分子晶体构成的微粒及作用力
- 格式:docx
- 大小:36.48 KB
- 文档页数:2
第3课时分子晶体晶体结构的复杂性课程标准1.了解分子晶体结构与性质的关系。
2.了解分子晶体与共价晶体、离子晶体、金属晶体的构成微粒及微粒间作用力的区别。
3.能根据分子晶体晶胞确定晶体的组成并进行相关计算。
学法指导1.通过学习教材中碘、干冰等晶体结构模型,认识分子晶体的构成微粒及微粒间的相互作用。
2.根据分子间作用力大小,推断分子晶体的熔、沸点高低。
3.通过学习石墨等晶体结构,认识晶体结构的复杂性。
必备知识·自主学习——新知全解一遍过知识点一分子晶体1.分子晶体的结构碘晶体干冰晶体冰晶体(1)碘晶体的晶胞是(1)干冰晶胞是(1)水分子之间的主4.分子晶体的物理性质(1)分子晶体由于以比较弱的________相结合,因此一般熔点________,硬度________。
(2)对组成和结构________,晶体中又不含氢键的分子晶体来说,随着相对分子质量的增大,分子间作用力________,熔、沸点________。
微点拨分子间只存在范德华力的分子晶体,服从紧密堆积排列原理;分子间存在氢键的分子晶体,由于氢键具有方向性、饱和性,故不服从紧密堆积排列原理。
学思用1.判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)二氧化硅和干冰虽然是同一主族的氧化物,但属于不同的晶体类型。
( )(2)水是一种非常稳定的化合物,这是由于水中存在氢键。
( )(3)冰与水共存物属于混合物。
( )(4)冰与二氧化硅的晶体类型相似。
( )(5)分子晶体一般熔点较低、硬度较小。
( )2.下列各组晶体都属于化合物组成的分子晶体是( )A.H2O、O3、CCl4B.CCl4、(NH4)2S、H2O2C.SO2、SiO2、CS2 D.P2O5、CO2、H3PO4知识点二晶体结构的复杂性1.石墨晶体(1)石墨晶体是________结构,在每一层内,每个C原子与其他3个C原子以共2.晶体的复杂性(1)物质组成的复杂性导致晶体中存在多种不同微粒以及不同微粒间作用。
第二节分子晶体与原子晶体第1课时分子晶体[学习目标定位] 1.熟知分子晶体的概念、结构特点及常见的分子晶体。
2.能够从范德华力、氢键的特征,分析理解分子晶体的物理特性。
一干冰和冰的晶体结构1.干冰晶胞结构如图所示,观察分析其结构模型,回答下列问题:(1)构成干冰晶体的结构微粒是CO2分子,微粒间的相互作用力是范德华力。
(2)从结构模型可以看出:干冰晶体是一种面心立方结构——每8个CO2分子构成立方体,在六个面的中心又各占据1个CO2分子。
每个CO2分子周围,离该分子最近且距离相等的CO2分子有12个。
每个晶胞中有4个CO2分子。
2.冰晶体的结构如下图所示。
根据冰晶体的结构,回答下列问题:(1)构成冰晶体的结构微粒是H2O分子,微粒间的相互作用力是范德华力、氢键。
(2)在冰的晶体中,由于水分子之间存在具有方向性的氢键,迫使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分子相互吸引,这样的排列使冰晶体中的水分子的空间利用率不高,留有相当大的空隙。
3.干冰和冰的比较晶体分子间作用力结构特点外观硬度熔点密度干冰范德华力1个分子周围紧邻12个分子相似相似(小)干冰比冰低干冰比冰大冰范德华力、氢键1个分子周围紧邻4个分子[归纳总结](1)分子间通过分子间作用力相结合形成的晶体叫分子晶体。
如:干冰、碘晶体、冰等。
构成分子晶体的粒子只有分子。
(2)常见的典型的分子晶体有①所有非金属氢化物,如水、氨、甲烷等;②部分非金属单质,如卤素、O2、S8、P4、C60等;③部分非金属氧化物,如CO2、SO3、P4O10等;④几乎所有的酸;⑤绝大多数有机物的晶体。
(3)两种典型的分子晶胞①干冰型堆积特征:分子密堆积;②冰型堆积特征:四面体型。
