传感器课程设计报告
- 格式:doc
- 大小:406.12 KB
- 文档页数:19
传感器课程设计报告书1.引言传感器是现代技术中的重要组成部分,广泛应用于工业自动化、农业、环境监测、医疗健康等领域。
对传感器进行深入的学习和探索,不仅可以加深对传感器原理的理解,还可以培养学生的实践能力和创新意识。
本课程设计旨在通过理论学习和实践操作,使学生掌握传感器的工作原理、应用范围以及设计方法。
2.课程目标1)理解传感器的基本原理和分类;2)掌握传感器的工作原理和相关参数;3)熟练掌握传感器的设计方法;4)能够利用传感器解决实际问题;5)培养学生分析问题和解决问题的能力。
3.课程内容本课程包括以下几个模块的内容:3.1传感器概述介绍传感器的基本概念、分类和应用领域,让学生对传感器有一个整体的认识。
3.2传感器原理介绍常见传感器的工作原理,如光电传感器、压力传感器、温度传感器等,并通过实验让学生亲自操作传感器并观察输出结果。
3.3传感器参数介绍传感器的相关参数,如灵敏度、精度、线性度等,并通过实验让学生了解这些参数对传感器性能的影响。
3.4传感器设计方法介绍传感器的设计方法,包括传感器的选择、电路设计和信号处理等,并通过实验让学生进行传感器的设计。
3.5传感器应用实例介绍传感器在实际应用中的案例,并要求学生团队合作,选择一个具体的应用场景进行传感器设计和实现。
4.实践环节本课程注重实践操作,学生需在实验室完成一系列传感器实验,并完成一个小组项目。
实验内容包括传感器的基本操作、传感器参数的测量、传感器的校准和传感器的应用设计。
5.评分方式本课程的评分方式包括以下几个方面:1)平时成绩:包括实验操作、实验报告和实验讨论等。
2)项目成绩:根据小组项目的完成情况进行评分。
3)考试成绩:根据理论知识进行考核。
6.总结通过本课程的学习,学生不仅可以掌握传感器的基本原理和相关参数,还能够熟练运用传感器解决实际问题。
同时,课程设计还培养了学生的实践能力和创新意识,为其今后从事相关领域的工作打下了坚实的基础。
传感器实验课程设计一、课程目标知识目标:1. 学生能够理解传感器的定义、分类和工作原理;2. 学生能够掌握常见传感器(如温度传感器、光敏传感器、压力传感器等)的使用方法和应用场景;3. 学生能够了解传感器在智能控制系统中的作用和重要性。
技能目标:1. 学生能够正确使用传感器进行实验操作,并熟练读取、分析实验数据;2. 学生能够运用所学知识,设计简单的传感器控制系统,解决实际问题;3. 学生能够通过实验,培养观察、分析、解决问题的能力。
情感态度价值观目标:1. 学生能够认识到传感器技术在现实生活中的广泛应用,增强对科学的兴趣和好奇心;2. 学生能够通过实验,培养合作、探究、创新的精神,提高自主学习能力;3. 学生能够关注传感器技术的发展,意识到科技对社会进步的重要影响,树立正确的价值观。
课程性质:本课程为实验课程,注重理论与实践相结合,培养学生的动手操作能力和创新思维。
学生特点:初中生,对新鲜事物充满好奇,具有一定的认知能力和动手能力,但需引导和激发。
教学要求:教师应充分准备实验器材,确保实验安全;注重启发式教学,引导学生主动探究,提高学生的实践能力。
同时,关注学生的个体差异,给予个性化指导。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程打下坚实基础。
二、教学内容本课程依据课程目标,结合教材相关章节,组织以下教学内容:1. 传感器基础知识:- 传感器的定义、分类和工作原理;- 常见传感器(温度传感器、光敏传感器、压力传感器等)的原理及特点。
2. 传感器实验操作:- 实验器材的认识与使用方法;- 传感器实验操作步骤及注意事项;- 实验数据的读取、记录与分析。
3. 传感器应用案例:- 温度传感器在智能家居中的应用;- 光敏传感器在自动照明系统中的应用;- 压力传感器在工业生产中的应用。
4. 传感器控制系统设计:- 简单传感器控制系统的设计原理;- 控制系统的搭建与调试;- 解决实际问题的方法与技巧。
传感器的课课程设计一、教学目标本节课的教学目标是使学生掌握传感器的基本概念、原理和应用,能够理解不同类型传感器的特点和作用,并能够运用传感器进行简单的实验和应用设计。
具体来说,知识目标包括:1.了解传感器的基本概念、原理和分类。
2.掌握常见传感器的特点、工作原理和应用领域。
3.理解传感器在现代科技中的重要性及其发展趋势。
