北京市海淀区2013年中考二模数学试题-2013.6.6-含答案
- 格式:doc
- 大小:435.00 KB
- 文档页数:3
海淀二模高三数学(理科) 试题第1页(共6页)海淀区高三年级第二学期期末练习数学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ?=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240C.276D.3005.在四边形ABCD 中,“λ?∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A.32B. 36C. 42D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ?是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 A. 2 B.12+ C.13+ D.23+8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->???<≤??,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B. 若2m =,则数列{}n a 是周期为3的数列C.T ?∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ?∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30 ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ?中,30,45,2A B a ∠=∠== ,则_____;b =C _____.AB S ?=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ?的取值范围是______________.666左视图5俯视图主视图Ω14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π2sin()4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间. 16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围. 17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =. 把DAC ?沿对角线AC 折起到PAC ?的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点.(I) 求证:平面//EFH 平面PBC ; (II)求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.18.(本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ?的面积为()S t .(I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ?∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ?(O 为原点)面积的最大值. 20.(本小题满分13分)设A 是由m n ?个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);CDBA图1H E CPBAF图21 2 3 7-2-1 01表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;22221212a a a a a a a a ------(Ⅲ)对由m n ?个实数组成的m 行n 列的任意一个数表A , 表2能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.海淀区高三年级第二学期期末练习数学 (理科) 参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BDCBCABD二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分) 9. 2 10.c b a >>11. (1,3) 12.312;2+ 13.[0,1]14.②③;22-三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ …………………2分所以函数的定义域为π{|π+,4x x k ≠Z}k ∈……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- …………………6分= 1(cos sin )x x -+1sin cos x x =++π= 12()4x ++ …………………8分又sin y x =的单调递增区间为ππ(2π,2π)22k k -+ ,Z k ∈令πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ………………11分又注意到ππ+,4x k ≠所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ则ξ可以取5,0,45,145-- ………………6分ξ的分布列为ξ5 0 45- 145-P50%50%2%p --2%p…………………8分所以ξ的期望为550%0(50%2%)(45)2%(145)E p pξ=?+?--+-?+-?2.590%145p =-- …………………11分所以当 1.61450p ->时,即8725p < …………………12分所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分 17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上所以PH ⊥平面ABC ,所以PH ⊥AC ………………1分因为在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =所以4AC =,60CAB ∠= ,所以ADC ?是等边三角形,所以H 是AC 中点,…………2分所以//HE PC …………………3分同理可证//EF PB ,又,HE EF E CP PB P == 所以//EFH PBC 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,(0,0,23)P ,(3,1,0)B …………………6分因为(0,1,3)E -,(0,1,3)HE =-设平面PHB 的法向量为(,,)n x y z = 因为(3,1,0)HB = ,(0,0,23)HP = 所以有00HB n HP n ??=???=??,即300x y z ?+=??=??,令3,x =则3,y =- 所以 (3,3,0)n =-…………………8分 33cos ,4||||223n HE n HE n HE ?<>===??…………………10分所以直线HE 与平面PHB 所成角的正弦值为34..................11分 (III)存在,事实上记点E 为M 即可 (12)分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等…………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ ………………2分当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增, ……………4分当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ?∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , Fz yxHECP BA所以3a ≥ …………………10分当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln 22a ≥+所以ln 223a +≤< …………………12分综上所述,ln 22a +≤ ………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以3,1a b ==,椭圆M 的方程为2213x y += ………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以22222111111111111=|2|||||||||1(1)(3)2333AOB x x S x y x y x x x x ?==-=-=-因为22221111(3)3(3)22x x x x +--≤=, 所以32AOB S ?≤,当且仅当16||2x =时,AOB S ?取得最大值为32……………7分当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx tx y =+???+=??,代入得到222(31)6330k x kt t +++-= 当224(933)0k t ?=+->, 即2231k t +>①方程有两个不同的解又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分所以122231y y t k +=+,又12121 12202y y x x k ++=-+-,化简得到2314k t += ②代入①,得到04t << ………………10分又原点到直线的距离为2||1t d k =+22221224(933)||1||131k t AB k x x kk +-=+-=++所以222224(933)11||=||||122311AOB k t t S AB d k k k ?+-=+++ 化简得到21=3(4)4AOB S t t ?- ……………12分因为04t <<,所以当2t =时,即73k =±时,AOB S ?取得最大值32综上,AOB ?面积的最大值为32……………14分 20.(I )解:法1: 21012101-?????→?????→----改变第列改变第行法2:21012101--?????→?????→----改变第行改变第列法3:21012101----?????→?????→--改变第列改变第列。
3.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为()A.B.C.D.2考点:相似三角形的判定与性质.思路:根据已知条件DE∥BC,得出△ADE∽△ABC,即可得出=,进而得出的值.步骤:解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=4,DB=2,∴===.则的值为.故选:B.总结:此题主要考查了相似三角形的判定与性质,根据已知得出△ADE∽△ABC是解题关键.4. 下列计算正确的是()C D.总结:本题考查了对平移的性质的熟练掌握:平移不改变图形的形状、大小和方向.6. 如图,⊙O的半径为5,AB为⊙O的弦,OC⊥AB于点C.若OC=3,则AB的长为()A.4B.6C.8D.10考点:垂径定理;勾股定理.思路:连接OA,Rt△OAC中,根据勾股定理求出AC的长,再由垂径定理可知AB=2AC,故可得出结论.步骤:解:连接OA,∵OC⊥AB,OA=5,OC=3,∴AC===4,∵OC过圆心,∴AB=2AC=2×4=8.故选C.总结:本题考查的是垂径定理及勾股定理的熟练掌握。