[活学活用]1.下列各组物质各自形成晶体,均属于分子晶体的化合物是()A.NH3、HD、C10H8B.PCl3、CO2、H2SO4C.SO2、SiO2、P2O5l4、Na2S、H2O2答案B解析A中HD是单质,不是化合物;C中SiO2为原子晶体,不是分子晶体;D中Na2S是离子晶体,不是分子晶体。
晶体,一般包括离子晶体、分子晶体、原子晶体、金属晶体四种类型。
一、依据构成晶体的微粒和微粒间的作用判断(1)离子晶体的构成微粒是阴、阳离子,微粒间的作用是离子键。
(2)原子晶体的构成微粒是原子,微粒间的作用是共价键。
(3)分子晶体的构成微粒是分子,微粒间的作用为分子间作用力。
(4)金属晶体的构成微粒是金属阳离子和自由电子,微粒间的作用是金属键。
二、依据物质的分类判断(1)金属氧化物(如K2O、Na2O2等)、强碱(NaOH、KOH等)和绝大多数的盐类是离子晶体。
(2)大多数非金属单质(除金刚石、石墨、晶体硅等)、非金属氢化物、非金属氧化物(除SiO2外)、几乎所有的酸、绝大多数有机物(除有机盐外)是分子晶体。
(3)常见的单质类原子晶体有金刚石、晶体硅、晶体硼等,常见的化合类原子晶体有碳化硅、二氧化硅等。
(4)金属单质是金属晶体。
三、依据晶体的熔点判断。
(1)离子晶体的熔点较高。
(2)原子晶体的熔点很高。
(3)分子晶体的熔点低。
(4)金属晶体多数熔点较高,但有少数熔点相当低。
四、依据导电性判断。
(1)离子晶体溶于水及熔融状态时能导电。
(2)原子晶体一般为非导体。
(3)分子晶体为非导体,而分子晶体中的电解质(主要是酸和强极性非金属氢化物)溶于水,使分子内的化学键断裂形成自由移动的离子,也能导电。
(4)金属晶体是电的良导体。
五、依据硬度和机械性能判断。
(1)离子晶体硬度较大、硬而脆。
(2)原子晶体硬度大。
(3)分子晶体硬度小且较脆。
(4)金属晶体多数硬度大,但也有硬度较小的,且具有延展性。
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
第二节 分子晶体与共价晶体课程目标1.掌握分子晶体、共价晶体的概念及结构特点。
2.掌握晶体类型与性质之间的关系。
3.了解氢键对物质物理性质的影响。
图说考点基 础 知 识[新知预习] 一、分子晶体的结构与物质类别1.分子晶体的结构特点(1)构成微粒及作用力分子晶体⎩⎪⎨⎪⎧构成微粒: 微粒间的作用力:(2)堆积方式分子间作用力堆积方式 实例 范德华力 分子采用________如C 60、干冰、I 2、O 2 范德华力、________ 分子不采用________如HF 、NH 3、冰 2.分子晶体与物质的类别:物质种类 实 例所有____________ H 2O 、NH 3、CH 4等部分____________ 卤素(X 2)、O 2、N 2、白磷(P 4)、硫(S 8)等 部分____________ CO 2、P 4O 10、SO 2、P 4O 6等 几乎所有的______ HNO 3、H 2SO 4、H 3PO 4、H 2SiO 3等 绝大多数________ 苯、乙醇、乙酸、乙酸乙酯等3.两种典型的分子晶体的组成和结构(1)干冰①每个晶胞中有______个CO 2分子,______个原子。
②每个CO 2分子周围等距离紧邻的CO 2分子数为______个。
(2)冰①水分子之间的作用力有____________________,但主要是__________。
②由于________的方向性,使四面体中心的每个水分子与四面体顶点的________个相邻的水分子相互吸引。
二、共价晶体的结构和性质1.共价晶体的结构特点(1)构成微粒及作用力共价晶体⎩⎪⎨⎪⎧构成微粒: 微粒间作用力:(2)空间构型:整块晶体是一个三维的共价键________结构,不存在________的小分子,是一个“巨分子”,又称________晶体。
