顺平县一中2018-2019学年高二上学期数学期末模拟试卷含解析
- 格式:doc
- 大小:1.03 MB
- 文档页数:16
顺平县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .2. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.3. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 24. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 5. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个6. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )A .{﹣1,0,1,2,4}B .{﹣1,0,2,4}C .{0,2,4}D .{0,1,2,4}7. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( ) A .﹣3≤a <0 B .﹣3≤a ≤﹣2 C .a ≤﹣2D .a <08. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为( )A .B .C .D .9. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5810.命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥111.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.已知函数f (x )=x (1+a|x|).设关于x的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .二、填空题13.已知函数,则__________;的最小值为__________. 14.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .15.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.16.在(1+x )(x 2+)6的展开式中,x 3的系数是 .17.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.20.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度. 22.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2eg x x≥-;(Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.23.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.24.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.顺平县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A .【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.2. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .3. 【答案】A【解析】解:设x <0时,则﹣x >0,因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A .4. 【答案】B【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式.5. 【答案】C【解析】解:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”,①正确; ②若“¬p 或q ”是假命题,则¬p 、q 均为假命题,∴p 、¬q 均为真命题,“p 且¬q ”是真命题,②正确; ③由p :x (x ﹣2)≤0,得0≤x ≤2,由q :log 2x ≤1,得0<x ≤2,则p 是q 的必要不充分条件,③错误;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2,④正确. ∴正确的命题有3个.故选:C.6.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.7.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B8.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.9.【答案】B【解析】10.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.11.【答案】【解析】选B.取AP的中点M,则P A=2AM=2OA sin∠AOM=2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.12.【答案】A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.二、填空题13.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:14.【答案】菱形;矩形.【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC∴四边形EFGH是平行四边形又∵AC=BD∴EF=FG∴四边形EFGH是菱形.②由①知四边形EFGH是平行四边形又∵AC⊥BD,∴EF⊥FG∴四边形EFGH是矩形.故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.15.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-116.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20.17.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.18.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题19.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x )×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.20.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F 2的方程为:(x ﹣1)2+y 2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.21.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为n n a 3=.………………5分22.【答案】【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,221e e ()x F x x x x-'∴=-=由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e()2g x x≥-成立. …… 5分(Ⅱ) 记()()()x xh x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,()e x xh x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 23.【答案】请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.24.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.。
顺平县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)2. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24253. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 4. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 5. 若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .6. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1 C .﹣=1 D .﹣=17. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .8. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.9. 设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2,﹣1≤x ≤2},则∁R (A ∩B )等于( ) A .R B .{x|x ∈R ,x ≠0} C .{0} D .∅10.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .411.已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( ) A .﹣1<a <2 B .﹣3<a <6 C .a <﹣3或a >6 D .a <﹣1或a >212.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=5二、填空题13.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .14.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .15.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.16.