根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:组员1 组员2 组员3 组员4甲88 95 97 100乙90 94 97 99设两组同学得分的平均数依次为,,得分的方差依次为,,则下列关系中完全正确的是()A.,B.,C.,D.,考点:方差;算术平均数.思路:先求出甲、乙的平均数= (x1+x2+…+x n)÷n,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求出甲与乙的方差,方差越大,波动性越大,再进行比较即可.步骤:解:∵甲的平均数是:=(88+95+97+100)÷4=95,乙的平均数是:=(90+94+97+99)÷4=95,∴=,=[(88﹣95)2+(95﹣95)2+(97﹣95)2+(100﹣95)2]=,=[(90﹣95)2+(94﹣95)2+(97﹣95)2+(99﹣95)2]=,∴>,故选A.总结:此题考查了对平均数与方差的公式的熟练掌握。
海淀区九年级第二学期期中练习含答案数 学2013.5 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2的相反数是( )A. 2B.2-C.21 D.21- 2.十八大开幕当天,网站关于此信息的总浏览量达5.5亿次.将5.5亿用科学记数法表示为A. 8105.5⨯B. 81055⨯C. 755010⨯ D. 10100.55⨯3.如图是某几何体的三视图,则这个几何体是( )A. 圆柱B. 正方体C. 球D. 圆锥4.一个多边形的外角和是内角和的一半,则这个多边形的边数为( )A. 5B.6C. 7D. 85.小林在元宵节煮了20个元宵,其中10个黑芝麻馅,6个山楂馅,4个红豆馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红豆馅元宵的概率是( )A .12 B .13 C . 15D .25 6.一副三角板如图放置,若∠1=90︒,则∠2的度数为( )A .45°B .60°C .75°D .90°7.在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:则这10场比赛中他得分的中位数和众数分别是( )A.10, 4B.10,7C.7,13D. 13,48.如图,△ABC 是等边三角形,6AB =厘米,点P 从点B 出发,沿BC 以每秒1厘米的速度运动到点C 停止;同时点M 从点B 出发,沿折线BA -AC 以每秒3厘米的速度运动到点C 停止.如果其中一个点停止运动,则另一个点也停止运动.设点P 的运动时间为t 秒,P 、M 两点之间的距离为y 厘米,则表示y 与t 的函数关系的图象大致是( )A. B. C. D.二、填空题(本题共16分,每小题4分)9. 分解因式:22369a b ab b -+= .10.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是.11.如图,将正方形纸片对折,折痕为EF .展开后继续折叠,使点A 落在EF 上,折痕为GB ,则ABG ∠的正切值是 .12. 如图1所示,圆上均匀分布着11个点12311,,,,A A A A .从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k +1阶正十一角星”,其中18k ≤≤(k 为正整数).例如,图2是“2阶正十一角星”,那么1211A A A ∠+∠++∠= °;当1211A A A ∠+∠++∠= 900°时,k = .图1 图2三、解答题(本题共30分,每小题5分)130112cos301)()8-︒+- .EDCBA14.解不等式组:20,11.2x x x +>⎧⎪⎨-+≥⎪⎩15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x .16.已知:如图,点A ,D ,C 在同一直线上,AB ∥EC ,AC CE =,.B EDC ∠=∠求证:.BC DE =17. 如图,在平面直角坐标系xOy 中,反比例函数xy 2-=的图象与一次函数k kx y -=的图象的一个交点为(1,)A n -. (1)求这个一次函数的解析式;(2)若P 是x 轴上一点,且满足45APO ∠=︒,直接写出点P 的坐标.18. 列方程(组)解应用题:雅安地震灾情牵动全国人民的心.某厂计划加工1500顶帐篷支援灾区,加工了300顶帐篷后,由于救灾需要,将工作效率提高到原计划的2倍,结果提前4天完成了任务.求原计划每天加工多少顶帐篷.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,DAB ∠=CDB ∠=90︒,ABD ∠=45︒,∠DCA =30︒,AB =.求AE 的长和△ADE的面积.=.以AB为直径的⊙O交BC于点D,过点D作20.已知:如图,在△ABC中,AB ACDE⊥AC于点E.(1)求证:DE与⊙O相切;AB=,(2)延长DE交BA的延长线于点F.若6sin B求线段AF的长.21. 下图为北京某天空气质量指数实时查询的一个结果.为了解今年北京市春节假期空气质量情况,小静查到下表所示的某天15个监测子站的空气质量指数;小博从环境监测网随机抽取了某天部分监测点的空气质量情况,并绘制了以下两个统计图.解答下列问题:(1)小静查到的统计表中重度污染出现的频率为;(2)计算小博抽取的监测点的个数,并补全条形统计图;(3)据统计数据显示,春节期间燃放烟花爆竹成为空气污染的一个重要原因. 市民在今年春节期间自觉减少了购买和燃放烟花爆竹的数量,全市销售烟花爆竹37万余箱,比去年减少35%.求今年比去年同期少销售多少万箱烟花爆竹.(结果保留整数)22.问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.图1 图2小明的思考过程:的正方形网格,得到了辅助正方形EFGH,如他利用图1中的等距平行线构造了33图2所示, 再分别找到它的四条边的三等分点A 、B 、C 、D ,就可以画出一个满足题目要求的正方形.请回答:图2中正方形ABCD 的边长为 . 请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为60︒,边长为1)中,画出一个等边△ABC ,使它的顶点A 、B 、C 落在格点上,且分别在直线a 、b 、c 上;(3)如图4,1l 、2l 、3l 是同一平面内的三条平行线,1l 、2l 之间的距离是215,2l 、3l 之间的距离是2110,等边△ABC 的三个顶点分别在1l 、2l 、3l 上,直接写出△ABC 的边长.图3 图4五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-. (1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .24.在△ABC 中,∠ACB =90︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,CD =1(如图),则AE 的长为 ;(2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F , 56CF EF =,CD =4,求BD 的长.25. 在平面直角坐标系xOy 中,抛物线222y x mx m m =-++的顶点为C . (1) 求点C 的坐标(用含m 的代数式表示);(2) 直线2y x =+与抛物线交于A 、B 两点,点A 在抛物线的对称轴左侧.② 若P 为直线OC 上一动点,求△APB 的面积;②抛物线的对称轴与直线AB 交于点M ,作点B 关于直线MC 的对称点'B . 以M 为圆心,MC 为半径的圆上存在一点Q ,使得'2QB +的值最小,则这个最小值为 .EDCBA2013海淀中考一模数学参考答案数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分) 130112cos301)()8-︒+- .解:原式218=+- ………………………4分 7=.………………………5分解:由①得 2x >-.………………………2分 由②得 1x ≤.………………………4分则不等式组的解集为12≤<-x .………………………5分 15.先化简,再求值:4212112--÷⎪⎭⎫ ⎝⎛-+x x x ,其中3=x . 解:原式2212421x x x x -+-=⋅-- ………………………2分 )1)(1()2(221+--⋅--=x x x x x ………………………3分 12+=x . ………………………4分 当3=x 时,原式=2112=+x .………………………5分16.证明:AB ∥EC ,∴.A DCE ∠=∠ ………………………1分 在△ABC 和△CDE 中,,,,B EDC A DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE .………………………4分 ∴.BC DE = ………………………5分17.解:(1)∵ 点A (1,)n -在反比例函数xy 2-=的图象上, ∴ 2n =. ………………………1分 ∴ 点A 的坐标为12-(,). ∵ 点A 在一次函数y kx k =-的图象上, ∴2k k =--.∴1-=k .………………………2分∴ 一次函数的解析式为1+-=x y .………………………3分 (2)点P 的坐标为(-3,0)或(1,0).………………………5分 (写对一个给1分)18.解:设原计划每天加工x 顶帐篷. ………………………1分1500300150030042x x---=.………………………3分 解得 150x =. ………………………4分 经检验,150x =是原方程的解,且符合题意. 答:原计划每天加工150顶帐篷. ………………………5分 四、解答题(本题共20分,每小题5分)19. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分 在△AFB 中,∠AFB =90°.∵∠4=45°,AB =,∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=-.………………………4分∴111)22ADE S DE AF ∆=⋅==………………………5分 20.(1)证明:连接OD . ………………………1分∵AB =AC , ∴B C ∠=∠. 又∵OB OD =, ∴1B ∠=∠.∴1C ∠=∠.∴OD ∥AC .∵DE ⊥AC 于E ,∴DE ⊥OD .∵点D 在⊙O 上,∴DE 与⊙O 相切. ………………………2分(2)解:连接AD .∵AB 为⊙O 的直径,∴∠ADB =90°.∵AB =6,sin B =55, ∴sin AD AB B =⋅=556.………………3分 ∵123290∠+∠=∠+∠=︒,∴13∠=∠.∴ 3.B ∠=∠在△AED 中,∠AED =90°.∵sin 3AE AD ∠==,∴65AE AD ===. ………………………4分 又∵OD ∥AE ,∴△FAE ∽△FOD . ∴FA AE FO OD=. ∵6AB =,∴3OD AO ==. ∴235FA FA =+. ∴2AF =. ………………………5分21.(1)13.………………………1分 (2)∵(3318)80%30++÷=,∴被小博同学抽取的监测点个数为30个. ………………………2分………………………3分(3)设去年同期销售x 万箱烟花爆竹.(135%)37x -=. 解得125613x =.………………………4分 ∴1212563719201313-=≈. 