2.共价晶体与物质的类别物质种类实例某些__________ 晶体硼、晶体硅、晶体锗、金刚石等某些__________ 碳化硅(SiC)、氮化硅(Si3N4)、氮化硼(BN)等某些__________ 二氧化硅(SiO2)等3.典型共价晶体(1)金刚石①碳原子采取________杂化,C—C—C夹角为________。
第二节分子晶体和共价晶体一、分子晶体1.概念:只含分子的晶体。
2.粒子间的作用分子晶体中相邻的分子间以分子间作用力相互吸引。
3.常见分子晶体及物质类别【注】稀有气体为的分子为单原子分子,因此,有稀有气体单质形成的晶体也是分子晶体。
4.物理特性(1)分子晶体的熔、沸点较低,密度较小,硬度较小,较易熔化和挥发,部分分子晶体易升华,(如干冰、碘、红磷等)。
(2)一般是绝缘体。
分子晶体在固态和熔融状态下均不存在自由移动的离子或自由电子,因而分子晶体在固态和熔融状态下都不能导电。
有些分子晶体的水溶液能导电,如HI、乙酸等。
(3)溶解性符合“相似相溶规律”。
【注】分子晶体熔、沸点高低的比较规律①分子晶体中分子间作用力越大,物质熔、沸点越高,反之越低。
②具有氢键的分子晶体,熔、沸点反常高。
5.分子晶体的常见堆积方式6.常见分子晶体的结构分析(1)冰①水分子之间的主要作用力是氢键,当然也存在范德华力。
②氢键有方向性,它的存在迫使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分子互相吸引。
(2)干冰①干冰中的CO 2分子间只存在范德华力,不存在氢键。
②每个晶胞中有4个CO 2分子,12个原子。
每个CO 2分子周围等距离紧邻的CO 2分子数为12个。
【注】冰晶体中,每个水分子与其他4个水分子形成氢键,每个水分子平均形成2个氢键(每个氢键由2个水分子均摊,故4×21=2)二、共价晶体1.定义:所有原子都以共价键相互结合形成共价键三维骨架结构的晶体叫共价晶体。
2.构成微粒及微粒间的作用力共价晶体⎩⎨⎧ 构成粒子:原子粒子间作用力:共价键【注】①共价晶体中不存在单个分子,因此,共价晶体的化学式不代表其实际组成,只表示其组成的原子个数比。
①共价晶体融化时被破坏的作用力是共价键。
①共价晶体中只有共价键,但含有共价键的晶体不一定是共价晶体。
如CO2、H2O等分子晶体中也含有共价键。
3.常见的共价晶体4.共价晶体的物理性质(1)熔点很高。
第二节分子晶体与原子晶体第1课时分子晶体一、分子晶体及其结构特点1.概念分子间通过分子间作用力相结合形成的晶体。
2.微粒间作用分子晶体中相邻的分子间以分子间作用力相互吸引。
3.常见分子晶体及物质类别物质类别实例所有非金属氢化物H2O、NH3、CH4等部分非金属单质卤素(X2)、O2、N2、白磷(P4)、硫(S8)等部分非金属氧化物CO2、P4O10、SO2、SO3等几乎所有的酸HNO3、H2SO4、H3PO4、H2SiO3等绝大多数有机物的晶体苯、乙醇、乙酸、乙酸乙酯等4.两种典型分子晶体的组成与结构(1)干冰①每个晶胞中有4个CO2分子,12个原子。
②每个CO2分子周围等距离紧邻的CO2分子数为12个。
(2)冰①水分子之间的作用力有范德华力和氢键,但主要是氢键。
②由于氢键的方向性,使在四面体中心的每个水分子与四面体顶角方向的4个相邻水分子相互吸引。
判断正误(1)分子晶体中,一定存在共价键和分子间作用力() (2)分子晶体中只存在分子间作用力() (3)共价化合物一定属于分子晶体() (4)干冰晶胞中含有4个CO2分子()(5)分子晶体中一定含有分子间作用力,不一定含有化学键()答案(1)×(2)×(3)×(4)√(5)√1.下列物质中,属于分子晶体的是________。
①二氧化硅 ②碘 ③食盐 ④蔗糖 ⑤磷酸答案 ②④⑤解析 由常见分子晶体对应的物质类别可知:碘、蔗糖、磷酸都属于分子晶体。
2.甲烷晶体的晶胞结构如图所示(1)晶胞中的球只代表1个__________。
(2)晶体中1个CH 4分子有______个紧邻的CH 4分子。
(3)甲烷晶体熔化时需克服______。
(4)1个CH 4晶胞中含有______个CH 4分子。