(sinx+1)dx 的值为 .17.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .18.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .三、解答题19.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t aa ì=+ïí=+ïî(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C的参数方程;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.20.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.21.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]22.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.23.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .24.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.顺平县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:∵双曲线渐近线为bx ±ay=0,与圆x 2+(y ﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a 2<b 2, ∴c 2=a 2+b 2>4a 2,∴e=>2 故选:C .【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.2. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 3. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1)(2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x=零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x=零点个数就是方程()0f x=根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.4.【答案】A【解析】考点:对数函数,指数函数性质.5.【答案】C【解析】解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.6.【答案】A【解析】解:设所求双曲线方程为﹣y2=λ,把(2,﹣2)代入方程﹣y2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A.【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.7.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.8.【答案】A9.【答案】B【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},故选B.10.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.11.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.12.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.二、填空题13.【答案】②③.【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sin α=sin β,即sin α<sin β不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.14.【答案】 8π .【解析】解:由题意旋转体的体积V===8π,故答案为:8π.【点评】本题给出曲线y=x 2与直线y=4所围成的平面图形,求该图形绕xy 轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.15.【答案】或 【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数是或. 考点:等差数列的性质.【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出150a d +=,所以60a =是解答的关键,同时结论中自然数是或是结论的一个易错点.16.【答案】 2 .【解析】解:所求的值为(x ﹣cosx )|﹣11=(1﹣cos1)﹣(﹣1﹣cos (﹣1)) =2﹣cos1+cos1 =2.故答案为:2.17.【答案】 2 .【解析】解:如图所示, 连接A 1C 1,B 1D 1,相交于点O .则点O为球心,OA=.设正方体的边长为x,则A1O=x.在Rt△OAA1中,由勾股定理可得:+x2=,解得x=.∴正方体ABCD﹣AB1C1D1的体积V==2.1故答案为:2.18.【答案】①④.【解析】解:由所给的正方体知,△PAC在该正方体上下面上的射影是①,△PAC在该正方体左右面上的射影是④,△PAC在该正方体前后面上的射影是④故答案为:①④三、解答题19.【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时21|22|2=+-kk0142=+-∴k k ,32-=∴k ,32+=k (舍去)设点)0,2(-B ,2ABk ==-故直线l 的斜率的取值范围为]22,32(--. 20.【答案】【解析】解:由题意设a=n 、b=n+1、c=n+2(n ∈N +),∵最大角是最小角的2倍,∴C=2A ,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A <π,∴sinA==,∴△ABC 的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.21.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x ,当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 22.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f (x )有最小值,当时,f (x )有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.…23.【答案】【解析】解:解:集合A={x|x 2﹣3x+2=0}={1,2}∵B ⊆A ,∴(1)B=∅时,a=0 (2)当B={1}时,a=2 (3))当B={2}时,a=1 故a 值为:2或1或0.24.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.。
2018-2019学年高二数学上学期期末考试试题(含解析)第I卷(选择题共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知命题,下列命题中正确的是( )A. B.C. D.【答案】C【解析】试题分析:命题,使的否定为,使,故选C.考点:特称命题的否定.2.抛物线的焦点坐标为A. B. C. D.【答案】A【解析】抛物线,开口向右且焦点在轴上,坐标为.故选A.3.“a>1”是“<1”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4. 已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:由已知中△ABC三个顶点为A(3,3,2),B (4,-3,7),C(0,5,1),利用中点公式,求出BC边上中点D的坐标,代入空间两点间距公式,即可得到答案.解:∵B(4,-3,7),C(0,5,1),则BC的中点D的坐标为(2,1,4)则AD即为△ABC中BC边上的中线故选B.考点:空间中两点之间的距离点评:本题考查的知识点是空间中两点之间的距离,其中根据已知条件求出BC边上中点的坐标,是解答本题的关键.5.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.6.如图所示,在平行六面体中,为与的交点.若,,,则下列向量中与相等的向量是()A. B.C. D.【答案】A【解析】【分析】运用向量的加法、减法的几何意义,可以把用已知的一组基底表示.详解】.【点睛】本题考查了空间向量用一组已知基底进行表示.7.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】由于,所以到的距离之和为,满足椭圆的定义,其中,由于焦点在轴上,故选.点睛:本题主要考查椭圆的定义和标准方程. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解. 求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).8.过抛物线的焦点作直线交抛物线于两点,如果,那么A. 6B. 8C. 9D. 10【答案】B【解析】【分析】根据抛物线的性质直接求解,即焦点弦长为.【详解】抛物线中,,∴,故选B.【点睛】是抛物线的焦点弦,,,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为.9.若直线与双曲线的右支交于不同的两点,则的取值范围是A. B. C. D.【答案】D【解析】【分析】由直线与双曲线联立得(1-k2)x2-4kx-10=0,由结合韦达定理可得解.【详解】解析:把y=kx+2代入x2-y2=6,得x2-(kx+2)2=6,化简得(1-k2)x2-4kx-10=0,由题意知即解得<k<-1.答案:D.【点睛】本题主要考查了直线与双曲线的位置关系,属于中档题.10.试在抛物线上求一点,使其到焦点距离与到的距离之和最小,则该点坐标为A. B. C. D.【答案】A【解析】由题意得抛物线的焦点为,准线方程为.过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时.