初一数学上册合并同类项专项练习题精编42
- 格式:doc
- 大小:39.00 KB
- 文档页数:16
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列式子中正确的是( )A.3a+2b=5abB.C.D.5xy-5yx=0试题2:下列各组中,不是同类项的是A、3和0B、C、xy与2pxyD、试题3:下列各对单项式中,不是同类项的是( )A.0与B.与C.与D.与试题4:如果是同类项,那么a、b的值分别是( )A. B. C. D.下列各组中的两项不属于同类项的是 ( )A.和B.和5xyC.-1和D.和试题6:下列合并同类项正确的是 ( ) (A); (B)(C) ; (D)试题7:已知代数式的值是3,则代数式的值是A.1B.4C. 7D.不能确定试题8:是一个两位数,是一个一位数,如果把放在的左边,那么所成的三位数表示为A. B. C.10 D.100试题9:某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、D、试题10:一个两位数是,还有一个三位数是,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )B. C. D.写出的一个同类项_______________________.试题12:单项式与是同类项,则的值为_________。试题13:若,则__________.试题14:合并同类项:试题15:已知和是同类项,则的值是_____________. 试题16:某公司员工,月工资由m元增长了10%后达到_______元。试题17:先化简,再求值:,其中.试题18:化简:.试题1答案:D试题2答案:CD试题4答案:A试题5答案:D试题6答案:D试题7答案:C试题8答案:D试题9答案:A试题10答案:C试题11答案:(答案不唯一) 试题12答案:4;试题13答案:3试题14答案:;试题16答案:.试题17答案:解:=( )=当时,试题18答案:==( )=。
七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项一、去括号与合并同类项在解方程的过程中,经常会涉及到去括号和合并同类项的操作。
本文将针对七年级数学上册综合算式专项练习题中的去括号与合并同类项进行讲解,并提供详细的步骤和示例。
一、去括号去括号是将括号内的项与括号外的项进行相应的运算。
根据运算的不同,可以分为以下三种情况。
1. 去括号时,括号前面有正号或没有正号。
- 若括号前面有正号,则去括号后,括号内的项不变。
例如:3(x + 2) = 3x + 6- 若括号前面没有正号,则去括号后,括号内的项变号。
例如:-2(x - 3) = -2x + 62. 去括号时,括号前面有负号或没有负号。
- 若括号前面有负号,则去括号后,括号内的项变号。
例如:-4(x + 5) = -4x - 20- 若括号前面没有负号,则去括号后,括号内的项不变。
例如:5(2x - 3) = 10x - 153. 去括号时,括号前面有系数。
- 若括号前面有系数,则去括号后,括号内的项与系数相乘。
例如:2(3x + 4) = 6x + 8以上是去括号的三种情况,根据题目的具体要求和括号前面的情况来执行相应的操作。
二、合并同类项合并同类项是将具有相同字母和指数的项进行合并,简化表达式。
具体步骤如下:1. 根据字母和指数相同的原则,将表达式中的项分组。
例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = (3x + 2x - 5x) + (4y - 2y) + (6z - 2z)2. 合并同类项,即将同一组内的项相加或相减。
例如:(3x + 2x - 5x) = 0x = 0(4y - 2y) = 2y(6z - 2z) = 4z3. 将合并后的结果再次组合,得到最终的表达式。
例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = 0 + 2y + 4z = 2y + 4z通过上述步骤,我们可以将数学上册综合算式专项练习题中的去括号与合并同类项简化为最简形式。
初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。
为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。
一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。
2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。
3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。
4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。
5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。
6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。
7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。
8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。
二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。