技能目标包括:1.能够运用传感器进行简单的实验和应用设计。
2.能够分析传感器输出信号的特点,并进行相应的处理和分析。
3.能够结合其他电子元件,设计简单的传感器应用系统。
情感态度价值观目标包括:1.培养学生对科学探究的兴趣和热情,提高学生的创新意识。
2.培养学生团队合作精神,提高学生解决实际问题的能力。
3.培养学生关注现代科技发展,增强学生的社会责任感和使命感。
二、教学内容本节课的教学内容主要包括传感器的基本概念、原理和分类,以及常见传感器的特点、工作原理和应用领域。
具体安排如下:1.传感器的基本概念、原理和分类:介绍传感器的定义、作用、基本原理和分类方法。
2.常见传感器的特点、工作原理和应用领域:介绍温度传感器、压力传感器、湿度传感器、光传感器等常见传感器的特点、工作原理和应用领域。
3.传感器在现代科技中的重要性及其发展趋势:分析传感器在现代科技中的重要作用,介绍传感器的发展趋势和前景。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
具体方法如下:1.讲授法:通过讲解传感器的基本概念、原理和分类,使学生掌握传感器的基本知识。
2.讨论法:学生分组讨论常见传感器的特点、工作原理和应用领域,促进学生思考和交流。
3.案例分析法:分析实际应用中的传感器案例,使学生更好地理解传感器的工作原理和应用价值。
4.实验法:安排学生进行传感器实验,培养学生的动手能力,提高学生对传感器应用的深入理解。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用符合教学目标的传感器教材,为学生提供系统、科学的学习材料。
(2023)传感器课程设计报告(一)传感器课程设计报告1. 简介该课程设计旨在培养学生对于传感器的基本认知与应用能力,涉及传感器设计、传感器信号处理、传感器系统及实际应用等方面的内容。
2. 课程教学目标•理解传感器的基本原理与分类•掌握传感器信号处理的基本方法•能够设计通用的传感器系统•熟悉传感器在实际应用中的特点与限制3. 课程安排1.传感器概述–传感器的定义与分类–传感器的主要特征与基本参数2.传感器工作原理–压阻、电容、电感式传感器等–传感器的输出信号与特性曲线3.信号处理–模拟信号处理方法与技术–数字信号处理方法与技术4.传感器系统设计–传感器系统框图与接口设计–传感器信号调理、放大与滤波设计5.传感器实际应用–传感器应用案例分析–传感器应用中的特点与限制6.课程总结–课程内容回顾与总结–学生课程设计汇报4. 教学方法本课程将采用理论授课与实践操作相结合的方式进行,以案例分析为主线,加强学生的实践能力与创新意识,充分发挥教师的指导作用,激发学生的学习兴趣。
5. 教材参考1.《传感器技术及应用(第3版)》2.《传感器技术手册》3.《传感器开发实战指南》6. 实验设备与器材1.压阻式传感器实验箱2.电容式传感器实验箱3.数字信号调理电路板4.传感器信号放大器电路板5.嵌入式系统开发板7. 课程评估1.学生课堂发言与思考能力2.课程设计报告书的撰写与课程设计成果3.实践操作与结果分析4.期末考试成绩8. 结语传感器是现代信息技术与智能制造的重要组成部分,具有广泛的应用前景与目标市场。
本课程旨在培养学生对于传感器原理、信号处理、系统设计及应用等方面的综合能力,为学生的职业发展打下坚实基础。
9. 总结本文介绍了2023年传感器课程设计报告,该课程设计旨在培养学生对传感器原理、信号处理、系统设计及应用等方面的综合能力。
该课程设计涉及传感器概述、工作原理、信号处理、系统设计与实际应用等方面的内容,采用理论授课与实践操作相结合的方式进行。
传感器课设报告在当今社会,传感器技术已经成为了现代科技发展的重要组成部分。
传感器的应用范围非常广泛,从工业生产到日常生活中都有着重要的作用。
因此,对传感器技术进行深入的研究和学习是非常有意义的。
在传感器课设报告中,我们将着重介绍以下几个方面:传感器的基本原理、传感器的应用以及传感器在未来的发展趋势。
首先,我们将介绍传感器的基本原理。
传感器是一种能够将非电信号转换为电信号的装置。
传感器的基本原理就是利用某种物理效应或化学效应来检测被测量的物理量,并将其转换为电信号。
不同类型的传感器有着不同的工作原理,比如压力传感器是根据力的大小来检测压力的变化,光敏传感器则是利用光电效应来检测光照强度的变化。