故点的纵坐标为1,所以横坐标.即点P的坐标为.选A.点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.11.在长方体中,如果,,那么到直线的距离为A. B. C. D.【答案】C【解析】【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.第Ⅱ卷(主观题共90分)二、填空题(每题5分,共20分,将答案写在答题纸上)13. 已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.【答案】2.【解析】试题分析:由三点共线得向量与共线,即,,,解得,,∴.考点:空间三点共线.14.已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).【答案】【解析】试题分析:设抛物线方程为,当x=0时 c=2,当x=-4和x=4时y=0,求得, b=0,则,令y=1,得,所以水面宽.考点:抛物线方程.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.①一个命题的逆命题为真,它的否命题一定也为真:②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件;④“”是“”的充分必要条件;以上说法中,判断错误的有_______________.【答案】③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若,则,有,则三个角成等差数列,反之若三个角成等差数列,有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知命题有两个不相等的负根,命题无实根,若为假,为真,求实数的取值范围.【答案】【解析】【分析】根据命题和的真假性,逐个判断.【详解】因为假,并且为真,故假,而真即不存在两个不等的负根,且无实根.所以,即,当时,不存在两个不等的负根,当时,存在两个不等的负根.所以的取值范围是【点睛】此题考查了常用的逻辑用语和一元二次方程的性质,属于基础题.18.已知椭圆C的两焦点分别为,长轴长为6。
参考答案一、选择题,每小题5分,共60分.1-12、CDACD ACBBA BD二、填空题,每小题5分,共20分.13. 2 14. 85 15. 18 16. ②③ 三、解答题,共70分.17. 解:(Ⅰ)由题意知)5,8(),21,1(A D - ∴ k AD =2118215=+-………………………………3′ ∴ 直线AD 的方程为)8(215-=-x y ………………………5′ 即 x-2y+2=0 ………………………………6′(Ⅱ)由已知得 k BC =21)6(432-=---- ……………………………7′ ∴ k AE =2 ………………………………9′∴ 直线AE 的方程为y-5=2(x-8) ……………………………11′即 2x-y-11=0 ……………………………12′18. 解:(Ⅰ)6)108642(51=++++=x 10)5.475.91316(51=++++=y ………2′ 45.165)1006436164(3004556575232ˆ2-=⨯-++++-++++=b ………………………4′ 7.186)45.1(10ˆ=⨯--=a………………………5′ ∴ y 关于x 的回归直线方程为7.1845.1ˆ+-=x y……………………6′ (Ⅱ)由题意知 )2.1775.105.0(7.1845.12+--+-=x x x z=5.13.005.02++-x x ……………………9′∴ 3)05.0(23.0=-⨯-=x 时,z 最大. ∴ x=3时,销售利润取最大值. ……………………12′19. 解:(Ⅰ)如图 ………1′已知AO m m A PA O PO ⊥⊂⊥,,,ααα于交平面于 ……………………3′ 求证:PA m ⊥ ……………………………4′证明:PAO m AO m m PO m PO 平面又平面∵⊥⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊂⊥αα PA m ⊥∴ ……………………………8′(Ⅱ)逆命题:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直. ………………………10′逆命题是真命题 ……………………………12′20. 解:(Ⅰ)由题意知,直线AB 的方程为y-2=k(x-0) 即y=kx+2 ……………………1′代入圆方程,整理得: 036)124()1(22=+-++x k x k ………………3′∵ A 、B 是不同两点, ∴ △=036)1(4)124(22>⋅+--k k ……………4′解得 043<<-k ∴ k 的取值范围为)0,43(- ……………………6′ (Ⅱ)∵ P (0,2), Q (6,0) ∴ )2,6(-=PQ ……………………7′设 A(x 1,y 1) B(x 2,y 2), 由(Ⅰ)知2211412kk x x +-=+ ∴ 221212114124)(22k k x x k kx kx y y ++=++=+++=+ ∴ )14121412(22k k k k OB oA +++-=+, ……………………9′ 要OB OA +与PQ 共线,则221412214126k k k k +-⋅-=++⋅解得 43-=k ……………………11′ 由(Ⅰ)知)0,43(-∈k ∴ 不存在常数k ,使OB OA +与PQ 共线. ……………………12′21. 解:(Ⅰ)连接AC 交BD 于O ,连接EO∵ 正方形ABCD ,∴⇒⎭⎬⎫中点是中点是PC E AC O (Ⅱ)z y,x ,DP DC,DA,D 分别为为原点,射线以轴的正半轴建立直角坐标系设PD =DC=1,易知:D (0,0,0),A (1,0,0),C (0,1,0),B (1,1,0),P(0,0,1)∴ )1,1,1(),21,21,0(),21,21,0(--==PB DE E EFD PB EF PB DE PB PB DE 平面∵又⊥⇒⎪⎭⎪⎬⎫⊥⊥∴=⋅,0 ……………………7′ (Ⅲ)由(Ⅱ)可知:)0,0,1(),0,1,0(),1,1,1(-==--=BC AB PB设平面PAB 的法向量为m=(x,y,z ),则⎩⎨⎧==+--00x y z y ∴x=z,y=0,取m =(1,0,1) ……………………9′ 同理可得平面PCB 的法向量n =(0,1,1)21221,cos =⋅>=<n m ∴ ︒60的夹角为与n m ……………………11′EDB PA EDB PA EDB EO PA EO 平面∥平面平面∥⇒⎪⎭⎪⎬⎫⊄⊂ ……………3′结合图形可知,二面角A —PB —C 为120° ……………………12′22. 解:(Ⅰ)区域D 如图……………………2′)1(01---=+=x y x y z 即连线的斜率与定点为动点)0,1(),(z -P y x ……………………4′∴ 2)1(002z =---=PB k 的最大值为 ……………………5′ (Ⅱ)由(Ⅰ)知A (2,0),B (0,2),C (4,4)设 △ABC 的外接圆方程为022=++++F Ey Dx y x 代入各点得⎪⎩⎪⎨⎧=+++=++=++04432024024F E D F E F D ……………………7′ 解得: 314-==E D 316=F ∴ △ABC 的外接圆方程为0316********=+--+y x y x ………………10′。
普通高中2018-2019学年上学期高二期末模拟试题(五)数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡。
第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1、等差数列{}n a 中,52a =,则9S 等于( ) A .2 B .9 C .18 D .202、若110,a b <<,则下列不等式(1)a b ab +<,(2)a b >,(3)a b <,(4)2b aa b+>中,正确的有( )A .1个B .2个C .3个D .4个3、在ABC ∆中,60,2,A AB =︒=且ABC S ∆=,则BC=( )A B .3 C D .74、设:11p x x <->或; :21q x x <->或,则p q ⌝⌝是的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5、在ABC ∆中,222sin sin sin sin sin A B B C C =++,则A ∠=( ) A .30︒ B .60︒ C .120︒ D .150︒6设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且02190=∠PF F , 则21PF F ∆的面积是 A.1 B.25C.2D.5 7、等差数列{}n a 的前n 项和记为n S ,若246a a a ++的值为一确定的常数,则下列各数中也是常数的是( )xA .7SB .8SC .13SD .15S 8、下列各式中最小值为2的是()A 2BC .b a a b +D .1sin sin x x +9、若21f x x ax =-+有负值,则常数a 的取值范围是( )A .22a -<<B .22a a ≠≠-且C .13a <<D .2a <-或2a >10、给出平面区域为图中四边形ABOC 内部及其边界,目标函数为z ax y =-,若当且仅当1,1x y ==时,目标函数z 取最小值,则实数a 的取值范围是( ) A .1a <-B .12a >-C .112a -<<-D .112a -≤≤- 11、已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数nA .有最大值63B .有最小值63C .有最大值32D .有最小值3212、设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P关于y 轴对称,O 为坐标原点,若2=,且1=⋅AB OQ ,则P 点的轨迹方程是( )A.()0,0132322>>=+y x y x B. ()0,0132322>>=-y x y x C. ()0,0123322>>=-y x y x D. ()0,0123322>>=+y x y x二、填空题:13、不等式21xx ≥+的解集为 . 14、设数列}{n a 的前n 项和为n S ,令n T =12nS S S n+++ ,称n T 为数列n a a a ,,,21 的“理想数”,已知数列100321,,,a a a a 的“理想数”为101,那么数列2,100321,,,a a a a 的“理想数”为___________. 15.设x y 、均为正实数,且111223x y +=++,则xy 的最小值为 . 16、已知二次函数y =a (a +1)x 2-(2a +1)x +1,当a =1,2,…,n ,…时,其抛物线在x 轴上截得的线段长依次为d 1,d 2,…,d n ,…,则d 1+d 2+…+d n =_____________ 三、解答题:17、在ABC ∆中,角,,A B C 的对边分别为,,,6a b c B π=,3cos ,25A b ==。