2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。
4.2 第1课时 合并同类项知识点 1 同类项1.[2017·定州期中]下列各组代数式中,是同类项的是( ) A .5x 2y 与15xy B .-5x 2y 与15yx 2C .5ax 2与15yx 2 D .83与x 32.[2017·济宁]单项式9x m y 3与单项式4x 2y n是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .53.下列各组中的两项是不是同类项?请说明理由. (1)ac 与2ab ;(2)-3ab 与ba ;(3)x 2yz 与xy 2z ; (4)abx 与aby ;(5)-8x 2y 3和12x 2y 3;(6)-12和0.知识点 2 合并同类项 4.合并同类项:(1)5x 2-2x 2=(________)x 2=________;(2)3a 2b +4ba 2=(________)________=________;(3)4x 2-7x +6-3x 2+8x -5=(________)x 2+(________)x +(________)=________+______+______.5.[2017·绥化]下列运算正确的是( ) A .3a +2a =5a 2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bc D .a 5-a 2=a 36.合并同类项:(1)4x 2-8x +7-2x 2+9x -1;(2)7m2n-3mn2+5m2n+n2m.7.把(x-3)2-2(x-3)-5(x-3)2+(x-3)中的(x-3)看成一个整体合并同类项,结果应为( )A.-4(x-3)2-(x-3)B.4(x-3)2+x(x-3)C.4(x-3)2-(x-3)D.-4(x-3)2+(x-3)8.若A是三次多项式,B是四次多项式,则A+B一定是( )A.七次多项式B.四次多项式C.单项式D.四次多项式或单项式9.[2017·保定高碑店期中]多项式x2-3kxy-3y2+13xy-8合并同类项后不含xy项,则k的值是( )A.13B.16C.19D.010.若两个单项式-4x2y与nx3+m y的和是0,求代数式m2-2n的值.11.已知关于x,y的多项式mx2+4xy-x-3x2+2nxy-4y合并后不含有二次项,求n-m的值.【详解详析】1.B [解析] A 选项,所含字母x ,y 相同,但x 的指数不同,所以5x 2y 与15xy 不是同类项;B 选项,所含字母x ,y 相同,且x ,y 的指数也相同,所以-5x 2y 与15yx 2是同类项;C 选项,所含字母a 与y 不同,所以5ax 2与15yx 2不是同类项;D 选项,83是常数,不含字母,所以83与x 3不是同类项.故选B.2.D [解析] 由题意,得m =2,n =3, 所以m +n =2+3=5.3.[解析] 先观察各项所含字母是否相同,再观察相同字母的指数是否相同. 解: 是同类项的有(2)(5)(6),因为其符合同类项的定义.(1)中ac 与2ab ,(4)中abx 与aby 所含的字母是不相同的;(3)中x 2yz 与xy 2z 所含字母相同,但x 和y 的指数不相同,所以(1)(3)(4)不是同类项.4.(1)5-2 3x 2(2)3+4 a 2b 7a 2b (3)4-3 -7+8 6-5 x 2x 15.C [解析] A 选项,3a +2a =5a ,故该选项错误;B 选项,3a 与3b 不是同类项,不能合并,故该选项错误;C 选项,2a 2bc -a 2bc =a 2bc ,故该选项正确;D 选项,a 5与a 2不是同类项,不能合并,故该选项错误.6.解:(1)原式=4x 2-2x 2-8x +9x +7-1 =(4-2)x 2+(-8+9)x +(7-1) =2x 2+x +6.(2)原式=(7+5)m 2n +(-3+1)mn 2=12m 2n -2mn 2. 7.A. 8.DA .B .C .D .9.C [解析] 原式=x 2+⎝ ⎛⎭⎪⎫13-3k xy -3y 2-8.因为不含xy 项,所以13-3k =0,解得k=19. 10.解:因为-4x 2y 与nx 3+my 的和为0,所以n =4,3+m =2, 所以m =-1.当m =-1,n =4时,m 2-2n =(-1)2-2×4=-7.11.解:mx 2+4xy -x -3x 2+2nxy -4y =(m -3)x 2+(4+2n )xy -x -4y .因为原式合并后不含二次项,所以m -3=0,4+2n =0, 所以m =3,n =-2, 所以n -m =-2-3=-5.2.1从生活中认识几何图形1.如图1-1-1中,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物.图1-1-1 2.下面图形中为圆柱的是( )3.图1-1-2所示立体图形中,(1)球体有____;(2)柱体有____;(3)锥体有____.4.将以下物体与相应的几何体用线连接起来.篮球魔方铅笔盒沙堆易拉罐圆柱圆锥球正方体长方体5.下面几种图形,其中属于立体图形的是()①三角形②长方形③正方体④圆⑤圆锥⑥圆柱A.③⑤⑥B.①②③C.③⑥D.④⑤6.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线、面、体C.角、三角形、正方形、圆D.点、相交线、线段、长方体7.棱柱的底面是()A.三角形B.四边形C.矩形D.多边形8.如图1-1-3所示的立体图形中,不是柱体的是()9.用51根火柴摆成7个正方体,如图1-1-4.