答案 (1)甲烷分子 (2)12 (3)范德华力 (4)4解析 (1)题图所示的甲烷晶胞中的球代表的是1个甲烷分子。
(2)由甲烷晶胞分析,位于晶胞顶点的某一个甲烷分子与其距离最近的甲烷分子有3个,而这3个甲烷分子在晶胞的面上,因此每个都被2个晶胞共用,故与1个甲烷分子紧邻的甲烷分子数目为3×8×12=12。
晶体结构与性质一、晶体常识和常见四种晶体性质1.晶体(1)晶体与非晶体内容晶体非晶体结构特征结构微粒周期性有序排列结构微粒无序排列性质特征自范性有无熔点固定不固定异同表现各向异性各向同性二者区别方法间接方法测定其是否有固定的熔点科学方法对固体进行X射线衍射实验(2)获得晶体的途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
(3)晶胞①概念:描述晶体结构的基本单元。
②晶体中晶胞的排列——无隙并置。
a.无隙:相邻晶胞之间没有任何间隙。
b.并置:所有晶胞平行排列、取向相同。
2.晶胞中微粒数的计算方法——均摊法(1)原则:晶胞任意位置上的一个原子如果是被n个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是1n。
(2)方法:①长方体(包括立方体)晶胞中不同位置的粒子数的计算。
②非长方体晶胞中粒子视具体情况而定,如石墨晶胞每一层内碳原子排成六边形,其顶点(1个碳原子)被三个六边形共有,如图:(3)图示:二、常见晶体模型与晶体性质1.典型晶体模型(1)原子晶体(金刚石和二氧化硅)①金刚石晶体中,每个C与另外4个C形成共价键,C—C 键之间的夹角是109°28′,最小的环是六元环。
含有1 mol C的金刚石中,形成的共价键有2 mol。
②SiO2晶体中,每个硅原子与4个O成键,每个氧原子与2个硅原子成键,最小的环是十二元环,在“硅氧”四面体中,处于中心的是硅原子,1 mol SiO2中含有4 mol Si—O键。
(2)分子晶体①干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个。
②冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O 的冰中,最多可形成2 mol氢键。
(3)离子晶体①NaCl型:在晶体中,每个Na+同时吸引6个Cl-,每个Cl-同时吸引6个Na+,配位数为6。
每个晶胞含4个Na+和4个Cl-。
②CsCl型:在晶体中,每个Cl-吸引8个Cs+,每个Cs+吸引8个Cl-,配位数为8。
化学键与晶体类型基础知识归纳一、晶体类型1、离子晶体:阴、阳离子以一定的数目比、并按照一定的方式依靠离子键结合而成的晶体。
如“NaCl、CsCl 构成晶体的微粒:阴、阳离子;微粒间相互作用:离子键;物理性质:熔点较高、沸点高,较硬而脆,固体不导电,熔化或溶于水导电。
2、原子晶体:晶体内相临原子间以共价键相结合形成的空间网状结构。
如:金刚石、晶体硅、碳化硅、二氧化硅构成晶体的微粒:原子;微粒间相互作用:共价键;物理性质:熔沸点高,高硬度,导电性差。
3、分子晶体:通过分子间作用力互相结合形成的晶体。
如:所有的非金属氢化物,大多数的非金属氧化物,绝大多数的共价化合物,少数盐(如AlCl3)。
构成晶体的微粒:分子;微粒间相互作用:范德华力;物理性质:熔沸点低,硬度小,导电性差。
4、金属晶体(包括合金):由失去价电子的金属阳离子和自由电子间强烈的作用形成的。
构成晶体的微粒:金属阳离子和自由电子;微粒间相互作用:金属键;物理性质:熔沸点一般较高部分低,硬度一般较高部分低,导电性良好。
二、化学键1、离子键:使阴、阳离子结合成化合物的静电作用。
离子键存在于离子化合物中,活泼的金属与活泼的非金属形成离子键。
2、金属键:在金属晶体中,金属阳离子与自由电子间的强烈相互作用。
金属键存在于金属和合金中。
3、共价键:分子中或原子晶体、原子团中,相邻的两个或多个原子通过共用电子对所形成的相互作用。