顺平县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A.B.C.D. 2. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 3. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0< B .0 C .0 D .4. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .45. 已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( ) A.B .2C.D.6. 函数y=的图象大致是( )A. B. C. D.7. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D .8. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 9. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位10.已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( ) A .(﹣∞,1) B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]11.()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对12.不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )A .a <0,△<0B .a <0,△≤0C .a >0,△≥0D .a >0,△>013.已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣814.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 15.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .4二、填空题16.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________. 17.已知向量,满足42=,2||=,4)3()(=-⋅+,则与的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.18.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.19.若全集,集合,则三、解答题20.如图,菱形ABCD 的边长为2,现将△ACD 沿对角线AC 折起至△ACP 位置,并使平面PAC ⊥平面ABC .(Ⅰ)求证:AC ⊥PB ;(Ⅱ)在菱形ABCD 中,若∠ABC=60°,求直线AB 与平面PBC 所成角的正弦值; (Ⅲ)求四面体PABC 体积的最大值.21.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.22.已知f(x)=x2﹣(a+b)x+3a.(1)若不等式f(x)≤0的解集为[1,3],求实数a,b的值;(2)若b=3,求不等式f(x)>0的解集.23.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.24.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.25.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.顺平县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.2.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
顺平县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A .B .C .D .π2. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .3. 函数存在与直线平行的切线,则实数的取值范围是( )21()ln 2f x x x ax =++03=-y x a A.B. C. D. ),0(+∞)2,(-∞),2(+∞]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.4. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a 的值为( )A .2B .C .D .35. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位6. 下列给出的几个关系中:①;②;③;{}{},a b ∅⊆(){}{},,a b a b ={}{},,a b b a ⊆④,正确的有( )个{}0∅⊆A.个B.个C.个D.个7. 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则y x ,⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y mx y z -=)3,1(实数的取值范围是( )m A .B .C .D .1-<m 10<<m 1>m 1≥m 【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.8. lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件9. 某程序框图如图所示,该程序运行输出的k 值是()A .4B .5C .6D .710.下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α11.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于()A .112B .114C .116D .12012.函数f (x )=,关于点(-1,2)对称,且f (-2)=3,则b 的值为()kx +b x +1A .-1B .1C .2D .4二、填空题13.已知函数y=f (x ),x ∈I ,若存在x 0∈I ,使得f (x 0)=x 0,则称x 0为函数y=f (x )的不动点;若存在x 0∈I ,使得f (f (x 0))=x 0,则称x 0为函数y=f (x )的稳定点.则下列结论中正确的是 .(填上所有正确结论的序号)①﹣,1是函数g (x )=2x 2﹣1有两个不动点;②若x 0为函数y=f (x )的不动点,则x 0必为函数y=f (x )的稳定点;③若x 0为函数y=f (x )的稳定点,则x 0必为函数y=f (x )的不动点;④函数g (x )=2x 2﹣1共有三个稳定点;⑤若函数y=f (x )在定义域I 上单调递增,则它的不动点与稳定点是完全相同. 14.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .15.下列命题:①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;R ()f x (0)0f =③既不是奇函数又不是偶函数;2()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1:||f x x →A B f ⑤在定义域上是减函数.1()f x x=其中真命题的序号是 .16.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .17.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 . 18.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .三、解答题19.已知椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.(I )求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于,求直线OP (O 是坐标原点)的斜率的取值范围. 20.已知奇函数f (x )=(c ∈R ).(Ⅰ)求c 的值;(Ⅱ)当x ∈[2,+∞)时,求f (x )的最小值.21.(本小题满分10分)选修4-1:几何证明选讲如图,四边形外接于圆,是圆周角的角平分线,过点的切线与延长线交于点,ABCD AC BAD ∠C AD E 交于点.AC BD F (1)求证:;BD CE A (2)若是圆的直径,,,求长AB 4AB =1DE =AD22.巳知二次函数f (x )=ax 2+bx+c 和g (x )=ax 2+bx+c •lnx (abc ≠0).(Ⅰ)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k 若f (x )满足k=f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx+c 与g (x )=ax 2+bx+c •lnx 是否为“K 函数”?并证明你的结论.23.已知函数f(x)=(log2x﹣2)(log4x﹣)(1)当x∈[2,4]时,求该函数的值域;(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.24.已知F1,F2分别是椭圆=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2.