其次,我们将介绍传感器的应用。
传感器的应用非常广泛,包括但不限于工业控制、环境监测、医疗诊断、智能家居等领域。
例如,温度传感器可以用于监测工业生产中的温度变化,光敏传感器可以用于智能家居系统中的光照控制。
传感器的应用不仅提高了生产效率,也为人们的生活带来了极大的便利。
最后,我们将介绍传感器在未来的发展趋势。
随着科技的不断进步,传感器技术也在不断发展。
未来,传感器将更加智能化、多功能化和微型化。
同时,传感器与人工智能、大数据等新兴科技的结合也将给传感器技术带来新的发展机遇。
我们期待着未来传感器技术的进一步突破和创新。
通过这次传感器课设报告,我们对传感器技术有了更深入的了解。
传感器技术的发展不仅对科技行业有着重要的意义,也为人们的生活带来了更多的便利。
我们相信,随着传感器技术的不断发展,它将在更多领域发挥作用,为人类社会的发展做出更大的贡献。
传感器课程设计报告-V1本文将以传感器课程设计报告为基础,重新整理并撰写一篇有关传感器课程设计的文章。
通过逻辑清晰,条理分明,结构合理的分点分布排序,来展现传感器课程设计的要素与精髓。
1. 课程背景介绍课程背景介绍部分,需要明确介绍传感器课程设计的背景和目的。
课程的设计目的是什么?主要对象又是谁?教学方法和手段将如何进行?这是需要明确回答的问题。
2. 课程设计的核心要素在设计传感器课程时,需要考虑的核心要素主要包括:2.1 课程结构与布局课程结构与布局部分,需要考虑格式的统一和设计风格的整齐。
正确的课程布局需要坚持模块化和层次分明的原则。
同时,课程结构需要简单清晰,不断更新学生的信息认知,使他们能够不断进步。
2.2 实践教学在传感器课程中,实践教学具有很重要的意义。
在实践教学环节,学生可以将理论知识应用于实际操作,提高他们的动手能力和解决问题能力。
因此,实验设计和实践性操作是非常重要的课程组成部分。
2.3 课程评估课程评估的过程需要不断的提高,以提高教学效果和教学经验。
课程评估可以分为预测性评估、形成性评估和终极性评估。
在教学过程中,每个环节都需要进行定期评估,并且根据评估结果进行相应的教学调整。
3. 课程设计的实施方式3.1 系统化教学在传感器课程中,需要根据科学的系统化教学理论,按照任务型学习的理念进行教学设计。
任务型学习需要学生们通过自主学习、小组合作、实验操作等多种方法,解决遇到的问题和挑战。
3.2 创造性教学在传感器课程设计中,需要考虑到创造性教学的方法。
深度学习和创造性教育可以帮助学生们在课程中发挥创造力,提高他们的自主学习能力和创造性思考能力。
4. 总结通过本文的重新整理,我们得出了传感器课程设计的核心要素和实施方式。
以课程结构、实践教学、课程评估、评估方式四个部分,简明扼要地阐述了传感器课程设计的关键点,并提供了一些实用的建议和方法,帮助读者更好地理解和实践传感器课程设计。
课题一:温度测量控制系统一.任务使用PT100温度传感器〔电阻值随温度变化〕,设计传感器放大电路,将传感器的电阻值转变为0~5V电压信号,将温度值显示出来。
再设计控制电路,控制一个300W电热杯温度,使其能够稳定在设定的温度值。
二.设计提示设计开场先查阅相关资料,如元器件资料、方案选择等,可以使用单片机方案,也可以使用模拟电路方案,设计电路时注意强电和弱电之间的隔离。
三.具体要求1.设计以测量显示局部电路为主;2.要绘制原理框图;3.绘制原理电路;4.要有必要的计算及元件选择说明;5.设计说明书格式规,层次合理,重点突出。
课题二:液位测量控制系统一.任务使用电容式液位传感器,设计传感器放大电路,将液位信号转变为标准电信号,将液位值显示出来〔液位高度2.5米,显示精度1厘米〕。
再设计控制电路,控制料罐的进口阀门开度,使其能够稳定在设定的高度值。
二.设计提示可以使用单片机方案,也可以使用模拟电路方案,还可以使用PLC方案〔传感器电路要自己设计〕,设计电路参考右图。
三.具体要求1.设计以测量显示局部电路为主;2.要绘制原理框图;3.绘制原理电路;5.设计说明书格式规,层次合理,重点突出。
课题三:强度测量显示电路一.任务使用光敏电阻、光敏三极管或光敏二极管传感器〔任选一种〕,设计传感器放大电路,将太的强弱转变电信号,并将光亮强度值显示出来。
二.设计提示设计开场先查阅相关资料,如元器件资料、方案选择等,可以使用单片机方案,也可以使用模拟电路方案,设计显示电路时注意按照国标显示,并有相应的手动校正电路。