答:今年比去年同期少销售约20万箱烟花爆竹. ……………………… 5分22.(1………………………2分(2)①如图:(答案不唯一) ………………………4分………………………5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)依题意,可得抛物线的对称轴为212m x m-=-=.………………………1分 ∵抛物线与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,∴点B 的坐标为 (4,0).………………………2分(2)∵点B 在直线 y =12x +4m +n 上, ∴024m n =++①.∵点A 在二次函数2-2y mx mx n =+的图象上,∴044m m n =++②. ………………………3分 由①、②可得12m =,4n =-. ………………………4分 ∴ 抛物线的解析式为y =2142x x --,直线的解析式为y =122x -. ……………5分 (3)-502d <<. ………………………7分 24.(1)2AE =.………………………1分(2)线段AE 、CD 之间的数量关系为2AE CD =.………………………2分 证明:如图1,延长AC 与直线l 交于点G .依题意,可得∠1=∠2.∵∠ACB =90︒,∴∠3=∠4.∴BA BG =.∴CA =CG .………………………3分∵AE ⊥l ,CD ⊥l ,∴CD ∥AE .∴△GCD ∽△GAE .∴ 12CD GC AE GA ==.∴2AE CD =.………………………4分(3)解:当点F 在线段AB 上时,如图2,过点C 作CG ∥l 交AB 于点H ,交AE 于点G .∴∠2=∠HCB .∵∠1=∠2,∴∠1=∠HCB .∴CH BH =.∵∠ACB =90︒,∴∠3+∠1=∠HCB +∠4 =90︒.∴∠3=∠4.∴CH AH BH ==.∵CG ∥l ,∴△FCH ∽△FEB .∴ 56CFCHEF EB ==.设5,6CH x BE x ==,则10AB x =.∴在△AEB 中,∠AEB =90︒,8AE x =.由(2)得,2AE CD =.∵4CD =,∴8AE =.∴1x =.∴10,6,5AB BE CH ===.∵CG ∥l ,∴△AGH ∽△AEB . ∴12HGAHBE AB ==.图3图2∴3HG =.………………………5分∴8CG CH HG =+=.∵CG ∥l ,CD ∥AE ,∴四边形CDEG 为平行四边形.∴8DE CG ==.∴2BD DE BE =-=.……………………6分当点F 在线段BA 的延长线上时,如图3,同理可得5CH =,3GH =,6BE =.∴DE =2CG CH HG =-=.∴ 8BD DE BE =+=.∴2BD =或8.……………………7分25.解:(1)()2222y x mx m m x m m =-++=-+ ,……………………1分 ∴顶点坐标为C m ,m ().……………………2分(2)①2y x =+ 与抛物线222y x mx m m =-++交于A 、B 两点, ∴2222x x mx m m +=-++.解方程,得121,2x m x m =-=+.……………………4分A 点在点B 的左侧,∴(1,1),(2,4).A m m B m m -+++∴AB =……………………5分直线OC 的解析式为y x =,直线AB 的解析式为2y x =+,∴AB ∥OC ,两直线AB 、OC 之间距离h =∴11322APB S AB h =⋅=⨯= .………………………6分……………………8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
2013.6海淀区九年级第二学期数学期末练习一、选择题(本题共32分,每小题4分)1 . 6-的绝对值是A. 6- B.16 C. 16- D. 6 2. 2012年我国全年完成造林面积6 010 000公顷.将6 010 000用科学记数法表示为A. 76.0110⨯ B. 66.0110⨯ C. 70.60110⨯ D. 560.110⨯3.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若4AD =,2DB =,则DE BC 的值为 A. 12 B. 23 C. 34D. 2 4. 下列计算正确的是 A. 632a a a =⋅ B. 842a a a ÷= C. 623)(a a = D. a a a 632=+5.下列图形可以由一个图形经过平移变换得到的是A .B .C .D .6. 如图,⊙O 的半径为5,AB 为⊙O 的弦,OC ⊥AB 于点C .若3OC =,则AB 的长为A .4B .6C .8D .10 7. 甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:组员1 组员2 组员3 组员4 甲889597100乙 90 94 97 99设两组同学得分的平均数依次为x 甲,x 乙,得分的方差依次为2S 甲,2S 乙,则下列关系中完全正确的是A.x x =乙甲,22S S >乙甲B. x x =乙甲,22S S <乙甲 C.x x >乙甲,22S S >乙甲 D. x x <乙甲,22S S <乙甲 8.如图1,在矩形A B C D 中,1,3AB BC ==.将射线AC 绕着点A 顺时针旋转α(0α︒<≤180)︒得到射线AE ,点M 与点D 关于直线AE 对称.若15x α=︒,图中某点到点M 的距离为y ,表示y 与x 的函数关系的图象如图2所示,则这个点为图1中的A.点AB. 点BC. 点CD. 点D图1 图2二、填空题(本题共16分,每小题4分)9. 若分式241x x --的值为0,则x 的值等于____________. 10.如图,在△OAB 中,=90OAB ∠︒,则OB 的长为 .11. 如图,△ABC 内接于⊙O ,若⊙O 的半径为6,︒=∠60A ,则BC 的长为_____________.12.已知:n x ,'n x 是关于x 的方程244=0n n n a x a x a n -+-1()n n a a +>的两个实数根,'n n x x <,其中n 为正整数,且1a =1.(1)11'x x -的值为 ;(2)当n 分别取1,2,⋅⋅⋅,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为(11'x x -)的值,则20132012'x x -= . 三、解答题(本题共30分,每小题5分)13.计算:201272tan 60(3)3π-⎛⎫-+︒+- ⎪⎝⎭.14.解方程:2250x x --= .15.已知:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E .求证:CE AB =. 16. 已知:26x x +=,求代数式(21)(21)(3)7x x x x -+---的值. 17.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象与一次函数2+=x y 的图象的一个交点为)1(-,m A . (1)求反比例函数的解析式; (2)设一次函数2+=x y 的图象与y 轴交于点B ,若P 是y 轴上一点, 且满足PAB △的面积是3,直接写出点P 的坐标.18. 列方程(组)解应用题: 园博会招募志愿者,高校学生积极响应.据统计,截至2月28日和3月10日,高校志愿者报名人数分别为2.6万人和3.6万人,而志愿者报OACB名总人数增加了1.5万人,并且两次统计数据显示,高校志愿者报名人数与志愿者报名总人数的比相同.求截至3月10日志愿者报名总人数.四、解答题(本题共20分,每小题5分)19.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .若10BC =,45GDH ∠=︒,DG 82=,求CH 的长及ABCD的周长.20.如图,△ABC 中,E 是AC 上一点,且AE=AB ,BAC EBC ∠=∠21,以AB 为直径的⊙O 交AC 于点D ,交EB 于点F. (1)求证:BC 与⊙O 相切; (2)若18,sin 4AB EBC =∠=,求AC 的长. 21.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图 北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?22.如图1,四边形ABCD 中,AC 、BD 为它的对角线,E 为AB 边上一动点(点E 不与点A 、B 重合),EF ∥AC 交BC 于点F ,FG ∥BD 交DC 于点G ,GH ∥AC 交AD 于点H ,连接HE .记四边形EFGH 的周长为p ,如果在点E 的运动过程中,p 的值不变,则我们称四边形ABCD 为“Ω四边形”, 此时p 的值称为它的“Ω值”.经过探究,可得矩形是“Ω四边形”.如图2,矩形ABCD 中,若AB =4,BC =3,则它的“Ω值”为 .图1 图2 图3(1)等腰梯形 (填“是”或 “不是”)“Ω四边形”;(2)如图3,BD 是⊙O 的直径,A 是⊙O 上一点,=34AD AB =,,点C 为AB 上的一动点,将△DAB 沿CD 的中垂线翻折,得到△CEF .当点C 运动到某一位置时,以A 、B 、C 、D 、E 、F 中的任意四个点为顶点的“Ω四边形”最多,最多有 个. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:抛物线2(2)2y ax a x =+--过点(3,4)A .(1)求抛物线的解析式; (2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤. ①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范为 .24.如图1,在△ABC 中,AB =AC ,ABC α∠=. 过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD . (1)求证:AC AD =; (2)点G 为线段CD 延长线上一点,将射线GC 绕着点G 逆时针旋转β,与射线BD 交于点E . ①若βα=,2GD AD =,如图2所示,求证:2DEG BCD S S ∆∆=;②若2βα=,GD kAD =,请直接写出DEGBCDS S ∆∆的值(用含k 的代数式表示). 25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C的坐标为x ,y ().(1) 判断△OBC 的形状,并加以证明;(2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围); (3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .海淀区九年级第二学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分) 题 号 12345 6 7 8 答 案 D B B C BCAC二、填空题(本题共16分,每小题4分)题 号 9 101112 答 案223 4π2;8048三、解答题(本题共30分,每小题5分)13.计算:201272tan 60(3)3π-⎛⎫-+︒+- ⎪⎝⎭.解:原式933231=-+⨯+ ------------------------- 4分 103=-. ------------------------- 5分 14.解方程:2250x x --= . 