习册中本课时的“课堂自主演练”部分.答案:1.A 2.D 3. -3,二,四,减小4.(1)Q=2t; (2)0≤t≤50,图略;(3)80立方米四、师生互动,课堂小结今天这节课的学习,你能用两点法画出一个正比例函数的图象并根据图象说出它的情况吗?还有什么疑问,存在哪些不足,请与同学们交流.【教学说明】师生共同回顾所学知识,加深理解,同学相互交流,消除疑难,共同提高.1.布置作业:习题4.3中的第1(1)、2(1)题.2.完成练习册中本课时练习的“课后作业”部分.第2课时一次函数的图象和性质【知识与技能】理解直线y=kx+b与y=kx之间的位置关系,使学生理解掌握并会做出一次函数的图象.【过程与方法】通过一次函数的图象学习,体验数形结合法的应用,培养推理及抽象思维能力.【情感态度】通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美.【教学重点】作一次函数的图象【教学难点】对一次函数y=kx+b(k、b为常数)中k、b的数与形的联系的理解.一、创设情境,导入新课提问 1.什么叫正比例函数、一次函数?2.正比例函数的图象是什么形状?3.正比例函数y=kx(k是常数,k≠0)中,k的正负对函数的图象有什么影响?既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?它们图象之间有什么关系?【教学说明】通过复习正比例函数,利用它与一次函数的特殊关系,采用设问的方式引出一次函数的图象及它们图象之间存在的关系,让学生找准学习的目标.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题一次函数的图象及性质探究教材第124页“探究”【教学说明】通过作出比例系数k相等的正比例函数和一次函数的图象,让学生明白一次函数图象可以由正比例函数图象平移得到,从而找出平移的方法和规律.例:教材第125页“例3”【教学说明】采用两点法作出一次函数的图象,让学生明白一次函数的图象与正比例函数的图象一样,是一条直线.议一议:教材第125页“议一议”【教学说明】通过观察两个比例系数互为相反数的一次函数图象,归纳总结得出一次函数y=kx+b的性质,经过这样的过程学生易于理解并且不会忘记.例:教材第126页“例4”【教学说明】通过实际问题的应用,加深学生对本节知识的巩固,并让学生学会分析分段函数的图象并解决问题.三、运用新知,深化理解1.下列函数中,y随x的增大而减小的函数是()A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x2.已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<03.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k= ,b= .4.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:(1)写出甲的行驶路程和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间里,甲的速度大于乙的速度?(3)从图象中你还能获得什么信息?请写出其中的一条.【教学说明】由学生自主完成,便于了解学生的掌握情况,及时查漏补缺,有利于教师调整教学中存在的不足,并加以矫正强化.在完成上述题目后,让学生完成练习册中本课时的“课堂自主演练”部分.答案:1.C 2.B 3. - 2,34.(1)s=2t; (2)在0<t<1时,甲的行驶速度小于乙的行驶速度,在t>1时,甲的速度大于乙的行驶速度;(3)只要说法合乎情理即可.四、师生互动,课堂小结通过今天的学习,你掌握了一次函数的哪些内容?能在实际问题中解决一次函数的有关问题吗?还有什么心得体会,与大家共享.【教学说明】引导学生回顾所学知识,加深印象,同学之间相互学习,共同进步.1.布置作业:习题4.3中的第3、4题.2.完成练习册中本课时练习的“课后作业”部分.。
44第3课时两个一次函数图象的应用一、引言一次函数是我们初中数学学科中非常重要的一个内容,它具有简单清晰的数学表达形式,并且在实际生活中有着广泛的应用。
在本次课程中,我们将学习和探究两个一次函数图象的应用,并通过实际的例子来加深对一次函数的理解和应用。
二、函数图象的特点在学习函数图象的应用之前,我们先来回顾一下函数图象的基本特点。
一次函数的一般形式为y=ax+b,其中a和b都是常数。
在平面直角坐标系中,一次函数的图象是一条直线,其特点如下:1.斜率:斜率a代表函数图象的倾斜程度,a的绝对值越大,则图象的斜率越大,图象的倾斜程度越大。