(Ⅰ)求m的值;(Ⅱ)求点P的坐标.顺平县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.2. 【答案】B 【解析】解:若,则(a+b )(sinB ﹣sinA )﹣sinC (a+c )=0,由正弦定理可得:(a+b )(b ﹣a )﹣c (a+c )=0,化为a 2+c 2﹣b 2=﹣ac ,∴cosB==﹣,∵B ∈(0,π),∴B=,故选:B .【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题. 3. 【答案】D 【解析】因为,直线的的斜率为,由题意知方程()有解,1()f x x a x '=++03=-y x 313x a x++=0x >因为,所以,故选D .12x x+³1a £4. 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax ﹣y (a >0)得y=ax ﹣z ,∵a >0,∴目标函数的斜率k=a >0.平移直线y=ax ﹣z ,由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B .5. 【答案】A【解析】解:由于函数y=sin (3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x 的图象,故选:A .【点评】本题主要考查函数y=Asin (ωx+∅)的图象平移变换,属于中档题. 6. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.{}{},,a b b a ⊆{}0∅⊆考点:集合间的关系.7. 【答案】C【解析】画出可行域如图所示,,要使目标函数取得最大值时有唯一的最优解,则需)3,1(A mx y z -=)3,1(直线过点时截距最大,即最大,此时即可.l A z 1>l k8.【答案】A【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A.【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.9.【答案】C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前100 0/第一圈100﹣20 1 是第二圈100﹣20﹣21 2 是…第六圈100﹣20﹣21﹣22﹣23﹣24﹣25<0 6 是则输出的结果为7.故选C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.11.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B .【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.12.【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则,恒成立.{n =km +b m +14-n =k (-2-m )+b -1-m)由方程组得4m +4=2km +2k 恒成立,∴4=2k ,即k =2,∴f (x )=,又f (-2)==3,2x +b x +1-4+b -1∴b =1,故选B.二、填空题13.【答案】 ①②⑤ 【解析】解:对于①,令g (x )=x ,可得x=或x=1,故①正确;对于②,因为f (x 0)=x 0,所以f (f (x 0))=f (x 0)=x 0,即f (f (x 0))=x 0,故x 0也是函数y=f (x )的稳定点,故②正确;对于③④,g (x )=2x 2﹣1,令2(2x 2﹣1)2﹣1=x ,因为不动点必为稳定点,所以该方程一定有两解x=﹣,1,由此因式分解,可得(x ﹣1)(2x+1)(4x 2+2x ﹣1)=0还有另外两解,故函数g (x )的稳定点有﹣,1,,其中是稳定点,但不是不动点,故③④错误;对于⑤,若函数y=f (x )有不动点x 0,显然它也有稳定点x 0;若函数y=f (x )有稳定点x 0,即f (f (x 0))=x 0,设f (x 0)=y 0,则f (y 0)=x 0即(x 0,y 0)和(y 0,x 0)都在函数y=f (x )的图象上,假设x 0>y 0,因为y=f (x )是增函数,则f (x 0)>f (y 0),即y 0>x 0,与假设矛盾;假设x 0<y 0,因为y=f (x )是增函数,则f (x 0)<f (y 0),即y 0<x 0,与假设矛盾;故x 0=y 0,即f (x 0)=x 0,y=f (x )有不动点x 0,故⑤正确.故答案为:①②⑤.【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力.14.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ),由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.15.【答案】①②【解析】试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.2n ()241f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于2n奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 16.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.17.【答案】 (﹣3,﹣2)∪(﹣1,0) .【解析】解:函数f (x )=x 2e x 的导数为y ′=2xe x +x 2e x =xe x (x+2),令y ′=0,则x=0或﹣2,﹣2<x <0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,∴a <﹣2<a+1或a <0<a+1,∴﹣3<a <﹣2或﹣1<a <0.故答案为:(﹣3,﹣2)∪(﹣1,0).18.【答案】【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒==a b +=考点:指对数式运算三、解答题19.【答案】【解析】解:(I )∵椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.∴点在椭圆G 上,又离心率为,∴,解得∴椭圆G 的方程为.(II )由(I )可知,椭圆G 的方程为.∴点F 的坐标为(﹣1,0).设点P 的坐标为(x 0,y 0)(x 0≠﹣1,x 0≠0),直线FP 的斜率为k ,则直线FP 的方程为y=k (x+1),由方程组消去y 0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.20.【答案】【解析】解:(Ⅰ)∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴=﹣=,比较系数得:c=﹣c,∴c=0,∴f(x)==x+;(Ⅱ)∵f(x)=x+,∴f′(x)=1﹣,当x∈[2,+∞)时,1﹣>0,∴函数f(x)在[2,+∞)上单调递增,∴f(x)min=f(2)=.【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题.21.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴,则,∴.DE DC BC BA =BC AB=24BC AB DE =⋅=2BC =∴在中,,∴,∴,Rt ABC ∆12BC AB =30BAC ∠=︒60BAD ∠=︒∴在中,,所以.Rt ABD ∆30ABD ∠=︒122AD AB ==22.【答案】【解析】解:(Ⅰ)证明:如果g (x )是定义域(0,+∞)上的增函数,则有g ′(x )=2ax+b+=>0;从而有2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立;又∵a <0,则结合二次函数的图象可得,2ax 2+bx+c >0对任意x ∈(0,+∞)恒成立不可能,故当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数;(Ⅱ)函数f (x )=ax 2+bx+c 是“K 函数”,g (x )=ax 2+bx+c •lnx 不是“K 函数”,事实上,对于二次函数f (x )=ax 2+bx+c ,k==a (x 1+x 2)+b=2ax 0+b ;又f ′(x 0)=2ax 0+b ,故k=f ′(x 0);故函数f (x )=ax 2+bx+c 是“K 函数”;对于函数g (x )=ax 2+bx+c •lnx ,不妨设0<x 1<x 2,则k==2ax 0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题. 23.【答案】【解析】解:(1)f(x)=(log2x﹣2)(log4x﹣)=(log2x)2﹣log2x+1,2≤x≤4令t=log2x,则y=t2﹣t+1=(t﹣)2﹣,∵2≤x≤4,∴1≤t≤2.当t=时,y min=﹣,当t=1,或t=2时,y max=0.∴函数的值域是[﹣,0].(2)令t=log2x,得t2﹣t+1>mt对于2≤t≤4恒成立.∴m<t+﹣对于t∈[2,4]恒成立,设g(t)=t+﹣,t∈[2,4],∴g(t)=t+﹣=(t+)﹣,∵g(t)=t+﹣在[2,4]上为增函数,∴当t=2时,g(t)min=g(2)=0,∴m<0.24.【答案】【解析】解:(Ⅰ)由已知得:|PF2|=6﹣4=2,在△PF1F2中,由勾股定理得,,即4c2=20,解得c2=5.∴m=9﹣5=4;(Ⅱ)设P点坐标为(x0,y0),由(Ⅰ)知,,,∵,,∴,解得.∴P().【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题.。