解:225x x -=.22151x x -+=+.2(1)6x -=. ------------------------- 2分 16x -=±.------------------------- 3分 16x =±.∴1216,16x x =+=-.------------------------- 5分15. 证明:∵DC ⊥AC 于点C ,∴90.ACB DCE ∠+∠=︒∵90ABC ∠=︒, ∴90.ACB A ∠+∠=︒∴.A DCE ∠=∠ -------------------------1分 ∵DE ⊥BC 于点E , ∴90.E ∠=︒ ∴B E ∠=∠.在△ABC 和△CED 中,,,,B E A DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED .-------------------------4分∴CE AB =. -------------------------5分 16.解:原式=224137x x x --+- ------------------------2分 =2338x x +-. ------------------------3分∵26x x +=, ∴原式=23()8x x +-=368⨯--------------------------4分=10.-------------------------5分17.解:(1)∵ 点)1(-,m A 在一次函数2+=x y 的图象上, ∴ 3m =-. -------------------------1分 ∴ A 点的坐标为(3,1)--. ∵ 点A (3,1)--在反比例函数xky =的图象上, ∴ 3k =. -------------------------2分 ∴ 反比例函数的解析式为3y x=.-------------------------3分 (2)点P 的坐标为(0,0)或(0,4).-------------------------5分 (写对一个给1分)18. 解:设截至3月10日志愿者报名总人数为x 万人. -------------------------1分依题意,得3.6 2.6=1.5x x -. -------------------------3分 解得 5.4x =. -------------------------4分经检验, 5.4x =是原方程的解,且符合题意.答:截至3月10日志愿者报名总人数为5.4万人. -------------------------5分四、解答题(本题共20分,每小题5分) 19.解:∵四边形ABCD 是平行四边形,OFE D C BA∴AB CD =,AB ∥CD ,AD BC =. ∵HG ⊥AB 于点G , ∴90BGH H ∠=∠=︒.在△DHG 中,90H ∠=︒,45GDH ∠=︒,82DG =, ∴8DH GH ==.-------------------------1分 ∵E 为BC 中点,10BC =, ∴5BE EC ==. ∵BEG CEH ∠=∠, ∴△BEG ≌△CEH .∴142GE HE GH ===.-------------------------3分 在△EHC 中,90H ∠=︒,5CE =,4EH =, ∴3CH =.-------------------------4分 ∴5AB CD ==.∴30AB BC CD AD +++=.∴ABCD 的周长为30.-------------------------5分 20. (1)证明:连接AF .∵AB 为直径, ∴∠90AFB =︒. ∵AE AB =,∴△ABE 为等腰三角形.∴∠12BAF =∠BAC .∵BAC EBC ∠=∠21,∴∠BAF =∠.EBC -------------------------1分 ∴∠FAB +∠FBA =∠EBC +∠90FBA =︒. ∴∠90ABC =︒ .∴BC 与⊙O 相切. -------------------------2分 (2) 解:过E 作EG BC ⊥于点.G ∠BAF =∠EBC ,∴1sin sin 4BAF EBC ∠=∠=.在△AFB 中,∠90AFB =︒, ∵8AB =,∴BF AB =⋅sin ∠18 2.4BAF =⨯=--------------3分∴24BE BF ==.在△EGB 中,∠90EGB =︒,∴1sin 4 1.4EG BE EBC =⋅∠=⨯=------------------4分∵EG BC ⊥,AB ⊥BC, ∴EG ∥.AB∴△CEG ∽△.CAB∴CE EGCA AB =. ∴1.88CE CE =+ ∴8.7CE =∴8648.77AC AE CE =+=+= -------------------------5分21. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.---------------------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米. ------5分22.解: “Ω值”为10.---------------------2分(1)是;--------------------3分(2)最多有5个.--------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23解:(1)∵抛物线2(2)2y ax a x =+--过点(3,4)A ,∴93(2)24a a +--=. 解得 1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=. ∴1x =-或2.∴抛物线与x 轴交于点(1,0)A -,(2,0)B .-----3分 当2y =-时,222x x --=-. ∴0x =或1.∴抛物线与直线2y =-交于点(0,2)C -, (1,2)D -.∴C ,D 关于直线1y =-的对称点'(0,0)C ,'(1,0)D .----4分 ∴根据图象可得1-≤m ≤0或1≤m ≤2.----------------5分 ②k 的取值范围为k ≥4或k ≤4-.----------------7分 24.解:(1) ∵BD 平分ABC ∠,∴12∠=∠.∵AD ∥BC , ∴23∠=∠.∴13∠=∠.---------------1分 ∴AB AD =. ∵AB AC =,∴AC AD =.---------------2分 (2)①证明:过A 作AH BC ⊥于点H .∴90AHB ∠=.∵AB AC =,ABC α∠=, ∴ACB ABC α∠=∠=. ∴1802BAC α∠=︒-. 由(1)得=AB AC AD =.∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.∴12BDC BAC ∠=∠. ∴90GDE BDC α∠=∠=︒-.----------3分∵G ∠=β=αABC =∠,∴90G GDE ∠+∠=︒. ∴90DEG AHB ∠=∠=︒.∴△DEG ∽△AHB .------------------4分 ∵2GD AD =,AB AD =,∴22DEG AHB S GD S BA ∆∆==4. ∵AD ∥BC ,∴2BCD ABC AHB S S S ∆∆∆==.∴2DEG BCD S S ∆∆=.----------------------5分 ②2=DEG BCDS k S ∆∆. -------------------------7分 25.解:(1)△OBC 为等腰三角形.---------1分 证明:如图1,∵AB BC ⊥, ∴90ABC ∠=︒. ∵OBA α∠=,∴90CBO α∠=︒-. ∵2BCO α∠=,∴90BOC CBO α∠=︒-=∠. ∴BC OC =.∴ △OBC 为等腰三角形.---------------2分图1(2)y 与x 的函数关系式为y =-14x 2+1.----4分 (3)过D 作DF ^l 于F ,DG BC ⊥于G 交直线OA 于H . ∵C 为抛物线上异于顶点的任意一点,且BC OC =, ∴DO =DF .-------------------------5分 设DO =DF =a ,BC =OC =b , 则DF AH BG a ===,DC a b =+. ①当点C 在x 轴下方时,如图2, ∵2OA =,∴2,OH a CG b a =-=-. ∵OH ∥CG ,∴△DOH ∽△DCG . ∴OH DOCG DC=. ∴2a ab a a b -=-+.∴ab a b =+.∴CD =CO ×DO .------------------------7分 ②当点C 在x 轴上方时,如图3,2OH a =-,CG a b =-.同理可证CD =CO ×DO .③当点C 在x 轴上时,如图4,2CO DO ==.∴CD CO DO =⋅.综上所述,CD CO DO =⋅.------------------8分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)图 3图 4。
2013年北京市海淀区高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.2.(5分)(2013•海淀区二模)已知数列{a n}是公比为q的等比数列,且a1•a3=4,a4=8,则3.(5分)(2013•海淀区二模)如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为()B=×4.(5分)(2013•海淀区二模)某空间几何体的三视图如图所示,则该几何体的表面积为()××5.(5分)(2013•海淀区二模)在四边形ABCD中,“∃λ∈R,使得AB=λDC,AD=λBC”是“四6.(5分)(2013•海淀区二模)用数字1,2,3,4,5组成没有重复数字的五位数,且5不22×7.(5分)(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x 的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,B由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以e==1+8.(5分)(2013•海淀区二模)若数列{a n}满足:存在正整数T,对于任意正整数n都有a n+T=a n 成立,则称数列{a n}为周期数列,周期为T.已知数列{a n}满足a1=m(m>0),则下列结论中错误的是(),因为,,,,所以;所以可知当二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•海淀区二模)在极坐标系中,极点到直线ρcosθ=2的距离为2.10.(5分)(2013•海淀区二模)已知,,,则a,b,c按照从大到小排列为c>b>a.a=ln<b=sin≈<,=>,11.(5分)(2013•海淀区二模)直线l1过点(﹣2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为.x3y+2﹣x+y=012.(5分)(2013•海淀区二模)在△ABC中,∠A=30°,∠B=45°,,则b=2;S△ABC=.=2=absinC==13.(5分)(2013•海淀区二模)正方体ABCD﹣A1B1C1D1的棱长为1,若动点P在线段BD1上运动,则的取值范围是[0,1].建立空间直角坐标系,求出有关点的坐标可得、、的坐标,再由,可得所在的直线为轴,以轴,以=上运动,∴λ•=++=14.(5分)(2013•海淀区二模)在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线为W.