2.截距:截距b代表函数图象与y轴的交点,如果b大于0,则图象在y轴的正半轴上,如果b小于0,则图象在y轴的负半轴上。
3.方向:如果a大于0,则图象从左下向右上斜;如果a小于0,则图象从左上向右下斜。
掌握了这些基本特点,我们就可以更好地应用一次函数图象来解决实际问题。
三、实际案例分析1.人口增长问题通过这个一次函数的表达式,我们可以方便地预测未来几年该城市的人口数量,也可以根据实际的年份来求人口数。
2.汽车行驶问题假设一辆汽车以恒定的速度行驶,行驶过程中计算仪表上所显示的速度与行驶时间之间的关系,可以用一次函数来表示。
假设仪表上显示的速度为y(单位:km/h),行驶的时间为x(单位:小时),那么该关系可以用一次函数y=ax+b来表示。
假设汽车起初的时间为0小时,速度为0km/h;当行驶1小时后,速度为100km/h。
根据这两个条件可以得到两个方程:(1)当x=0时,y=0;(2)当x=1时,y=100;通过求解这两个方程,可以得到a=100,b=0。
所以该一次函数的表达式为y=100x。
通过这个一次函数的表达式,我们可以计算任意时间下汽车的速度,也可以根据速度来推算汽车已经行驶的时间。
四、总结通过对两个实际案例的分析,我们可以看到一次函数图象的应用在生活中的重要性。
无论是人口增长还是车辆行驶,一次函数都可以提供方便快捷的解决方案。
北师大版数学八年级上第4单元《一次函数》导学案附单元测试卷4.1 函数4.2 一次函数与正比例函数4.3 一次函数的图象第1课时正比例函数的图象和性质第2课时一次函数的图象和性质4.4 一次函数的应用第1课时确定一次函数的表达式第2课时单个一次函数图象的应用第3课时两个一次函数图象的应用单元测试北师大版数学八年级上导学案第四章一次函数4.1 函数学习目标:1.掌握函数的概念,以及函数的三种表示方法;2.会判断两个变量之间是否是函数关系。
学习过程第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。
内容:问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?(2)给定一个v值,你都能求出相应的s值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n 个正方形,需要多少根火柴棒?第三环节:概念的抽象(7分钟,得到定义,学生理解知识) 内容:1.学生思考以上三个问题的共同点,进而揭示出函数的概念:2.函数概念中的两个关键词:两个变量,一个x 值确定一个y 值,它们是判断函数关系的关键。
3.思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示方法: (1) ; (2) ; (3) 。
一、单元学习主题本单元是“数与代数”领域“函数”主题中的“一次函数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学语言表达现实世界的重要载体.《标准2022》对一次函数的学习要求是:结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式;会运用待定系数法确定一次函数的表达式;能画出一次函数的图象,根据图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时图象的变化情况;理解正比例函数;体会一次函数与二元一次方程的关系,进一步发展建模意识;能用一次函数解决简单实际问题,发展应用意识.函数的教学,要通过对现实问题中变量的分析,建立两个变量之间变化的依赖关系,让学生理解用函数表达变化关系的实际意义;要引导学生借助平面直角坐标系中的描点,理解函数图象与表达式的对应关系,理解函数与对应的方程、不等式的关系,增强几何直观;会用函数表达现实世界事物的简单规律;注重学生对必要的数学语言和符号的理解与准确应用.运用数学语言和符号去理解、描述现实世界中问题的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.经历用数学的语言表达现实世界的过程,提升学生学习数学的兴趣,进一步发展应用意识.2.本单元教学内容分析北师大版教材八年级上册第四章“一次函数”,本章包括四个小节:4.1函数;4.2一次函数与正比例函数;4.3一次函数的图象;4.4一次函数的应用.函数学习在中学数学中占据重要地位,既是教学的重点,也是教学的难点.本章是学生第一次接触函数,是后续学习反比例函数、二次函数的基础.函数的概念和函数的图象贯穿整个函数的教学,是学习函数的重点,同时函数概念中体现出的变化与对应的思想、数形结合思想是决定函数学习是否顺利的关键.