2018年全国高考湖北省数学(理)试卷及答案【精校版】
- 格式:doc
- 大小:1.43 MB
- 文档页数:11
湖北2018年高考理科数学试卷答案解析
5
c
4坐标系与参数方程
【36】(A,湖北,理16)椭圆c的方程可以化为,圆的方程可化为,直线l的方程可化为,因为直线l经过椭圆的焦点,且与圆相切,则,,,所以椭圆的离心率
【10】(B,湖北,理17)在△ 中,角,,对应的边分别是,,已知
(Ⅰ)求角A的大小;
(Ⅱ)若△ 的面积,,求的值
考点名称解三角形
【10】(B,湖北,理17)(Ⅰ)由,得 ,
即,解得或(舍去)
因为,所以
(Ⅱ)由得又,知
由余弦定理得故
又由正弦定理得
【19】(B,湖北,理18)已知等比数列满足,
(Ⅰ)求数列的通项式;
(Ⅱ)是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由
考点名称等比数列
【19】(B,湖北,理18)(Ⅰ)设等比数列的比为q,则由已知可得
解得或
故,或
(Ⅱ)若,则,故是首项为,比为的等比数列,。
2018年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D. i2. 若二项式7)2(x a x +的展开式中31x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4.根据如下样本数据x3 4 5 6 7 8 y 4.0 2.5 5.0- 0.5 0.2- 0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和②6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin )(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是( )。
理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0 B 。
C 。
1 D 。
2、已知集合A={x|x 2—x-2〉0},则A =( )A 、{x |—1<x<2}B 、{x|—1≤x ≤2}C 、{x|x<—1}∪{x |x 〉2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍建设前经济收入构成比例建设后经济收入构成比例D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、—12B、—10C、10D、125、设函数f(x)=x³+(a—1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为( )A。
y= -2x B.y= -x C。
y=2x D.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,则=()A。
- B. - C。
+ D。
+7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A。
2B。
2C。
3D。
28.设抛物线C:y²=4x的焦点为F,过点(—2,0)且斜率为的直线与C交于M,N两点,则·=( )A.5B.6 C。
7 D.89。
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=( )A.0B. C 。
1 D.2、已知集合A={x |x 2—x-2〉0},则A =( )A 、{x |—1〈x 〈2}B 、{x|—1≤x ≤2}C 、{x |x<-1}∪{x|x>2}D 、{x |x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍建设前经济收入构成比例建设后经济收入构成比例D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a—1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为()A.y= —2xB.y= —xC.y=2xD.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,则=()A. - B。
- C. + D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A。
2B. 2C. 3D。
28.设抛物线C:y²=4x的焦点为F,过点(—2,0)且斜率为的直线与C交于M,N两点,则·=( )A.5B.6 C。
7 D.89。
已知函数f(x)= g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是( )A. [—1,0)B. [0,+∞) C。
2018年湖北省高考数学理科试卷及解读1.i 为虚数单位,=+-2)11(ii A. -1 B.1 C. -i D. i 【解题提示】利用复数的运算法则进行计算 【解读】选A . 122)1)(1()1)(1()11(2-=-=++--=+-iii i i i i i 2.若二项式7)2(x a x +的展开式中31x 的系数是84,则实数a = A. 2 B. 34 C.1 D.42【解题提示】考查二项式定理的通项公式【解读】选C . 因为1r T +=rr r r r r r x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1.3.设U 为全集,B A ,是集合,则“存在集合C 使得,UA CB C⊆⊆”是“∅=B A ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断 【解读】选C . 依题意,若C A ⊆,则UUC A ⊆,当UB C ⊆,可得∅=B A ;若∅=B A ,不妨另C A =,显然满足,UA CBC ⊆⊆,故满足条件的集合C 是存在的.4.得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【解题提示】考查根据已知样本数判绘制散点图,由散点图判断线性回归方程中的b 与a 的符号问题【解读】选B .画出散点图如图所示,y的值大致随x的增加而减小,因而两个变量呈负相关,所以0<b,0>a5..