顺平县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设为虚数单位,则( )A .B .C .D .2. 若圆心坐标为的圆在直线上截得的弦长为 )()2,1-10x y --=A . B . ()()22210x y -++=()()22214x y -++=C .D .()()22218x y -++=()()222116x y -++=3. 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )21A .B .C .或D .或21-1-21-104. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为()A. B.11015C. D.310255. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .6. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C.D.7.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()A.B.C.D.8.i是虚数单位,计算i+i2+i3=()A.﹣1B.1C.﹣i D.i9.若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1}B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1}10.某几何体的三视图如图所示,则该几何体为()A.四棱柱B.四棱锥C.三棱台D.三棱柱11.函数f(x)=3x+x﹣3的零点所在的区间是()A.(0,1)B.(1,2)C.(2.3)D.(3,4)12.已知x,y满足时,z=x﹣y的最大值为()A.4B.﹣4C.0D.2二、填空题13.在下列给出的命题中,所有正确命题的序号为 .①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.14.17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.15.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 . 16.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .17.方程(x+y ﹣1)=0所表示的曲线是 .18.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM ,其中正确的是 (把所有正确的序号都填上).三、解答题19.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个,,x y z 盒中的球数.(1)求,,的概率;0x =1y =2z =(2)记,求随机变量的概率分布列和数学期望.x y ξ=+ξ【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.20.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *)(Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.21.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M 在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.22.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.顺平县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C 2. 【答案】B 【解析】考点:圆的方程.1111]3. 【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x 解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]4. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =.3105. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 6. 【答案】 A【解析】解:取a=﹣时,f(x)=﹣x|x|+x,∵f(x+a)<f(x),∴(x﹣)|x﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.7.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.8.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.9.【答案】D【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.10.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 11.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.12.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.二、填空题13.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.15.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.16.【答案】 .【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.17.【答案】 两条射线和一个圆 .【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.18.【答案】②【解析】解:由MP ,OM 分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP .故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.三、解答题19.【答案】【解析】(1)由,,知,甲、乙、丙3个盒中的球数分别为0,1,2,0x =1y =2z =此时的概率.(4分)213111324P C ⎛⎫=⨯⨯= ⎪⎝⎭20.【答案】【解析】(I)证明:由S n=2a n﹣n2+3n+2(n∈N*),∴当n≥2时,,a n=S n﹣S n﹣1=2a n﹣2a n﹣1﹣2n+4,变形为a n+2n=2[a n﹣1+2(n﹣1)],当n=1时,a1=S1=2a1﹣1+3+2,解得a1=﹣4,∴a1+2=﹣2,∴数列{a n+2n}是等比数列,首项为﹣2,公比为2;(II)解:由(I)可得a n=﹣2×2n﹣1﹣2n=﹣2n﹣2n.∴b n=a n sinπ=﹣(2n+2n),∵==(﹣1)n,∴b n=(﹣1)n+1(2n+2n).设数列{b n}的前n项和为T n.当n=2k(k∈N*)时,T2k=(2﹣22+23﹣24+…+22k﹣1﹣22k)+2(1﹣2+3﹣4+…+2k﹣1﹣2k)=﹣2k=﹣n.当n=2k﹣1时,T2k﹣1=﹣2k﹣(﹣22k﹣4k)=+n+1+2n+1=+n+1.(III)证明:C n=﹣=,当n≥2时,c n.∴数列{C n}的前n项和为P n<==,当n=1时,c1=成立.综上可得:∀n∈N*,.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”、三角函数的诱导公式、递推式的应用,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.21.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.22.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.23.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档. 24.【答案】【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,∴1×q5=243,解得q=3,∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35.∴5×3+d=35,解得d=2,b n=3+(n﹣1)×2=2n+1.(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.。
顺平县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n2. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.3. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是()A .(﹣2,﹣1)∪(1,2)B .(﹣2,﹣1)∪(0,1)∪(2,+∞)C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)4. 已知是虚数单位,若复数()的实部与虚部相等,则( ))(3i a i +-R a ∈=a A .B .C .D .1-2-5. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有()A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关6. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .27. 已知定义域为的偶函数满足对任意的,有,且当R )(x f R x ∈)1()()2(f x f x f -=+时,.若函数在上至少有三个零点,则]3,2[∈x 18122)(2-+-=x x x f )1(log )(+-=x x f y a ),0(+∞实数的取值范围是( )111]A .B .C .D .)22,0()33,0()55,0()66,0(8. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .29. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是()A .(0,)B .(0,]C .(,]D .[,1)10.下列给出的几个关系中:①;②;③;{}{},a b ∅⊆(){}{},,a b a b ={}{},,a b b a ⊆④,正确的有( )个{}0∅⊆A.个B.个C.个D.个11.