三.具体要求1.设计以测量显示局部电路为主;2.要绘制原理框图;3.绘制原理电路;4.要有必要的计算及元件选择说明;5.设计说明书格式规,层次合理,重点突出。
课题四:电子秤电路设计一.任务使用称重传感器,设计一台电子称电路,可称重10千克,精度10克,。
二.设计提示设计开场先查阅相关资料,如元器件资料、方案选择等,可以使用单片机方案,也可以使用模拟电路方案,设计显示电路时显示**.**千克,并有相应的手动校正电路。
传感器简易课程设计一、课程目标知识目标:1. 理解传感器的定义、分类和工作原理;2. 掌握常见传感器(如温度传感器、光敏传感器、声音传感器等)的使用方法;3. 学会分析传感器在智能控制系统中的应用。
技能目标:1. 能够正确选用传感器,设计简单的传感器应用电路;2. 能够运用传感器进行数据采集,处理和简单的数据分析;3. 培养学生的动手操作能力,提高他们解决实际问题的能力。
情感态度价值观目标:1. 培养学生对传感器技术应用的兴趣,激发他们探索未知领域的热情;2. 增强学生的团队合作意识,培养他们主动参与、积极思考的良好习惯;3. 培养学生的创新精神,使他们认识到科技发展对社会进步的重要性。
课程性质:本课程为初中物理传感器简易课程,结合课本内容,注重理论与实践相结合。
学生特点:初中生对新鲜事物充满好奇,具有一定的动手操作能力和探究欲望。
教学要求:教师应充分调动学生的积极性,引导他们通过实践掌握传感器的相关知识,培养学生的创新意识和实际操作能力。
在教学过程中,关注学生的学习进展,确保课程目标的达成。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 传感器基础知识:传感器的定义、分类、工作原理和性能参数;- 课本章节:第三章《传感器及其应用》第一节《传感器概述》2. 常见传感器介绍:温度传感器、光敏传感器、声音传感器、湿度传感器等;- 课本章节:第三章《传感器及其应用》第二节《常见传感器》3. 传感器应用电路设计:传感器选型、电路连接、信号处理;- 课本章节:第三章《传感器及其应用》第三节《传感器应用电路》4. 数据采集与处理:传感器数据采集方法、数据传输、简单数据分析;- 课本章节:第三章《传感器及其应用》第四节《数据采集与处理》5. 传感器应用实例:智能家居、环境监测、物联网等领域的传感器应用案例;- 课本章节:第三章《传感器及其应用》第五节《传感器应用实例》教学进度安排:第一课时:传感器基础知识及分类第二课时:常见传感器的原理与使用方法第三课时:传感器应用电路设计第四课时:数据采集与处理第五课时:传感器应用实例分析与讨论教学内容注重科学性和系统性,结合课本章节,确保学生能够循序渐进地掌握传感器相关知识。
第一章课程设计的背景1.1 课程设计的意义微位移测量技术是实现超精加工的前提和基础。
到目前为止利用干涉法而制成的干涉仪已经被广泛使用于各种各样的场合,其在进行测量长度时精度就可以判读到波长的 1/20,如果进而利用计算机进行图像处理,还可以达到百分之一波长的精度,但是干涉法测量存在结构复杂、测量范围小、价格昂贵等缺点。
如果采用一般精度的线阵 CCD作为光电接收器件的改进方案,理论分析表明其测量精度能够达到纳米量级,具有量程大,灵敏度高,结构简单的优点。
1.2 课程设计原理如图1所示,为了达到微小位移检测的目的,我们采用多次反射光学放大法进行测量。
所谓多次反射光学放大法是指利用光束的多次反射将微小位移放大后进行测量。
B2 D∆S∆LB1 h CCD图1 多次反射法测量原理测量装置由一对平面反光镜B1和B2,作为光源的波长为630nm的半导体激光器和线阵CCD(charge coupled device)构成。
B1和B2的初始平面反光镜一端固定,另一端与被测物体相连随之移动。
激光器发出的光束经两平面镜多次反射后照到CCD光敏面,当被测物体有一微小位移时,光敏面上的光斑移动较大的距离。
图1中,荭L—移动距离;h—光线出射点到CCD的距离;D—接触点到固定端的距离,光线在两镜之间的反射次数为n时,光斑的移动距离荭S与被测移动量荭L的关系为:荭S=2nh荭L/D;装置的放大系数 K为:K=荭S/荭L=2nh/D。
设计时,确定了平面镜的长度、两平面镜的间距以及入射光角度时,反射次数为n,当 D=30cm时反射次数超过20次,放大系数达到200倍。