一次函数是学生接触的第一类函数,在教学中, 一般利用函数图象归纳函数性质,利用函数性质和图象来解决问题,这种从特殊到一般再回到特殊的研究方法是研究函数的基本方法.函数是数学中重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型.本章是学习函数的入门,也是进一步学习的基础.教材通过具体的实例引入一次函数的概念,并通过练习巩固对一次函数意义的认识;通过让学生动手操作,让学生认识到一次函数的图象是一条直线,从而得出两点法作一次函数图象;通过具体的取值结合函数的图象,让学生逐步得出一次函数的性质,体会一次函数在实际生活中的应用.教材注重让学生参与知识的形成过程,自始至终都采用让学生动手尝试、交流、归纳的方式,鼓励学生通过观察、猜想、验证,主动获取知识,真正体会到函数是反映现实世界的有效数学模型.一次函数是初中学生将要学习的各类函数中最简单的一种函数,它反映了函数的特点及函数的思维方式、研究方法和应用模式,因此学好一次函数是学好其他函数的基础.研究一次函数离不开对图象特征的研究.数形结合是学习一次函数时必须体现的一种重要思想.要通过设置较多实际问题的一次函数图象,让学生观察、自己描点画图、研究变量的变化规律,探讨函数中的数与形的对应关系,逐步掌握解决一次函数问题的技能.由于一次函数在现实生活中有着广泛的应用,因此,在具体的教学过程中,可以利用生活中的素材加深学生对函数现实意义的理解,促进其函数建模、数形结合等重要数学思想方法的形成,加强对知识之间内在联系的认识,体会函数观点的统领作用,也可以利用所学的函数知识解决现实生活中的一些问题.三、单元学情分析本单元内容是北师大版教材数学八年级上册第四章一次函数,本单元是在学习了实数、平面直角坐标系的基础上学习的,学生对数形结合思想有了一定的认识,它为本章的学习作了铺垫,一次函数的学习又为后续函数的学习作了铺垫,因此本章内容起着承上启下的作用.本单元让学生进一步认识用图象法表示函数关系,并开始学习一类最基本的函数——一次函数.学习一次函数,意味着从常量数学进入变量数学的学习.学生的思维要随之改变,这是对学生思维能力的考验,也是对数学认识的一次飞跃.学生在学习一次函数的过程中,对简单问题往往能根据课堂所学的概念知识,画出相应的函数图象解决,看不出学生对一次函数的理解程度.但随着时间的推移,随着问题情境复杂化,他们就会表现出对一次函数知识理解深度不够,停留在感性认识多些,理性认识少些,对一次函数表达式的直接应用多些,对表达式与图象间的内在联系运用薄弱些,需要多练、多探、多问、多总结经验.学生在学习过程中遇到困难主要有:复杂问题情景化转移到一次函数图象;结合题意理解一次函数所表达的信息;结合题意将图象信息转换为数量关系.因此,本单元教学应注意数形结合,需要多练、多问、多总结.四、单元学习目标1.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展符号意识.2.经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作交流的意识和能力.3.初步理解函数的概念,在实际背景中感受自变量取值范围的意义.4.能画一次函数的图象,经历利用一次函数及其图象解决实际问题的过程,发展应用意识,体会数形结合的思想.六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
第3课时一次函数的图象与性质●学习目标1.会画一次函数的图象;2.理解一次函数(包括正比例函数)的图象与性质,了解常数k,b的意义和作用;3.经历利用函数图象研究函数性质的过程,发展观察、比较、抽象和概括能力,体验“数形结合”的思想,发展几何直观.●学习重点能够画出一次函数的图象,并根据一次函数的性质.●学习难点一次函数的图象与k、b的关系.教学过程设计一、创设情景明确目标1.复习:正比例函数的图象与性质.2.猜想:①正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?②从解析式上看,一次函数y=kx+b与正比例函数y=kx只差一个常数b,体现在图象上,又会有怎样的关系呢?二、自主学习指向目标自学教材第91-93页的内容,学习至此,请完成学生用书.1.一次函数的图象:如图,比较下面y=12x与y=12x+2的图象.先填空,再总结规律.(1)填空:这两个函数图象的形状都是__直__线,y=12x+2可以看做y=12x向__上__平移__2__个单位得到的.(2)规律:①一次函数y=kx+b(k≠0)的图象是__一条直线__,称为__直线__y=kx+b;②直线y=kx+b(k≠0)可以看做由直线y=kx(k≠0)上下平移__|b|__个单位长度而得到.