已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .12.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )A .16B .﹣16C .8D .﹣8二、填空题13.数列{a n }是等差数列,a 4=7,S 7= .14.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 15.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数xOy l 和均相切(其中为常数),切点分别为和()()2220f x x a x =+>()()3220g x x a x =+>a ()11,A x y ,则的值为__________.()22,B x y 12x x +18.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形PACB 的周长最小时,△ABC 的面积为________.三、解答题19.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围. 20.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:x①ππf(x)010﹣10(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.21.圆锥底面半径为,其中有一个内接正方体,求这个内接正方体的棱长.1cm22.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.23.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程. 24.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x =+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.顺平县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.2.【答案】B【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;根据y=lnx的图象,该函数非奇非偶;根据单调性定义知y=﹣x3在(0,+∞)上单调递减.故选B.【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.3.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.4.【答案】A考点:复数运算.5. 【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b .故选:C . 6. 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A (6,2),化目标函数z=x ﹣y 为y=x ﹣z ,由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4.故选:A .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. 7. 【答案】B 【解析】试题分析:,令,则,是定义在上的偶函数,()()1)2(f x f x f -=+ 1-=x ()()()111f f f --=()x f R .则函数是定义在上的,周期为的偶函数,又∵当时,()01=∴f ()()2+=∴x f x f ()x f R []3,2∈x,令,则与在的部分图象如下图,()181222-+-=x x x f ()()1log +=x x g a ()x f ()x g [)+∞,0在上至少有三个零点可化为与的图象在上至少有三个交点,()()1log +-=x x f y a ()+∞,0()x f ()x g ()+∞,0在上单调递减,则,解得:故选A .()x g ()+∞,0⎩⎨⎧-><<23log 10a a 330<<a 考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的()x f ()()1log +-=x x f y a ()+∞,0()x f 图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的()1log +=x y a ()+∞,0范围.8. 【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2 =4,表示以C (2,1)为圆心、半径等于2的圆.由题意可得,直线l :x+ay﹣1=0经过圆C 的圆心(2,1),故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题. 9. 【答案】D 【解析】解:由题意设=2x ,则2x+x=2a ,解得x=,故||=,||=,当P 与两焦点F 1,F 2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题. 10.【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.{}{},,a b b a ⊆{}0∅⊆考点:集合间的关系.11.【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.12.【答案】B【解析】解:∵f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,∴f (﹣2)﹣g (﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f (2)+g (2)=f (﹣2)﹣g (﹣2)=﹣16.故选:B .【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力. 二、填空题13.【答案】49【解析】解:==7a 4=49.故答案:49.【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解. 14.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键. 15.【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,为连续两项和,为接下来三3m 3233项和,故的首个数为.3m 12+-m m ∵的分解中最小的数为91,∴,解得.)(3+∈N m m 9112=+-m m 10=m 16.【答案】714⎛⎤ ⎥⎝⎦,【解析】17.【答案】5627【解析】18.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9.圆心C (1,-2),半径为3,连接PC ,∴四边形PACB 的周长为2(PA +AC )=2+2AC =2+6.PC 2-AC 2PC 2-9当PC 最小时,四边形PACB 的周长最小.此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由,解得点P 的坐标为(4,1),{x +y -5=0x -y -3=0)由于圆C 的圆心为(1,-2),半径为3,所以两切线PA ,PB 分别与x 轴平行和y 轴平行,即∠ACB =90°,∴S △ABC =AC ·BC =×3×3=.121292即△ABC 的面积为.92答案:92三、解答题19.【答案】【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2﹣3a 恒成立.由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,∴﹣2≥a 2﹣3a ,求得1≤a ≤2.(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题. 20.【答案】【解析】解:(Ⅰ)①处应填入.=.∵T=,∴,,即.∵,∴,∴,从而得到f (x )的值域为.(Ⅱ)∵,又0<A <π,∴,得,.由余弦定理得a 2=b 2+c 2﹣2bccosA==(b+c )2﹣3bc ,即,∴bc=3.∴△ABC 的面积.【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题. 21..【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.试题解析:过圆锥的顶点和正方体底面的一条对角线作圆锥的截面,得圆锥的轴截面,正方体对S CD SEF 角面,如图所示.11CDD C 设正方体棱长为,则,,1CC x =11C D =作于,则,,SOEF ⊥O SO =1OE =∵,∴1ECC EOS ∆∆:11CC EC SO EO==∴.x =cm 考点:简单组合体的结构特征.22.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p 列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a --由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.23.【答案】【解析】解:(Ⅰ)设点P (x ,y )在矩阵M 对应的变换作用下所得的点为P ′(x ′,y ′),则即=,∴M=.又det (M )=﹣3,∴M ﹣1=;(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),则=M ﹣1=,即,∴代入4x+y ﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.24.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭ ,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x -=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a =<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减,则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e =+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立.②若10e a <<,即1a e>时,则有10a ⎛⎫ ⎪⎝⎭,1a 1e a ⎛⎫ ⎪⎝⎭,()'f x -0+()f x ↘极小值↗所以()f x 在区间(0]e ,上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭ ,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用.。