(Ⅰ)给出下列三个结论:①曲线W关于原点对称;②曲线W关于直线y=x对称;③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于;其中,所有正确结论的序号是②③;(Ⅱ)曲线W上的点到原点距离的最小值为.;=;三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•海淀区二模)已知函数.(Ⅰ)求函数f(x)的定义域;(Ⅱ)求函数f(x)的单调增区间.)﹣≠,﹣=1+sinx+cosx=1+sin x+,﹣<+<,+﹣)16.(13分)(2013•海淀区二模)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p,获得50元奖金的概率为2%.(Ⅰ)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;(Ⅱ)为了能够筹得资金资助福利事业,求p的取值范围.时,即时,福彩中心可以获取资金资助福利事业17.(14分)(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.(Ⅰ)求证:平面EFH∥平面PBC;(Ⅱ)求直线HE与平面PHB所成角的正弦值;(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.的法向量,由可赋值,可求得(<,EH=PE=EA=PA=2EF=2,,,的法向量=,,),即,则=,﹣,=所成角的正弦值为EH=PE=EA=EF=PB=218.(13分)(2013•海淀区二模)已知函数f(x)=e x,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).(Ⅰ)当a=0时,求函数S(t)的单调区间;(Ⅱ)当a>2时,若∃t0∈[0,2],使得S(t0)≥e,求a的取值范围.先求,因为,其中,时,,,时,,,,其中时,,令时,解得对)单调递增,对)取得最大值19.(14分)(2013•海淀区二模)已知椭圆的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.(Ⅰ)求椭圆M的方程;(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点,求△AOB(O为原点)面积的最大值.a=(Ⅰ)因为椭圆=1,的方程为:,﹣)|2x=≤=,当且仅不当时,取得最大值为所以=所以,又,化简得到d=,=|AB||d|=…±取得最大值为.取得最大值为20.(13分)(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ)数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);(Ⅱ)数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与a的所有可能值;(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.数之和必然小于等于个数之和必然小于等于。
初三数学分类试题—证明题西城1.如图,点C 是线段AB 的中点,点D ,E 在直线AB 的同侧,∠ECA =∠DCB ,∠D =∠E .求证:AD =BE .2.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan ∠BDC= 63. (1)求BD 的长; (2)求AD 的长.海淀3.:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E . 求证:CE AB =.4.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .假设10BC =,45GDH ∠=︒,DG 82=,求CH 的长与ABCD 的周长.东城5. :如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠.求证:AE=CF .6.:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E .(1〕求证:AM =2CM ;〔2〕假设12∠=∠,23CD =,求ME 的值.7.:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF . 求证:AB ∥CD .8.如图,在平行四边形ABCD 中,AD =4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.房山9:如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , AE =BF ,A B ∠=∠. 求证:DE =CF .10.如图,四边形ABCD 中,AB ∥CD ,AB =13,CD =4,点E 在边AB 上,DE ∥BC .假设CB CE =,且3tan =∠B ,求四边形ABCD 的面积.FDBE FCEBAA C DB E F O第9题图 第10题图E门头沟11.:如图,在△ABC 中,∠ABC =90º,BD ⊥AC 于点D ,点E 在BC 的延长线上,且BE =AB ,过点E 作EF ⊥BE ,与BD 的延长线交于点F .求证:BC =EF .门头沟12.如图,在四边形ABCD 中,∠DAB =60º,AC 平分∠DAB ,BC ⊥AC ,AC 与BD交于点E ,AD =6,CE 437,7tan 33BEC ∠=BC 、DE 的长与四边形ABCD 的面积.怀柔13.如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:AC=DF . 证明:13题图14. 如图:在菱形ABCD 中,O 是对角线BD 上的一点.连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .假设460,10AD DCB BS ===,∠. 〔1〕求AS 的长度;〔2〕求OR 的长度. 解:大兴15.:如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,以AD 为斜边在△ABC 外作等腰直角三角形AED ,连结BE 、EC .试猜测线段BE 和EC 的数量关系与位置关系,并证明你的猜测.ABCDFE14题图A B CDEACDE16.如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .假设∠AFC=2∠D ,连结AC 、BE.求证:四边形ABEC 是矩形.丰台 17.:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.18.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB 的长.石景山19.如图,四边形ABCD 是正方形,G 是BC 上任意一点〔点G 与B 、C 不重合〕,AE ⊥DG 于E ,CF ∥AE 交DG 于F .请在图中找出一对全等三角形,并加以证明.证明:20.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E .〔1〕假设点E 在AD 边上,BM =27,求AE 的长;〔2〕假设点E 在对角线AC 上,请直接写出AE 的取值围:. 解:昌平21.如图,AC //FE ,点F 、C 在BD 上,AC=DF ,BC=EF .求证:AB=DE .FE D C B A A DB C E D AB CDC GEN MDCBA ABCDEF22. 如图,AC 、BD 是四边形ABCD 的对角线,∠DAB =∠ABC =90°,BE ⊥BD 且BE =BD ,连接EA 并延长交CD 的延长线于点F . 如果∠AFC =90°,求∠DAC 的度数.密云23.如图,在△ABC 中,AB =AC ,AD 平分∠BAC , 求证:∠DBC =∠DCB 。
2013海淀区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣6的绝对值是()A.﹣6 B.﹣C.D.62.(4分)2012年我国全年完成造林面积 6 010 000公顷.将 6 010 000用科学记数法表示为()A.6.01×107 B.6.01×106 C.0.601×107D.60.1×1053.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为()A.B.C.D.24.(4分)下列计算正确的是()A.a2?a3=a6B.a8÷a4=a2C.(a3)2=a6D.2a+3a=6a5.(4分)下列图形可以由一个图形经过平移变换得到的是()A.B.C.D.6.(4分)如图,⊙O的半径为5,AB为⊙O的弦,OC⊥AB于点C.若OC=3,则AB的长为()A.4 B.6 C.8 D.107.(4分)甲、乙两个学习小组各有4名同学,在某次测验中,他们的得分情况如下表所示:组员1 组员2 组员 3 组员4甲88 95 97 100乙90 94 97 99设两组同学得分的平均数依次为,,得分的方差依次为,,则下列关系中完全正确的是()A., B.,C.,D.,8.(4分)如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A.点 A B.点 B C.点 C D.点 D二、填空题(本题共16分,每小题4分)9.(4分)若分式的值为0,则x的值等于.10.(4分)如图,在△OAB中,∠OAB=90°,则OB的长为.11.(4分)如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则的长为.12.(4分)已知:x n,是关于x的方程a n x2﹣4a n x+4a n﹣n=0(a n>a n+1)的两个实数根,,其中n为正整数,且a1=1.(1)的值为;(2)当n分别取1,2,…,2013时,相对应的有2013个方程,将这些方程的所有实数根按照从小到大的顺序排列,相邻两数的差恒为()的值,则=.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)解方程:x2﹣2x﹣5=0.15.(5分)已知:如图,在△ABC中,∠ABC=90°.DC⊥AC于点C,且CD=CA,DE⊥BC交BC的延长线于点E.求证:AB=CE.16.(5分)已知:x2+x=6,求代数式(2x﹣1)(2x+1)﹣x(x﹣3)﹣7的值.17.(5分)如图,在平面直角坐标系xOy中,反比例函数的图象与一次函数y=x+2的图象的一个交点为A(m,﹣1).(1)求反比例函数的解析式;(2)设一次函数y=x+2的图象与y轴交于点B,若P是y轴上一点,且满足△PAB的面积是3,直接写出点P的坐标.18.(5分)列方程(组)解应用题:园博会招募志愿者,高校学生积极响应.据统计,截至2月28日和3月10日,高校志愿者报名人数分别为 2.6万人和 3.6万人,而志愿者报名总人数增加了 1.5万人,并且两次统计数据显示,高校志愿者报名人数与志愿者报名总人数的比相同.求截至3月10日志愿者报名总人数.四、解答题(本题共20分,每小题5分)19.(5分)如图,?ABCD中,E为BC中点,过点E作AB的垂线交AB于点G,交DC的延长线于点H,连接DG.若BC=10,∠GDH=45°,DG=,求CH的长及?ABCD的周长.20.(5分)如图,△ABC中,E是AC上一点,且AE=AB,∠EBC=∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,sin∠EBC=,求AC的长.21.