精度分析:由前面的分析可知,当取 D=30cm以及合适的入射角度时,放大系数为200倍,而由 CCD测出的光斑中心位置的精度可以达到1/25像素级别精度,而所用的CCD像元中心间距为14μm,故系统理论上的测量精度为2.8nm。
实际测量中,通过对CCD实现更好的光屏蔽 ,尽量减少输出电信号中背景光、杂散光的噪声,通过提高实验平台的抗震性,提高测量系统的信噪比。
传感器课程设计报告---数显电子秤摘要本实验采用称重传感器(Scale Sensor)以及其他电学元件,经过程序控制,建立数显电子秤系统。
实验主要完成以下工作: 建立系统原理模型,确定系统工作实际要求,设计系统结构;确定芯片及元件;编写程序,完成计量显示功能;实现自动量程运算功能;实现外设接口总线功能,完成计量控制;测试并调试系统。
实验在51单片机应用基础上,运用C语言和Assembly语言,结合多特性器件的结构特点,实现文字、按键、秤台的控制功能,实现了从量程设定到精确测量、计算的全功能数显电子秤系统。
关键词:称重传感器、51单片机、C语言、Assembly1、系统原理本项目属于单片机控制技术在电子秤系统中的应用。
根据需要,本系统由单片机51原件,LCD显示屏,称重传感器及按键,等成分组成。
该系统采用无极性常量电流技术,穿过称重传感器的电阻,当物品放在传感器上时,常量电流会变化,而51 单片机通过AD转换,将这种变化转化为数字量,将该电压输入51单片机,得到实时重量指示。
单片机利用程序,还可以完成计量的功能,以及校准的功能,以及精确的数显计量结果。
2、工作要求根据系统原理,本实验的工作要求有:(1) 确定系统电路结构,并进行原理设计;(2)为实现测量功能,确定称重传感器,设计确定AD转换电路,与AD转换模块实现量程设定;(3)编程51单片机实现从空载重量测量,量程设定,重量计量,及数显等功能;(4)完成系统的调整与调试等工作。
3、系统仿真分析本文采用keil仿真器,仿真数显电子秤系统。
采用51芯片,将称重传感器、LCD显示屏等外设连接在51单片机上,在keil软件中,建立对应文件,完成数显电子秤程序的编写、修改、运行。
仿真中根据程序,绘制数显电子秤系统工作流程图,结合系统原理,完成系统中称重传感器、51单片机、LCD等设备及功能模块之间控制同步操作,即从空载重量测量,量程设定,重量计量,及数显等功能,最后经过合理的设计,得到精确的数显结果。
目录第1章引言 (1)1.1 超声波测距系统概述 (2)1.1.1超声波传感器 (2)1.1.2超声波测距的基本原理 (2)1.2 本设计任务和主要内容 (3)1.2.1设计任务 (3)1.2.2主要内容 (3)第2章系统主要硬件电路设计 (4)2.1 方法论证与比较 (4)2.2 单片机系统电路 (5)2.3 单片机硬件电路 (5)2.3.1单片机系统及显示电路 (5)2.3.2超声波发射电路 (6)2.3.3超声波检测接受电路 (7)第3章系统软件设计 (9)3.1 超声波测距器的算法设计 (9)3.2 主程序设计 (10)3.3 超声波发射和接收子程序 (11)3.4 显示子程序 (14)3.5 超声波测距控制源程序 (15)结束语 (16)参考文献 (17)基于单片机超声波测距系统的设计第1章引言18世纪,意大利传教士兼生物学家斯帕兰·扎尼在研究蝙蝠夜间活动时,发现将蝙蝠眼睛蒙上,在伸手不见五指的黑夜里,它仍能穿梭飞行,可是把蝙蝠的双耳塞住,它就会到处瞎撞。
原来,蝙蝠飞行时能发出高频率的尖叫,由它特大的耳廓接收回波,来判定出目标或障碍物及其距离。
蝙蝠是靠高频率的尖叫来确定障碍物的位置的。
蝙蝠尖叫声的声波频率在每秒2万到10万赫兹之间,我们的耳朵对这样频率范围内的声波是听不到的,这样的声波被称之为超声波。
蝙蝠发出超声波,然后借助物体反射回来的回声,就能判断出所接近的物体的大小、形状和运动方式。
在自然界中除了蝙蝠还有很多其它动物能发出超声波,如海洋中的海豚也具备很强的超声定位本领。
人们正是从自然界生物中获得了灵感,开始了仿生学研究并取得卓著成果。
第二次世界大战时,军舰已使用回声探测术来侦察水下的潜艇。
50年代,科学家们将超声波探测技术应用到医学上,到70年代以来,以B型超声成像为代表的医学超声诊断技术已经取得了很快的发展。
超声诊断由于安全、简单、经济、信息量丰富而受到医学界的特别赏识。
现在超声波已广泛应用于无损探伤物位测量测厚测距等领域。