顺平县一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在正方体1111ABCD A B C D 中,,E F 分别为1,BC BB 的中点,则下列直线中与直线 EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 2. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .3. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个4. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣25. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .66. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0) 7. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 38. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定9. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( )A .12B .8C .6D .410.已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .11.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.12.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣213.下列函数在其定义域内既是奇函数又是增函数的是( )A .B .C .D . 14.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣115.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-二、填空题16.经过A (﹣3,1),且平行于y 轴的直线方程为 .17.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .18.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=.19.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是.三、解答题20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.22.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O为AD的中点,且CD⊥A1O(Ⅰ)求证:A1O⊥平面ABCD;(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理由.23.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.24.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,且()01f =.(1)求()f x 的解析式;(2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.25.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.顺平县一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D 【解析】试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 2. 【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.3. 【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个. 故选B4. 【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 5. 【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.6.【答案】A【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,则函数f(x)过定点(1,5).故选A.7.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.8.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.9.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,∴,∴n=8,r=6.故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.10.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣. 故选:C .【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.11.【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==,所以由球的体积可得34243316ππ=,解得72PA =,故选B .12.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣. 故选:B .13.【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性 【试题解析】若函数是奇函数,则故排除A 、D ;对C :在(-和(上单调递增,但在定义域上不单调,故C 错; 故答案为:B 14.【答案】B【解析】解:由x 3﹣x 2﹣x+a=0得﹣a=x 3﹣x 2﹣x , 设f (x )=x 3﹣x 2﹣x ,则函数的导数f ′(x )=3x 2﹣2x ﹣1,由f ′(x )>0得x >1或x <﹣,此时函数单调递增,由f ′(x )<0得﹣<x <1,此时函数单调递减, 即函数在x=1时,取得极小值f (1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f (﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,则﹣1<﹣a <,即﹣<a <1,故选:B .【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.15.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质.二、填空题16.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.17.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.18.【答案】 5 .【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16, 抛物线的方程为y 2=16x ,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.19.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.三、解答题20.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.21.【答案】【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,则有g′(x)=2ax+b+=>0;从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k==a(x1+x2)+b=2ax0+b;又f′(x0)=2ax0+b,故k=f′(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+c•lnx,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.22.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.23.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.24.【答案】(1)()2=+1f x x x -;(2)1m <-.【解析】试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为231m x x <-+,设()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围. 试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==()()()()2212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,故()2=+1f x x x -.考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.25.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.。