(5分)北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市常住人口统计表年份人口(万人)2005 15402010 19612011 20202012 2055(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?22.(5分)如图1,四边形ABCD中,AC、BD为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为P,如果在点E 的运动过程中,P的值不变,则我们称四边形ABCD为“Ω四边形”,此时P的值称为它的“Ω值”.经过探究,可得矩形是“Ω四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“Ω值”为.(1)等腰梯形(填“是”或“不是”)“Ω四边形”;(2)如图3,BD是⊙O的直径,A是⊙O上一点,AD=3,AB=4,点C为上的一动点,将△DAB沿CD的中垂线翻折,得到△CEF.当点C运动到某一位置时,以A、B、C、D、E、F中的任意四个点为顶点的“Ω四边形”最多,最多有个.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知:抛物线y=ax2+(a﹣2)x﹣2过点A(3,4).(1)求抛物线的解析式;(2)将抛物线y=ax2+(a﹣2)x﹣2在直线y=﹣1下方的部分沿直线y=﹣1翻折,图象其余的部分保持不变,得到的新函数图象记为G.点M(m,y1)在图象G上,且y1≤0.①求m的取值范围;②若点N(m+k,y2)也在图象G上,且满足y2≥4恒成立,则k的取值范围为.24.(7分)如图1,在△ABC中,AB=AC,∠ABC=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求证:AC=AD;(2)点G为线段CD延长线上一点,将射线GC绕着点G逆时针旋转β,与射线BD交于点E.①若β=α,GD=2AD,如图2所示,求证:S△DEG=2S△BCD;②若β=2α,GD=kAD,请直接写出的值(用含k的代数式表示).25.(8分)在平面直角坐标系xOy中,点A的坐标是(0,2),过点A作直线l垂直y轴,点B是直线l上异于点A 的一点,且∠OBA=α.过点B作直线l的垂线m,点C在直线m上,且在直线l的下方,∠OCB=2α.设点C的坐标为(x,y).(1)判断△OBC的形状,并加以证明;(2)直接写出y与x的函数关系式(不要求写自变量的取值范围);(3)延长CO交(2)中所求函数的图象于点D.求证:CD=CO?DO.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】|﹣6|=6.故选D.2.【解答】将6 010 000用科学记数法表示为: 6.01×106.故选:B.3.【解答】∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=4,DB=2,∴===.则的值为.故选:B.4.【解答】A、a2?a3=a5,原式计算错误,故本选项错误;B、a8÷a4=a4,原式计算错误,故本选项错误;C、(a3)2=a6,原式计算正确,故本选项正确;D、2a+3a=5a,原式计算错误,故本选项错误;故选C.5.【解答】A、图形的方向发生变化,不符合平移的性质,不属于平移得到,故此选项错误;B、图形的大小没有发生变化,符合平移的性质,属于平移得到,故此选项正确;C、图形的方向发生变化,不符合平移的性质,不属于平移得到,故此选项错误;D、图形的大小发生变化,不属于平移得到,故此选项错误.故选:B.6.【解答】连接OA,∵OC⊥AB,OA=5,OC=3,∴AC===4,∵OC过圆心,∴AB=2AC=2×4=8.故选C.7.【解答】∵甲的平均数是:=(88+95+97+100)÷4=95,乙的平均数是:=(90+94+97+99)÷4=95,∴=,=[(88﹣95)2+(95﹣95)2+(97﹣95)2+(100﹣95)2]=,=[(90﹣95)2+(94﹣95)2+(97﹣95)2+(99﹣95)2]=,∴>,故选A.8.【解答】AM=,A不被选择.当α=0°和α=30°时,BM值相等,不符合图2,B不被选择.DM=2FM,y轴的刻度翻倍.波形的形状与图二相似,但y的最小值是0,故D不选择.CM,见波形图.波形的形状与图二相似,y的最小值>0.比较之下,CM的波形接近图二.该点是C点.故选:C.二、填空题(本题共16分,每小题4分)9.【解答】由题意,得2x﹣4=0,解得,x=0.经检验,当x=2时,=0.故填:2.10.【解答】∵AO=3cm,∠AOB=30°,∴cos30°=,∴OB==2.故答案为2.11.【解答】连接OB,OC,∵∠A=60°,∴∠BOC=120°,则===4π.故答案为:4π.12.【解答】(1)当n=1时,将a1=1代入方程得:x2﹣4x+3=0,解得:x1=1,x′1=3,则x′1﹣x1=2;故答案为:2;(2)由求根公式得:x=2±,据a n>a n﹣1,得到<<<…<,当n=1时,x1=1,x′1=3;当n=2时,x2<x1,x′2>x′1,当n=3时,x3<x2,x′3>x′2,依此类推,当n=2012时,x2012<x2011,x′2012>x′2011,当n=2013时,x2013<x2012,x′2013>x′2012,∴根由小到大排列为:x2013,x2012,…,x1,x′1,…,x′2013,共4026项,∵等差且d=2,∴x′2013=x2012+(4026﹣2)×2=8048.三、解答题(本题共30分,每小题5分)13.【解答】原式=9﹣3+2×+1=10﹣.14.【解答】x2﹣2x+1=6,那么(x﹣1)2=6,即x﹣1=±,则x1=1+,x2=1﹣.15.【解答】证明:∵DC⊥AC于点C,∴∠ACB+∠DCB=90°∵∠ABC=90°,∴∠ACB+∠A=90°∴∠A=∠DCE∵DE⊥BC于点E,∴∠E=90°∴∠B=∠E.∵在△ABC和△CED中,∴△ABC≌△CED(AAS).∴AB=CE.16.【解答】:原式=4x2﹣1﹣x2+3x﹣7=3x2+3x﹣8,∵x2+x=6,∴原式=3(x2+x)﹣8=18﹣8=10.17.【解答】(1)∵点A(m,﹣1)在一次函数y=x+2的图象上,∴m=﹣3.∴A点的坐标为(﹣3,﹣1).∵点A (﹣3,﹣1)在反比例函数y=的图象上,∴k=3.∴反比例函数的解析式为:y=.(2)∵一次函数y=x+2的图象与y轴交于点B,满足△PAB的面积是3,A点的坐标为(﹣3,﹣1),∴△ABP的高为3,底边长为:2,∴点P的坐标为(0,0)或(0,4).18.【解答】设截至3月10日志愿者报名总人数为x万人.依题意,得=.解得;x=5.4.经检验,x=5.4是原方程的解,且符合题意.答:截至3月10日志愿者报名总人数为 5.4万人.四、解答题(本题共20分,每小题5分)19.【解答】∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC.∵HG⊥AB于点G,∴∠BGH=∠H=90°.在△DGH中,∠H=90°,∠GDH=45°,DG=8,∴DH=GH=8.∵E为BC中点,BC=10,∴BE=EC=5.∵∠BEG=∠CEH,∴△BEG≌△CEH.∴GE=HE=GH=4.在△ECH中,∠H=90°,EC=5,EH=4,∴CH=3.∴AB=CD=5.∴AB+BC+CD+AD=30.∴?ABCD的周长为30.20.【解答】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.∵AE=AB,∴△ABE为等腰三角形.∴∠BAF=∠BAC.∵∠EBC=∠BAC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切.(2)解:过E作EG⊥BC于点G,∵∠BAF=∠EBC,∴sin∠BAF=sin∠EBC=.在△AFB中,∠AFB=90°,∵AB=8,∴BF=AB?sin∠BAF=8×=2,∴BE=2BF=4.在△EGB中,∠EGB=90°,∴EG=BE?sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.21.【解答】(1)根据题意得:2010年人均公共绿地面积为11+4=15(平方米),补全条形统计图,如图所示:(2)根据题意得:2055÷75%=2740(万人).答:预计2020年北京市常住人口将达到2740万人;(3)根据题意得:2740×18﹣1540×11=32380(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米.22.【解答】∵EF∥AC,∴=,同理,=,=,∴=,∴EH∥BD.∵EF∥AC,∴==,同理,=,∴+===1,又∵AC=BD,∴EF+GF=AC,同理可证:EH+GH=AC.∴四边形EFGH的周长是2AC=10.(1)同上,可证得四边形EFGH的周长等于2AC,则等腰梯形是Ω四边形;(2)根据折叠的性质可得:BD=CF,AD=CE,AB=EF,易得四边形BCDF,四边形ACDE,四边形BAEF,为Ω四边形.当C点运动到中点时,此时还有两个Ω四边形:四边形ADFC,四边形BCED.则Ω四边形有:四边形BCDF,四边形ACDE,四边形BAEF,四边形ADFC,四边形BCED.共5个.故答案是:10,是,5.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)∵抛物线y=ax2+(a﹣2)x﹣2过点A(3,4),∴4=9a+3(a﹣2)﹣2,解得a=1,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵y=x2﹣x﹣2,∴当y=0时,x2﹣x﹣2=0,解得x=﹣1或2,∴y=x2﹣x﹣2与x轴交于点(﹣1,0),(2,0).当y=﹣1时,x2﹣x﹣2=﹣1,解得x=,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣),它关于直线y=﹣1对称点的坐标为(,),∴当x≤或x≥时,图象G的解析式不变,仍然为y=x2﹣x﹣2;当<x<时,图象G的解析式为y=﹣(x﹣)2+,即y=﹣x2+x,当y=0时,﹣x2+x=0,解得x=0或1,∴如果点M(m,y1)在图象G上,且y1≤0时,﹣1≤m≤0或1≤m≤2;②由图象可知,y≥4时,x2﹣x﹣2≥4,解得x≤﹣2或x≥3.∴m+k≤﹣2或m+k≥3,又∵﹣1≤m≤0或1≤m≤2,∴k≤﹣4或k≥4.故答案为k≤﹣4或k≥4.24.【解答】(1)证明:∵BD平分∠ABC,∴∠1=∠2.∵AD∥BC,∴∠2=∠3.∴∠1=∠3.∴AB=AD.∵AB=AC,∴AC=AD.(2)①证明:过A作AH⊥BC于点H.由题意可得:∠AHB=90°.∵AB=AC,∠ABC=α,∴∠ACB=∠ABC=α.∴∠BAC=180°﹣2α.由(1)得AB=AC=AD.∴点B、C、D在以A为圆心,AB为半径的圆上.∴∠BDC=∠BAC.∴∠GDE=∠BDC=90°﹣α,∵∠G=β=α=∠ABC,∴∠G+∠GDE=90°.∴∠DEG=∠AHB=90°.∴△DEG∽△AHB.∵GD=2AD,AB=AD,∴==4.∵AD∥BC,∴S△BCD=S△ABC=2S△ABH.∴S△DEG=2S△BCD;②如图3,=k2.理由:过A作AH⊥BC于点H,作∠DGE的平分线GF,∵由①得,∠DGF+∠GDE=90°,∵∠AHB=∠DFG=90°.又∵∠ABC=∠DGF=α,∴△DFG∽△AHB.又∵AB=AD,∴===k2.∵AB=AC,AH⊥BC,∴BC=2BH=2CH,∴S△ABC=2S△AHB.∵∠DGF=∠EGF,GF⊥DE,∴DE=2DF=2EF,∴S△DEG=2S△DFG,∴==k2.又∵S△ABC=S△BCD,∴=k2.25.【解答】(1)△OBC为等腰三角形.证明:如图1,∵AB⊥BC,∴∠ABC=90°.∵∠OBA=α,∴∠CBO=90°﹣α.∵∠OCB=2α,∴∠BOC=90°﹣α=∠CBO.∴BC=OC.∴△OBC为等腰三角形.(2)∵l⊥y轴,m⊥l,点A的坐标是(0,2),点C的坐标为(x,y),∴B(x,2),∵由(1)知,BC=OC,∴=|2﹣y|,整理得到y=﹣x2+1.∴y与x的函数关系式为y=﹣x2+1.(3)证明:如图2,设直线OC的解析式为y=kx(k≠0).根据题意知,点C、D是过原点的直线OC与抛物线y=﹣x2+1的两个交点.故可设C(x1,kx1),D(x2,kx2).显然,x1、x2是关于x的方程kx=﹣x2+1,即x2+kx﹣1=0的两个根.∴由韦达定理,得x1+x2=﹣4k,x1?x2=﹣4,∴x1﹣x2=(x1+x2)2﹣4x1?x2===4.∵CD==|x1﹣x2|?,CO=,DO=,∴====1,∴CD=CO?DO.。