近二、三十年,特别是近十年来,由于电子技术及压电陶瓷材料的发展,使超声检测技术得到了迅速的发展。
超声技术是一门以物理、电子、机械、及材料学为基础的通用技术之一。
超声技术是通过超声波产生、传播及接收的物理过程而完成的。
超声波具有聚束、定向及反射、透射等特性。
超声检测技术是利用超声波在媒质中的传播特性(声速、衰减、反射、声阻抗等)来实现对非声学量(如密度、浓度、强度、弹性、硬度、粘度、温度、流速、流量、液位、厚度、缺陷等)的测定。
它的基本原理是基于超声波在介质中传播时遇到不同的界面,将产生反射,折射,绕射,衰减等现象,从而使传播的声时,振幅,波形,频率等发生相应变化,测定这些规律的变化,便可得到材料的某些性质与内部构造情况。
目前,超声波测距在各种场合均已经得到广泛的应用,如汽车倒车、海洋测量、物体识别、工业自动控制、建筑工程测量和机器人视觉识别等。
1.1 超声波测距系统概述1.1.1 超声波传感器超声波是指频率高于20KHz 的机械波。
为了以超声波作为检测手段,必须产生超生波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。
超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。
超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。
利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。
测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。
因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12 M 晶振,所以此系统的测量精度理论上可以达到毫米级。
超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。
本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。
1.1.2 超声波测距的基本原理超声波发生器在某一时刻发出超声波信号,遇到被测物体后反射回来,被超声波接收器接收到。
只要计算出超声波信号从发射到接收到回波信号的时间,知道在介质中的传播速度,就可以计算出距被测物体的距离:22T )(V S D *== (1-1) 式中D 为被测物到测距仪之间的距离,S 为超声波往返通过的路程,V 为超声波在介质中的传播速度,T 为超声波从发射到接收所用的时间。
为了提高精度,需要考虑不同温度下超声波在空气中传播速度随温度变化的关系:T V 61.04.331+= (1-2) 式中,T 为实际温度(℃),v 的单位为m/s 。
错误!未指定书签。
1.2本设计任务和主要内容1.2.1 设计任务设计一个超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。
要求测量范围在30cm-200cm,测量精度0.5cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果,并且精确到小数点后一位(单位:cm),测量方式可通过硬件开关预置。
1.2.2 主要内容该系统主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
其主要内容如下:硬件电路的设计:1.根据超声波测距的特点,进行系统的整体规划和设计。
2.针对系统的整体功能,对各个模块电路进行具体设计。
3.对超声波发生电路进行论证和设计,产生用于测量的超声波。
4.对超声波接收电路进行论证和设计,接收反射回来的超声波。
5.对数据采样电路进行设计和分析,测量发送和接收的时间,并计算距离。
6.LED数码显示测量的距离值,以文字显示的方式显示测量的距离。
系统软件的设计:1.超声波测距器的算法设计。
2.系统主程序的设计。
3.发送子程序的设计。
4.接收中断程序的设计。
5.显示子程序的设计。
6.超声波测距控制源程序的设计。
第2章系统主要硬件电路设计2.1 方法论证与比较目前,非接触式测距仪常采用超声波、激光和雷达。
激光测距仪是利用激光对目标的距离进行准确测定的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