(1)非极性共价键:由同种元素的原子间通过共用电子对形成的共价键,又称为非极性键。
存在于非金属单质中。
某些共价化合物分子中也有非极性键,如:H2O2中的O-O键,C2H6中的C-C键等。
少数离子化合物中也有非极性键,如:Na2O2中的O-O键,CaC2中的碳碳三键等。
(2)极性共价键:不同种元素的原子形成分子时共用电子对偏向吸引电子能力强的原子而形成的共价键,又称为极性键。
所有的共价化合物分子中都存在极性键,离子化合物的原子团中也存在极性键。
微专题5分子晶体、共价晶体的比较与应用1.共价晶体和分子晶体的比较2.判断分子晶体和共价晶体的方法(1)依据构成晶体的微粒和微粒间的作用力判断构成共价晶体的微粒是原子,微粒间的作用力是共价键;构成分子晶体的微粒是分子,微粒间的作用力是分子间作用力。
(2)依据晶体的熔点判断共价晶体的熔点高,常在1 000 ℃以上,而分子晶体的熔点低,常在数百度以下甚至温度更低。
(3)依据晶体的硬度与机械性能判断共价晶体的硬度大,分子晶体的硬度小且较脆。
(4)依据导电性判断分子晶体为非导体,但部分溶于水后能导电;共价晶体多数为非导体,但晶体硅、锗是半导体。
(5)记忆常见的共价晶体、分子晶体常见的共价晶体有:①单质:金刚石、晶体硅、晶体硼、晶体锗等;②化合物:SiO2、SiC、BN、AlN、Si3N4等。
除共价晶体外的绝大多数非金属单质、气态氢化物、非金属氧化物、酸、绝大多数有机物(有机盐除外)都属于分子晶体。
1.下列各组晶体物质中,化学键类型相同,晶体类型也相同的是()①SiO2和SO3②晶体硼和HCl③CO2和SO2④晶体硅和金刚石⑤晶体氖和晶体氮⑥硫黄和碘A.①②③B.④⑤⑥C.③④⑥D.①③⑤答案C解析属于分子晶体的有SO3、HCl、CO2、SO2、晶体氖、晶体氮、硫黄和碘。
属于共价晶体的有SiO2、晶体硼、晶体硅和金刚石。
但晶体氖是由稀有气体分子组成,稀有气体为单原子分子,分子间不存在化学键。
2.下列晶体熔、沸点由高到低的顺序正确的是()①SiC②Si③HCl④HBr⑤HI⑥CO⑦N2⑧H2A.①②③④⑤⑥⑦⑧B.①②⑤④③⑥⑦⑧C.①②⑤④③⑦⑥⑧D.⑥⑤④③②①⑦⑧答案B解析SiC和Si为共价晶体,熔、沸点高,因为SiC晶体中Si—C比Si晶体中Si—Si更牢固,则SiC的熔、沸点大于Si的熔、沸点,剩余晶体均为分子晶体,熔、沸点低于共价晶体,结构相似的分子晶体,相对分子质量越大,范德华力就越大,熔、沸点越高,相对分子质量相同的分子晶体,极性分子的熔、沸点大于非极性分子的熔、沸点,所以熔、沸点由高到低的顺序正确的是①②⑤④③⑥⑦⑧,故B项正确。
分子晶体构成的微粒及作用力
分子晶体是由分子构成的晶体,其微粒是分子。
分子是由原子组成的,具有一定的结构和性质。
分子晶体的微粒之间存在着作用力,这些作
用力决定了分子晶体的性质和行为。
分子晶体的微粒之间存在着三种主要的作用力:范德华力、氢键和离
子键。
范德华力是分子之间的一种弱作用力,是由于分子中电子的运
动而产生的。
氢键是一种较强的作用力,是由于氢原子与氧、氮或氟
原子之间的电荷分布不均而产生的。
离子键是一种非常强的作用力,
是由于正负离子之间的电荷吸引力而产生的。
这些作用力决定了分子晶体的物理和化学性质。
范德华力是分子之间
的一种弱作用力,因此分子晶体的熔点和沸点较低。
氢键是一种较强
的作用力,因此分子晶体的熔点和沸点较高。
离子键是一种非常强的
作用力,因此分子晶体的熔点和沸点非常高。
此外,这些作用力还决定了分子晶体的溶解性和化学反应性。
范德华
力较弱,因此分子晶体在溶液中容易分散。
氢键较强,因此分子晶体
在水中容易溶解。
离子键非常强,因此分子晶体在水中不易溶解。
在
化学反应中,这些作用力也会影响反应速率和反应产物的性质。
总的来说,分子晶体的微粒之间存在着三种主要的作用力:范德华力、氢键和离子键。
这些作用力决定了分子晶体的物理和化学性质,包括
熔点、沸点、溶解性和化学反应性。
了解这些作用力对于理解分子晶
体的性质和行为非常重要。