当b>0时,向__上__平移;当b<0时,向__下__平移.2.一次函数图象的性质:如图,观察上面y =kx +b(k ≠0)的图象填空:(1)当k>0时,y 的值随x 值增大而__增大__,图象过__一、三__象限; (2)当k<0时,y 的值随x 值的增大而__减小__,图象过__二、四__象限. 3.直线y =kx +b(k ≠0)与x 轴交点是__(-b k,0)__,与y 轴交点是__(0,b )__. 三、合作探究 达成目标探究点一 一次函数图象的画法与平移活动1:(见教材第91页例2)思考:(1)画函数图象的步骤是什么?(2)在画函数图象时,为了更好地体现其特点,在自变量的取值范围内,应取哪些数值较合理?展示点评:比较上述两个图象,完成教材第91页“思考”中的填空.小组讨论:一次函数y =kx +b(k ≠0),它的图象开关是什么?与y =kx(k ≠0)的图象有什么关系?反思小结:(1)一次函数y =kx +b(k ,b 是常数,k ≠0)的图象是一条直线,我们称它直线y =kx +b ,因此在画一次函数图象时,可以通过确定两点画出其图象最简单;(2)函数y =kx +b 图象可以看作由直线y =kx 图象平移|b|个单位长度而得到(当b >0时,向上平移,当b <0时,向下平移).(3)两直线平行,比例系数相同.针对训练1.函数y =-x +5的图象可以看成直线y =-x 向__上__平移__5__个单位而得.2.直线y =x +1向下平移3个单位得到函数解析式为__y =x -2__.3.直线y =-2x 与y =-2x +3的位置为__平行__.4.直线y =mx +5与y =-2x -3平行,则m =__-2__.探究点二 一次函数图象的性质活动2:(见教材第92页例3)思考:(1)已明确一次函数的图象是条直线,可以用简单的方法画出其图象吗?(2)对比两条直线,有何特点?猜想它们与k 、b 的联系.展示点评:通过观察发现图象(形)中规律,再根据这些规律得出关于数值大小的性质,这种数形结合的研究方法在数学学习中很重要.小组讨论:分别画出教材第93页探究中的四个函数图象,验证一次函数解析式y =kx +b(k 、b 是常数,k ≠0)中,k 的正负对函数图象有什么影响?反思小结:一次函数y =kx +b(k 、b 是常数,k ≠0)的图象:(1)其图象是一条直线,经过点(1,k +b)和(0,b)(2)当k >0时,其图象从左向右上升,y 随x 的增大而增大;当k <0时,其图象从左向右下降,y 随x 的增大而减小.(3)当b >0时,其图象交y 轴于正半轴,当b <0时,其图象交y 轴于负半轴.(4)当y 随x 的增大而增大时,k >0,y 随x 的增大而减小时,k <0;(5)当直线交y 轴于正半轴时,b >0;当直线交y 轴于负半轴时,b <0.针对训练5.一次函数y =(2m -6)x +5中,y 随x 增大而减小,则m 的范围是__m<3__.6.直线y =x -1的图象经过的象限是( D )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限7.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( D )A .-2B .-1C .0D .28.关于x 的一次函数y =(3m -7)x +m -2的图象与y 轴的交点在x 轴上方,且y 随x的减小而增大,则m 的范围是__2<m<73__. 9.已知一次函数y =(a -2)x +(b -1).(1)a 、b 为何值时,y 随x 增大而减小?(2)a 、b 为何值时,图象过一、二、三象限?(3)a 、b 为何值时,与y 轴交点在x 轴上方?解:(1)当a<2,b 为任意实数时,y 随x 增大而减小;(2)当⎩⎨⎧a -2>0,b -1>0,即a>2且b>1时,图象过一、二、三象限;(3)当b -1>0即b>1,a 为任意数时与y 轴交点在x 轴上方.四、总结梳理 内化目标1.一次函数的图象与性质,常数k ,b 的意义和作用;2.数形结合的思想与方法;3.研究函数的一般思路与方法.五、达标检测 反思目标1.一次函数y =2x -5的图像不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限2.下列函数中,y 随x 的增大而增大的是( B )A .y =-3xB .y =2x -1C .y =-3x +10D .y =-2x -13.对于一次函数y =(3k +6)x -k ,函数值y 随x 的增大而减小,则k 的取值范围是( B )A .k<0B .k<-2C .k>-2D .