虽然激光测距比较精确,但是需要注意人体安全,制做的难度较大,成本也较高,并且光学系统需要保持干净,否则将会影响测量。
雷达是利用极短的无线电波进行探测的,雷达的组成部分有发射机、天线、接收机和显示器等。
由于无线电波传播时,遇到障碍物就能反射回来,雷达就根据这个原理把无线电波发射出去,再用接收装置接收反射回来的无线电波,这样就可以测定目标的方向、距离、高度等。
雷达被称为“千里眼”,白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。
因此,它常常是军事上必不可少的电子装备。
但是,雷达却存在致命的的三大弱点:一是对超低空目标有盲区,“千里眼”实际是远视眼,头顶和鼻子底下有盲区;二是雷达是主动用电波去搜寻目标的,易暴露自身;三是雷达很容易受到干扰,频率相同的电波它不分敌我,一律可以入内。
超声波测距是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
其测距原理与雷达原理相一致,但是在测距方面,超声波却比雷达和激光更有明显的优势。
激光和雷达测距仪造价偏高,不利于广泛的普及应用,在某些应用领域有其局限性,一般仅用于军事和工业领域。
相比之下,超声波测距系统电路不仅易实现、结构简单和造价低,而且穿透力强,指向性强,传输过程中衰减少,能量消耗缓慢,在介质中传播的距离较远,在传播过程中也不受烟雾、空气能见度等因素的影响,对外界光线、色彩和电磁场不敏感,更适于黑暗、电磁干扰强、有毒、有灰尘或烟雾的恶劣环境,在识别透明及漫反射性差的物体上也更有优势。
另外,超声波与一般声波比较,它的振动频率高,而且波长短,因而具有束射特性,方向性强,可以定向传播,其能量远远大于振幅相同的一般声波,并且具有很高的穿透能力。
2.2 单片机系统电路根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED 数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统设计框图如图2-1所示:图2-1 超声波测距器系统设计框图 2.3 系统硬件电路本系统主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
采用AT89S51来实现对CX20106A 红外接收芯片和TCT40-10系列超声波转换模块的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。
其原理图如图2-2所示:图2-2 超声波测距板原理框图 2.3.1 单片机系统及显示电路单片机采用AT89S51或其兼容系列,采用12MHz 高精度的晶振,以获得较稳定的超声波接收 超声波发送单片机控制器 LED 显示 扫描驱动 定时器控 制 显示器 调制器 振荡器 超声发射器计时器接收检测 超声接收器时钟频率,减小测量误差。
单片机使用P1.0端口输出超声波转化器所需的40KHz方波信号,利用外中断0口检测超声波接受电路输出的返回信号。
显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管驱动。
单片机系统如图2-3所示:图2-3 AT89S51单片机图2.3.2 超声波发射电路发射电路主要硬件单元的功能:单片机 OC1端输出的40kHz方波信号一路经一级反向器后送到超声波换能器的一个电极。
另一路经两级反向器后送到超声波换能器的另一个电极。
用这种推挽形式将方波信号加到超声波换能器两端,可以提高超声波的发射强度。
输出端采用两个反向器并联,用以提高驱动能力。
上拉电阻 R10、R20一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡的时间。
图2-4 超声波发射电路原理图因为本课题属于近距离测量,所以本系统的超声波发生器采用常用的压电式超声波换能器来实现。
压电超声波转换器的功能是利用压电晶体谐振工作。
其内部结构如图2-4所示,它由两个压电晶片和一个共振板共同组成。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动产生超声波,这时它就是一超声波发生器;如果没加电压,当共振板接受到超声波时,将压迫压电振荡器做振动,将机械能转换为电信号,这时它就成为超声波接受转换器。