在如图所示的空间直角坐标系xyzO-中,一个四面体的顶点坐标分别是<0,0,2),<2,2,0),<1,2,1),<2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】考查由已知条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图【解读】选D.在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.6.若函数f(x>,()g x满足11()g()d0f x x x-=⎰,则称f(x>,()g x为区间[-1,1]上的一组正交函数,给出三组函数:①11()sin,()cos22f x xg x x==;②()1,g()1f x x x x=+=-;③2(),g()f x x x x==其中为区间]1,1[-的正交函数的组数是< )A.0B.1C.2D.3【解题提示】考查微积分基本定理的运用【解读】选C. 对①,1111 111111(sin cos)(sin)cos|0 2222x x dx x dx x---⋅==-=⎰⎰,则)(xf、)(xg为区间]1,1[-上的正交函数;对②,1123111114(1)(1)(1)()|033x x dx x dx x x ---+-=-=-=-≠⎰⎰,则)(x f 、)(x g 不为区间]1,1[-上的正交函数; 对③,1341111()|04x dx x --==⎰,则)(x f 、)(x g 为区间]1,1[-上的正交函数. 所以满足条件的正交函数有2组.7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为< )A.81B.41C. 43D.87 【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解读】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。
2018年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D. i2. 若二项式7)2(xa x +的展开式中31x 的系数是84,则实数=a ( )A.2B. 54C. 1D.423. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A I ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 x 3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数: ①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.878.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.3551139.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )C.3D.2 10.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,)32(21)(222a a x a x x f --+-=.若R x ∈∀,f(x-1)≤f(x),则实数a 的取值范围为 A .[61,61-] B .[66,66-] C .[31,31-] D .[33,33-] 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.12.直线1l :y=x+a 和2l :y=x+b 将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为________ 17.(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18.(本小题满分12分) 已知等差数列满足:=2,且,成等比数列.(1) 求数列的通项公式. (2) 记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小值;若不存在,说明理由.19.(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP .(1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C. (1)求轨迹为C 的方程设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。
绝密★启用前试卷种类:B2018 年一般高等学校招生全国一致考试 ( 湖北卷 )数 学( 理工农医类 )本试卷卷共 4 页,三大题 21 小题。
全卷满分 150 分。
考试用时 120 分钟。
★祝考试顺利★注意事项:1 答题前,考生务势必自己的姓名、准考据号填写在试卷卷和答题卡上.并将准考据号条形码粘贴在答题卡上的指定地点,用2B 铅笔将答题卡上试卷种类B 后的方框涂黑。
2 选择题的作答:每题选 出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
咎在试卷卷、底稿纸上无效。
3 填空题和解答题用 0.5 毫 M 黑色墨水箍字笔将答案直接答在答题卡上对应的答题地区内。
答在试卷卷、底稿纸上无效。
4 考生一定保持答题卡的整齐。
考试结束后,请将本试卷卷和答题卡一并上交。
一、选择题:本大题共 l0 小题.每题 5 分,共 50 分在每题给出的四个选项中,只有一项为哪一项知足题目要求的 .1. 若 i 为虚数单位,图中复平面内点z 表示复数 z ,则表示复数z 的点是1 i2. 设会合 A={( x, y) |x 2y 2 1} ,416B={( x, y) | y3x } , 则 A ∩ B 的子集的个数是3. 在△ ABC 中, a=15, b=10, ∠A= 600 ,则 cos BA.2 2 B. 2 2 C. 6 D. 63 3334 扔掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件 A ,“骰于向上的点数是 3”为事件 B ,则事件 A , B 中起码有一件发生的概率是A.5B.1 C. 7 D. 3122 12 4已知 VABC 和点 M 知足 uuur uuur uuur uuur uuur uuur 5 MA MB MC 0 . 