-2<k<04.已知正比例函数y =kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y =kx -k 的图像大致是( B )5.已知点(-1,a)、(2,b)在直线y =3x +8上,则a ,b 的大小关系是__a <b __.6.y =3x 与y =3x -3的图象在同一坐标系中位置关系是( C )A .相交B .互相垂直C .平行D .无法确定7.若一次函数y =(1-2m)x +3图象经过A(x 1、y 1)、B(x 2、y 2)两点.当x 1<x 2时,y 1>y 2,则m 的取值范围是__m >12__. 8.已知直线y =2x -3(1)求该直线与x 轴交点坐标及与y 轴交点坐标;(2)该直线经过哪些象限,y 随x 的增大而如何变化?(3)求该直线与坐标轴所围成的三角形的面积.解:(1)x =0时,y =-3 y =0时,x =32∴与x 轴的交点(32,0)到y 轴的交点(0,-3) (2)过一、三、四象限,y 随x 的增大而增大.(3)S =12×3×32=94作业练习深化目标上交作业:教材第99页练习第4、9、12题;课后作业:见学生用书部分.●教学反思本节课遵循“画——读——用”的教学流程,使整堂课是在教师的指导下由学生全程动手、观察、发现并实践于实际解题的方式进行,指导学生认识“由数到形”,“由形到数”的数学方法,培养解决问题、探究问题的基本素质,利于加强研究更复杂知识的能力.。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。
4.3 一次函数的图象
第3课时
教学目标
1.能用两点法画出正一次函数的图象;讨论y=kx+b(k 、b 为常数)中,k 、b 的意义及作用;进一步掌握一次函数图象的性质。
2、巩固一次函数图象的性质,培养综合运用知识的能力,体验数形结合法的应用。
借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美。
3、在学习中学会主动参与、积极思维,并获得成功的体验,锻炼克服困难的 意志;通过动手操作,培养严谨的学习态度,并养成善于观察、善于归纳的学 习习惯。
重点:正确理解一次函数的图象及其性质 难点:一次函数中k 、b 的意义和作用。
教学过程:
一、知识回顾(出示ppt 课件)
1.什么是正比例函数、一次函数?形如 y = kx +b (k , b 是常数,k ≠0)的函数,叫做一次函数.当b=0,一次函数y=kx (k 为常数,k ≠0)也叫作正比例函数。
2.如何画正比例函数、一次函数的图象? 两点法:两点决定一条直线。
3.一次函数的图象与性质是什么,常数k ,b 的意义和作用又是什么?
k ,b 决定了函数的性质。
(1)一次函数y = kx +b 的图象是一条直线(不经过原点),称它为直线y =kx +b .图象与y 轴的交点为(0,b )。
(2)直线y =kx +b (k ≠0)可以看作是直线y =kx 平移│b │个长度单位而得到。
当b >0时,向上平移,当b <0时,向下平移。
k 相等,两直线平行,平移几个单位,看│b │,y 截距。
(3)当k>0时,函数值 y 随自变量 x 的增大而增大;当k<0时,函数值 y 随自变量 x 的增大而减小。
二、知识归纳(出示ppt 课件)1、填表,归纳一次函数图象和性质:
2、从上表也可以看出:k ,b 决定了函数的性质。
k 决定 。
b 决定 。
3、根据函数图象确定k ,b 的取值范围
k 0 k 0 k 0 b 0 b 0 b 0
k 0 k 0 k 0 b 0 b 0 b 0 三、知识应用(出示ppt 课件)
1.已知一次函数y=x -2的大致图象为 ( )
2.已知函数 y = kx 的图象在二、四象限,那么函数y=kx-k 的图象可能是( )
3.已知一次函数 y=(1-2m )x+m -1 , 求满足下列条件的m 的值:
(1)函数值y 随x 的增大而增大; (2)函数图象与y 轴的负半轴相交; (3)函数的图象过第二、三、四象限;(4)函数的图象过原点. 4.已知点(2,m ) 、(-3,n )都在直线y=
1
6
x +1 上, 试比较 m 和n 的大小。
你能想出几种判断的方法? (两种方法) 四、巩固练习(出示ppt 课件) 五、课堂小结(出示ppt 课件)
1.一次函数的一般形式及一次函数与正比例函数的关系.
2.一次函数的图象与性质,常数k ,b 的意义和作用。
3.会画一次函数的图象。
从特殊到一般、数形结合的思想与方法,体验研究函数的一般思路与方法。
六、作业:p128 B。