试问,至少取走几根火柴,才能使图中只出现1个正方体?与同伴交流你的思路与体会.图1-1-410.一位父亲有一块正方形的土地,他把其中的14留给自己,其余的平均分给他的四个儿子,如图1-1-5所示,他想使每个儿子获得的土地面积相等,形状相同,这位父亲应该怎么分?试画出示意图,并加以说明.(考查4)图1-1-51.答案 : 埃及金字塔——三棱锥;西瓜——球:北京天坛——圆柱;房屋——长方体.点拨:只有观察出能反映物体形状主要的轮廓特征.才能够抽象出具体的立体几何图形,像大小、颜色、装饰品等属性.可忽略不予考虑,同时像北京天坛的顶部、房屋顶部都是次要结构,也可排除不看.那么,实物是什么几何形体,就不难抽象出来了.判断一个几何体的形状,主要通过观察它的各个面和面所在的线(棱)的形状特征来抽象归纳.2. B 点拨:圆柱的形状及特征为:上下两底是互相平行的两个等圆,侧面是曲面.A中是圆柱截去一部分后的剩余部分;C中是长方体;D中是圆台;只有B中是圆柱,所以选B.3. (1)⑦(2)①③⑤(3)②④⑥点拨:(1)球体最好识别,故先找出球体⑦;(2)有两个底面形状、大小一样且互相平行的是柱体,①③⑤;(3)有一个“尖”和一个底面的是锥体,②④⑥注意⑤是横向放置的柱体,而不是锥体,此类题只要按照某种标准进行合理的分类即可.4.点拨:篮球是球体,魔方是正方体,铅笔盒是长方体,沙堆是圆锥体,易拉罐是圆柱.本题主要应用抽象思维能力.通过对现实生活中立体图形的观察认识,结合所学几何体的特征,抽象出几何图形,能够培养空间观念.5. A 点拨:几何图形包括立体图形(几何体)和平面图形,像正方体、长方体、棱柱、圆柱、圆锥、球等都是立体图形;像线段、直线、三角形、长方形、梯形、六边形、圆等都是平面图形.6. C7. D 点拨:三棱柱的底面是三角形,四棱柱的底面是四边形,五棱柱的底面是五边形…,总之棱柱的底面一定是多边形.8. D 点拨:柱体的两个底面大小相同,而D中无论将哪两个面看成底面,大小均不相同,故选D.9. 答案:如答图1-1-1,这是一种取法,至少取走3根火柴,答图1-1-1点拨: 1个正方体有6个面,8个顶点,每个顶点都有3条棱,只有这些条件都具备,才是一个完整的正方体.本题要求通过取走3根火柴,而把7个正方体变成1个,则取走的火柴必须是“关键部位”——即与几个正方体有联系处的火柴.同学们不妨几个人一组,一起动手制作这个模型,看是否有其他的取法.这样多动手,多思考,多交流,不仅可帮助我们很好地认识立体图形,而且能使我们养成勤动手、善动脑的习惯,达到取人之长,补已不足的目的.观察图形结构,分析图形特征,找出图形的“共性”与“个性”,是解决图形问题的一大窍门.10.答图1-1-2如答图1-1-2 父亲和四个儿子分割一个正方形,父亲留14,•则所剩三个小正方形每一个再分割为四个小正方形,并且让出一个,土地面积就会相等.•所让的三个小正方形必有一条棱重合才能为一体,故如图所分就会形状相同.。
初一数学上册合并同类项计算题1.某学校购买了一批文具,铅笔每支x元,共买了5支;圆珠笔每支y元,共买了3支;钢笔每支z元,共买了2支。
求购买这些文具的总花费的式子,并合并同类项。
2.一个长方形的长为3a+2b,宽为a-b,求这个长方形的周长的表达式,并合并同类项。
3.小明有3x个苹果,小红有2x个苹果,小刚有x个苹果,求他们三人苹果总数的表达式,并合并同类项。
4.某仓库有5箱重量为m千克的货物,3箱重量为n千克的货物,求货物的总重量的表达式,并合并同类项。
5.一辆汽车第一小时行驶了2x千米,第二小时行驶了3x千米,第三小时行驶了x千米,求这辆汽车三小时行驶的总路程的表达式,并合并同类项。
6.三个连续的奇数,中间的奇数为2n+1,求这三个奇数的和的表达式,并合并同类项。
7.有三个单项式:-2x²,3x²,x²,求它们的和的表达式,并合并同类项。
8.一个多项式为4a³+3a²+2a,另一个多项式为-a³-2a²-a,求这两个多项式的和的表达式,并合并同类项。
9.已知A=5x²y-3xy²,B=-2x²y+4xy²,求A+B的表达式,并合并同类项。
10.某班级男生有2m人,女生有3m人,后来转走了m人,求班级现有人数的表达式,并合并同类项。
11.图书馆有文学类书籍x本,科技类书籍2x本,漫画类书籍3x本,有人借走了2x本,求图书馆剩下书籍总数的表达式,并合并同类项。
12.有三个数,第一个数为3x-1,第二个数为2x+1,第三个数为x,求这三个数的和的表达式,并合并同类项。
13.一个三角形的三条边分别为2a+3b,a-2b,3a+b,求这个三角形的周长的表达式,并合并同类项。
14.小明有4x元零花钱,花了x元买文具,又得到2x元的奖励,求他现在零花钱的表达式,并合并同类项。
15.某商店第一天盈利3x元,第二天亏损2x元,第三天盈利x元,求这三天总盈利的表达式,并合并同类项。
A一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+C.yx xy y x 22254-=- D.5xy-5yx =02 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 3 .下列各对单项式中,不是同类项的是( )A.0与31B.23n mxy +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b xy x y+--与是同类项,那么a 、b 的值分别是( ) A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩ C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xy C.