2013年北京市各区中考二模试题汇编之--------代几综合题2013年海淀二模25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C 的坐标为x ,y ().(1) 判断△OBC 的形状,并加以证明;(2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围); (3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .2013年西城二模25.如图1,在平面直角坐标系xOy 中,直线l 和抛物线W 交于A ,B 两点,其中点A 是抛物线W 的顶点.当点A 在直线l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB 的长度保持不变. 应用上面的结论,解决下列问题:如图2,在平面直角坐标系xOy 中,已知直线1:2l y x =-.点A 是直线1l 上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物线21:C y x bx c =-++与直线1l 的另一个交点为点B . (1) 当0t =时,求抛物线1C 的解析式和AB 的长;(2) 当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;(3) 过点A 作垂直于y 轴的直线交直线21:2l y x =于点C .以C 为顶点的抛物线22:C y x mx n =++与直线2l 的另一个交点为点D . ①当AC ⊥BD 时,求t 的值;②若以A ,B ,C ,D 为顶点构成的图形是凸四边形,直接写出满足条件的t 的取值范围.2013年石景山二模25.(1)如图1,把抛物线2y x =-平移后得到抛物线1C ,抛物线1C 经过点(4,0)A -和原点(0,0)O ,它的顶点为P ,图1图2 备用图它的对称轴与抛物线2y x =-交于点Q ,则抛物线1C 的解析式为____________;图中阴影部分的面积为_____. (2)若点C 为抛物线1C 上的动点,我们把90ACO ∠=时的△ACO 称为抛物线1C 的内接直角三角形.过点(1,0)B 做x 轴的垂线l ,抛物线1C 的内接直角三角形的两条直角边所在直线AC 、CO 与直线l 分别交于M 、N 两点,以MN 为直径的⊙D 与x 轴交于E 、F 两点,如图2.请问:当点C 在抛物线1C 上运动时,线段EF 的长度是否会发生变化?请写出并证明你的判断.2013年朝阳二模24.如图,在平面直角坐标系xOy 中,抛物线y = ax 2+bx +4与x 轴交于点A (-2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.(1)求抛物线的解析式;(2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.2013年门头沟二模25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1图 2P Q E yxA B D O C G y x B A D C O 备用图y x B A D C O2013年顺义二模 25、已知抛物线c bx x y ++-=241与x 轴交于A 、B ,与y 轴交于点C ,连结AC 、BC ,D 是线段OB 上一动点,以CD 为一边向右侧作正方形CDEF ,连结BF 。
海淀区高三年级第二学期期末练习数 学 (理科) 2013.5本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A.32B. 36C. 42D.487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 A. 2 B.12+ C.13+ D.23+8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B. 若2m =,则数列{}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9.在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30 ,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,2A B a ∠=∠== ,则_____;b =C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.666左视图5俯视图主视图Ω14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数cos2()1π2sin()4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间. 16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围. 17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC 上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点.(I) 求证:平面//EFH 平面PBC ; (II)求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.18.(本小题满分13分)已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t .(I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围. 19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求AOB ∆(O 为原点)面积的最大值. 20.(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);CDBA图1H E CPBAF图21 2 3 7-2-1 01表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;22221212a a a a a a a a ------(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A , 表2能否经过有限次“操作”以后,使得到的数表每行的各数之 和与每列的各数之和均为非负整数?请说明理由.海淀区高三年级第二学期期末练习数 学 (理科) 参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BDCBCABD二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分) 9. 2 10.c b a >>11. (1,3) 12.312;2+ 13.[0,1]14.②③;22-三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为πsin()04x -≠所以ππ,4x k -≠Z k ∈ …………………2分 所以函数的定义域为π{|π+,4x x k ≠Z}k ∈……………………4分(II )因为22cos sin ()1sin cos x xf x x x-=-- …………………6分= 1(cos sin )x x -+1sin cos x x =++π= 12()4x ++ …………………8分又sin y x =的单调递增区间为 ππ(2π,2π)22k k -+ ,Z k ∈令 πππ2π2π242k x k -<+<+解得 3ππ2π2π44k x k -<<+ ………………11分 又注意到ππ+,4x k ≠所以()f x 的单调递增区间为3ππ(2π,2π)44k k -+, Z k ∈ …………………13分16. 解:(I )设至少一张中奖为事件A则2()10.50.75P A =-= …………………4分(II) 设福彩中心卖出一张彩票可能获得的资金为ξ 则ξ可以取5,0,45,145-- ………………6分 ξ的分布列为ξ5 0 45- 145-P50%50%2%p --2%p…………………8分 所以ξ的期望为550%0(50%2%)(45)2%(145)E p p ξ=⨯+⨯--+-⨯+-⨯2.590%145p =-- …………………11分 所以当 1.61450p ->时,即8725p < …………………12分 所以当80725p <<时,福彩中心可以获取资金资助福利事业…………………13分 17.解:(I )因为点P 在平面ABC 上的正投影H 恰好落在线段AC 上 所以PH ⊥平面ABC ,所以PH ⊥AC ………………1分 因为在直角梯形ABCD 中,90ABC DAB ∠=∠= ,30CAB ∠= ,2BC =,4AD =所以4AC =,60CAB ∠= ,所以ADC ∆是等边三角形,所以H 是AC 中点,…………2分 所以//HE PC …………………3分 同理可证//EF PB ,又,HE EF E CP PB P == 所以//EFH PBC 平面PBC …………………5分 (II )在平面ABC 内过H 作AC 的垂线如图建立空间直角坐标系,则(0,2,0)A -,(0,0,23)P ,(3,1,0)B …………………6分因为(0,1,3)E -,(0,1,3)HE =-设平面PHB 的法向量为(,,)n x y z = 因为(3,1,0)HB = ,(0,0,23)HP =所以有00HB n HP n ⎧⋅=⎪⎨⋅=⎪⎩,即300x y z ⎧+=⎪⎨=⎪⎩,令3,x =则3,y =- 所以 (3,3,0)n =-…………………8分 33cos ,4||||223n HE n HE n HE ⋅<>===⋅⋅…………………10分所以直线HE 与平面PHB 所成角的正弦值为34………………11分 (III)存在,事实上记点E 为M 即可 …………………12分因为在直角三角形PHA 中,122EH PE EA PA ====, …………………13分 在直角三角形PHB 中,点4,PB =122EF PB == 所以点E 到四个点,,,P O C F 的距离相等 …………………14分 18.