若存在实数 m 使得 AB AC mAM建立,则 m =A . 2B. 3C. 4D. 56 将参加夏令营的 600 名学生编号为: 001, 002, , 600. 采纳系统抽样疗法抽取一个容量为 50 的样本,且随机抽得的号码为003. 这 600 名学生疏住在三个营区,从001到 300 在第 1 营区,从301 到 495 在第Ⅱ营区,从496 到 600 在第Ⅲ营区 . 三个营区被抽中的人数挨次为A . 26,16,8 B. 25,17,8 C. 25,16,9 D. 24,17, 97 如图,在半径为r 的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,这样无穷持续下去. 设S n为前n个圆的面积之和,则lim S nxA .2r 2B.8r 23C. 4r 2D. 6r 28 现安排甲、乙、丙、丁、戊 5 名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作起码有一人参加. 甲、乙不会开车但能从事其余三项工作,丙、丁、戊都能胜四项工作,则不一样安排方案的种数是A.1529 若直线y x b 与曲线y34x x2有公共点,则b的取值范围是A .1,122 B. 122,122C. 1 2 2,3D. 12,310 .记实数x1, x2,, x n中的最大数为 max x1, x2 , , x n,最小数为min x1, x2 , , x n. 已知V ABC的三边长为a, b,c(a b c) ,定义它的倾斜度为l max a , b , c min a , b , cb c a b c a则“ l1”是“ V ABC 为等边三角形”A. 必需而不充足的条件B.充足而不用要的条件C. 充要条件D. 既不充足也不用要的条件二、填空题:本大题共 5 小题,每题 5 分,共25 分 . 请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后序次填写. 答错地点,书写不清,含糊其词均不得分11. 在( x4 3y)20睁开式中,系数为有理数的项共有项.y x,12 己知z2x y ,式中变量 x, y 知足拘束条件 x y 1,则z的最大值为.x2,13.圆柱形容器内部盛有高度为8 cm 的水,若放入三个同样的球(球的半径与圆柱的底面半径同样)后,水恰巧吞没最上边的球(以下图),则球的半径是cm.14.某射手射击所得环数的散布列以下:已知的希望 E8.9 ,则y的值为.15.设a>0,b>0,称2ab为 a, b 的调解均匀数.如图,C a b为线殴 AB 上的点,且AC=a, CB=b, O 为 AB 中点,以 AB 为直径作半圆.过点 C 作 OD 的垂线,垂足为E.连接 OD, AD,BD .过点 C 作 OD 的垂线,垂足为E.则图中线段 OD 的长度是a, b 的算术均匀数,线段的长度是a, b 的几何均匀数,线段的长度是a,b 的调解均匀数.三、解答题:本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12 分)已知函数 f x cos x cos x, g x 1sin 2x1.3324(Ⅰ)求函数 f x 的最小正周期;(Ⅱ)求函数h x f x g x 的最大值,并求使h x 获得最大值的x 的会合.17.(本小题满分12分)为了在夏天降平和冬天供暖时减少能源消耗,房子的屋顶和外墙需要建筑隔热层.某幢建筑物要建筑可使用20年的隔热层,每厘 M 厚的隔热层建筑成本为 6 万元.该建筑物每年的能源耗费资用C(单位:万元)与隔热层厚度x (单位:cm)知足关系:k0x10 ,若不建隔热层,每年能源耗费资用为8 万元.设f x为隔C x53x热层建筑花费与20 年的能源耗费资用之和.(Ⅰ)求 k 的值及 f x 的表达式;(Ⅱ)隔热层修筑多厚对,总花费 f x 达到最小,并求最小值.18. (本小题满分 12 分 )如图 , 在四周体 ABOC 中, OC ⊥ OA, OC ⊥ OB,∠ AOB=120°,且 OA=OB=OC=1.( Ⅰ ) 设 P 为 AC 的中点 . 证明:在 A B 上存在一点 Q,使 PQ ⊥ OA,并计算 =AB的值;AQ( Ⅱ ) 求二面角 O-AC-B 的平面角的余弦值 .19.(本小题满分 12 分 )已知一条曲线 C 在 y 轴右侧, C 上没一点到点 F(1,0) 的距离减去它到 y 轴距离的差是 1.( Ⅰ) 求曲线 C 的方程; ( Ⅱ ) 能否存在正数m ,关于过点 M(m,0) 且与曲线 C 有连个交点A,B 的任向来线,都有FA FB ﹤ 0 ? 若存在,求出 m 的取值范围;若不存在,请说明原因.20.(本小题满分 13 分 )an知足:a113 1 a n 12 1anbn知足:已知数列2,an1 ,a n a n 1 0 n 1;数列1a n 1bn = a n 12- a n 2 ( n ≥1) .( Ⅰ ) 求数列an,bn的通项公式。
2018年普通高等学校招生全国统一考试(湖北卷)
数学(理科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 为虚数单位,则=+-2)11(i
i ( )
A. 1-
B. 1
C. i -
D. i
2. 若二项式7)2(x a
x +的展开式中3
1x 的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 4
2 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )
A. 充分而不必要条件
B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
得到的回归方程为a bx y
+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a
5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),
(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )
A. ①和②
B.③和①
C. ④和③
D.④和②
6.若函数[]1,1)(),(,0)()()(),(1
1-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函。