-1和14D.2a 和3x6.下列合并同类项正确的是 ( )(A)628=-a a ; (B)532725x x x =+ ; (C) b a ab b a 22223=-; (D)y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( )A.yxB.x y +C.10x y +D.100x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.ba +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________.12.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。13.若2243a b x y x y x y -+=-,则a b +=__________. 14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313mnxy-是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。三、解答题17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.B1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( )⑵2ab 与b a 2 ( ) ⑶bc a 22与-2c ab 2 ( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( )2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( )(5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.zx 221 B. xy 21C.2yx -D. x 2y4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a 6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。
七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数① -xy ② ab-0.5xy④ -3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.222222332222a211122222ab-5a-7b② -xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.答案是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin222222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;221212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.23(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32(2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项:(1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin22222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:初一数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与222257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题 17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题17.解:335m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( ) (6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。
七年级数学(上)《合并并同类项》同步练习题同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2( ) ⑶bc a 22与-2c ab 2( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。
8.在代数式222276513844x x x y xy x -+-+--+中,24x 的同类项是 ,6的同类项是 。
9.在9)62(22++-+b ab k a 中,不含ab 项,则k= 10.若22+k kyx 与n y x 23的和未5ny x 2,则k= ,n=11. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.12.合并同类项:⑴3x 2-1-2x-5+3x-x 2 ⑵-0.8a 2b-6ab-1.2a 2b+5ab+a 2b ⑶222b ab a 43ab 21a 32-++- ⑷6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y(5)4x 2y-8x y 2+7-4x 2y+12xy 2-4; (6)a 2-2ab +b 2+2a 2+2ab - b 2.答案:1. ⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ2. ⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ3. C4.B5.C6. a b a b 同类项7.字母 相同字母的次数 -5x 2, -7x 2 1 9. k=3 10.2,4 11 m=3 n=2 12. ⑴2x 2+x-6 ⑵-a 2b-ab ⑶22b ab 21a 1217-+ ⑷-7x 2y 2-3xy-7x。