解: (I) 因为1()||e 2t S t t a =-,其中t a ≠ ………………2分 当0a =,1()||e 2t S t t =,其中0t ≠ 当0t >时,1()e 2t S t t =,1'()(1)e 2t S t t =+,所以'()0S t >,所以()S t 在(0,)+∞上递增, ……………4分 当0t <时,1()e 2t S t t =-,1'()(1)e 2t S t t =-+,令1'()(1)e 02t S t t =-+>, 解得1t <-,所以()S t 在(,1)-∞-上递增 令1'()(1)e 02t S t t =-+<, 解得1t >-,所以()S t 在(1,0)-上递减 ……………7分综上,()S t 的单调递增区间为(0,)+∞,(,1)-∞-()S t 的单调递增区间为(1,0)-(II )因为1()||e 2t S t t a =-,其中t a ≠ 当2a >,[0,2]t ∈时,1()()e 2t S t a t =-因为0[0,2]t ∃∈,使得0()e S t ≥,所以()S t 在[0,2]上的最大值一定大于等于e1'()[(1)]e 2t S t t a =---,令'()0S t =,得1t a =- …………………8分当12a -≥时,即3a ≥时1'()[(1)]e 02t S t t a =--->对(0,2)t ∈成立,()S t 单调递增所以当2t =时,()S t 取得最大值21(2)(2)e 2S a =-令21(2)e e 2a -≥ ,解得 22ea ≥+ , Fz yxHECP BA所以3a ≥ …………………10分 当12a -<时,即3a <时1'()[(1)]e 02t S t t a =--->对(0,1)t a ∈-成立,()S t 单调递增1'()[(1)]e 02t S t t a =---<对(1,2)t a ∈-成立,()S t 单调递减所以当1t a =-时,()S t 取得最大值11(1)e 2a S a --=令11(1)e e 2a S a --=≥ ,解得ln 22a ≥+所以ln 223a +≤< …………………12分综上所述,ln 22a +≤ ………13分19.解:(I)因为椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以3,1a b ==,椭圆M 的方程为2213x y += ………………4分 (II)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,则1212,x x y y =-=所以22222111111111111=|2|||||||||1(1)(3)2333AOB x x S x y x y x x x x ∆==-=-=-因为22221111(3)3(3)22x x x x +--≤=, 所以32AOB S ∆≤,当且仅当16||2x =时,AOB S ∆取得最大值为32……………7分当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2213y kx tx y =+⎧⎪⎨+=⎪⎩,代入得到222(31)6330k x kt t +++-= 当224(933)0k t ∆=+->, 即2231k t +>①方程有两个不同的解 又122631kt x x k -+=+,1223231x x ktk +-=+ …………………8分 所以122231y y t k +=+,又1212112202y y x x k ++=-+-,化简得到2314k t += ②代入①,得到04t << ………………10分 又原点到直线的距离为2||1t d k =+22221224(933)||1||131k t AB k x x kk +-=+-=++所以222224(933)11||=||||122311AOB k t t S AB d k k k ∆+-=+++ 化简得到21=3(4)4AOB S t t ∆- ……………12分 因为04t <<,所以当2t =时,即73k =±时,AOB S ∆取得最大值32综上,AOB ∆面积的最大值为32……………14分 20.(I )解:法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列…………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果首先操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -, 这两个数中,必须有一个为负数,另外一个为非负数,所以 12a ≤或52a ≥当12a ≤时,则接下来只能操作第一行, 22221212a a a a a a a a ------此时每列之和分别为2222,22,22,2a a a a --- 必有2220a -≥,解得0,1a =- 当52a ≥时,则接下来操作第二行 22221212a a a a a a a a ------此时第4列和为负,不符合题意. …………6分 ② 如果首先操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a当1a =时,每列各数之和已经非负,不需要进行第二次操作,舍掉 当1a ≠时,22a -,22a -至少有一个为负数,所以此时必须有2220a -≥,即11a -≤≤,所以0a =或1a =- 经检验,0a =或1a =-符合要求综上:0,1a =- ………9分(III )能经过有限次操作以后,使得得到的数表所有的行和与所有的列和均为非负实数。
海淀区九年级第二学期期末练习
16. 已知:26x x +=,求代数式(21)(21)(3)7x x x x -+---的值.
17.如图,在平面直角坐标系xOy 中,反比例函数x
k y =的
图象与一次函数2+=x y 的图象的一个交点为)1(-,m A .
(1)求反比例函数的解析式;
(2)设一次函数2+=x y 的图象与y 轴交于点B ,若P 是
y 轴上一点, 且满足PAB △的面积是3,直接写出点P 的
坐标.
18. 列方程(组)解应用题: 园博会招募志愿者,高校学生积极响应.据统计,截至2月28日和3月10日,高校志愿者报名人数分别为2.6万人和3.6万人,而志愿者报名总人数增加了1.5万人,并且两次统计数据显示,高校志愿者报名人数与志愿者报名总人数的比相同.求截至3月10日志愿者报名总人数.
四、解答题(本题共20分,每小题5分)
19.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线
交AB 于点G ,交DC 的延长线于点H ,连接DG .若
10BC =,45GDH ∠=︒,DG =,求CH 的长及
ABCD 的周长.
20.如图,△ABC 中,E 是AC 上一点,且AE=AB ,
BAC EBC ∠=∠21,以AB 为直径的⊙O 交AC 于点D ,交EB 于点F .
(1)求证:BC 与⊙O 相切;
(2)若18,sin 4
AB EBC =∠=,求AC 的长.
22.如图1,四边形ABCD 中,AC 、BD 为它的对角线,E 为AB 边上一动点(点E 不与
点A 、B 重合),EF ∥AC 交BC 于点F ,FG ∥BD 交DC 于点G ,GH ∥AC 交AD 于点H ,连接HE .记四边形EFGH 的周长为p ,如果在点E 的运动过程中,p 的值不变,则我们称四边形ABCD 为“Ω四边形”, 此时p 的值称为它的“Ω值”.经过探究,可得矩形是“Ω四边形”.如图2,矩形ABCD 中,若AB =4,BC =3,则它的“Ω值”为 .
图1 图2 图3
(1)等腰梯形 (填“是”或 “不是”)“Ω四边形”;
(2)如图3,BD 是⊙O 的直径,A 是⊙O 上一点,=34AD AB =,,点C 为 AB 上的一动点,将△DAB 沿CD 的中垂线翻折,得到△CEF .当点C 运动到某一位置时,以A 、B 、C 、D 、E 、F 中的任意四个点为顶点的“Ω四边形”最多,最多有 个.
16.解:原式=22
4137x x x --+- ------------------------2分
=2338x x +-. ------------------------3分
∵26x x +=,
∴原式=23()8x x +-
=368⨯--------------------------4分
=10.-------------------------5分 17.解:(1)∵ 点)1(-,
m A 在一次函数2+=x y 的图象上, ∴ 3m =-. ∴ A 点的坐标为(3,1)--.∵ 点A (3,1)--在反比例函数x k y =的图象上,∴ 3k =. -------------------------2分
∴ 反比例函数的解析式为3y x
=.-------------------------3分 (2)点P 的坐标为(0,0)或(0,4).-------------------------5分
18. 解:设截至3月10日志愿者报名总人数为x 万人. -------------------------1分
依题意,得
3.6 2.6=1.5
x x -. -------------------------3分 解得 5.4x =. -------------------------4分
经检验, 5.4x =是原方程的解,且符合题意.
A 答:截至3月10日志愿者报名总人数为5.4万人. -------------------------5分
四、解答题(本题共20分,每小题5分)
19.解:∵四边形ABCD 是平行四边形,
∴AB CD =,AB ∥CD ,AD BC =.
∵HG ⊥AB 于点G ,
∴90BGH H ∠=∠=︒.
在△DHG 中,90H ∠=︒,45
GDH ∠=︒,DG =
∴8DH GH ==.-------------------------1分
∵E 为BC 中点,10BC =,
∴5BE EC ==.∵BEG CEH ∠=∠,
∴△BEG ≌△CEH .∴142
GE HE GH ==
=.在△EHC 中,90H ∠=︒,5CE =,4EH =,∴3CH =.∴5AB CD ==.
∴30AB BC CD AD +++=.∴
ABCD 的周长为30.-------------------------5分 20. (1)证明:连接AF .
∵AB 为直径,∴∠90AFB =︒.∵AE AB =,
∴△ABE 为等腰三角形.∴∠12BAF =∠BAC . ∵BAC EBC ∠=∠21, ∴∠BAF =∠.EBC ∴∠FAB +∠FBA =∠EBC +∠90FBA =︒.
∴∠90ABC =︒ ∴BC 与⊙O 相切.
(2) 解:过E 作EG BC ⊥于点.G
∠BAF =∠EBC ,∴1sin sin 4
BAF EBC ∠=∠=. 在△AFB 中,∠90AFB =︒,∵8AB =,
∴BF AB =⋅sin ∠18 2.4
BAF =⨯=--------------3分 ∴24BE BF ==.在△EGB 中,∠90EGB =︒,
∴1sin 4 1.4
EG BE EBC =⋅∠=⨯=------------------4分 ∵EG BC ⊥,AB ⊥BC ,∴EG ∥.AB ∴△CEG ∽△.CAB ∴CE EG CA AB =.∴1.88
CE CE =+ ∴8.7CE =∴8648.77AC AE CE =+=+= -------------------------5分 22.解: “Ω值”为10.---------------------2分
(1)是;--------------------3分
(2)最多有
5
个.--------------------5分。