13.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2( )⑶bc a 22与-2c ab 2( )(4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( )2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )(3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( )(7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( )3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( )A.z x 221B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y 5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。
8.在代数式222276513844x x x y xy x -+-+--+中,24x 的同类项是 ,6的同类项是 。
9.在9)62(22++-+b ab k a 中,不含ab 项,则k= 10.若22+k kyx 与n y x 23的和未5ny x 2,则k= ,n=11. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.12.合并同类项:⑴3x 2-1-2x-5+3x-x 2 ⑵-0.8a 2b-6ab-1.2a 2b+5ab+a 2b ⑶222b ab a 43ab 21a 32-++- ⑷6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y(5)4x 2y-8x y 2+7-4x 2y+12xy 2-4; (6)a 2-2ab +b 2+2a 2+2ab - b 2. 答案:1. ⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ2. ⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ3. C4.B5.C6. a b a b 同类项7.字母 相同字母的次数-5x 2, -7x 2 1 9. k=3 10.2,4 11 m=3 n=2 12. ⑴2x 2+x-6 ⑵-a 2b-ab ⑶22b ab 21a 1217-+ ⑷-7x 2y 2-3xy-7x。
合并同类项、去括号试题1.合并下列各式中的同类项(1)3x 2-1-2x-5+3x-x 2 (2)4xy-3y 2-3x 2+xy-3xy-2x 2-4y 2(3)-0.8a 2b-6ab-1.2a 2b+5ab+a 2b (4)222b ab a 43ab 21a 32-++- (5)5(a-b)2-7(a-b)+3(a-b)2-9(a-b) (6)3x n+1-4x n-1+12x n+1+32x n-1+5x n -2x n(7)3a -(4b -2a +1) (8)x -[(3x +1)-(4-x )](13)5(43)(3)a b a a b +---+ (14)222(25)(32)2(41)a a a -+-----(15)(531)(21)x x y x y +-+--+ (16)()232a a b a ---⎡⎤⎣⎦(17)8(2)4(3)2x y x y z z --+-+ (18)[]{}23(2)2a b a b a a -----(19)8x +2y +2(5x -2y ) (20)(x 2-y 2)-4(2x 2-3y 2)(21)-3(2x 3y -3x 2y 2+3xy 3) (22)(-4y +3)-(-5y -2) +3y(23)(6x 2-x +3)-2(4x 2+6x -2 (24){}222234(3)x x x x x ⎡⎤--+--⎣⎦ (25)11(46)3(22)32a abc c b ---+-+ (26)[](43)(3)()5x y y x x y x ----+-- (27)22121232a a b a b ⎛⎫⎛⎫--++-+ ⎪ ⎪⎝⎭⎝⎭(28) 2-[2(x+3y)-3(x-2y)] (29)(2m-3)+m-(3m-2) (30)3(4x-2y )-3(-y+8x ).(31)(2x-3y)+(5x+4y) (32)(8a-7b)-(4a-5b)(33)a-(2a+b)+2(a-2b) (34)3(5x+4)-(3x-5)(35)(8x-3y)-(4x+3y-z)+2z (36)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(37)2-(1+x)+(1+x+x 2-x 2) (38)3a 2+a 2-(2a 2-2a)+(3a-a 2)(39)2a-3b+[4a-(3a-b)] (40)3b-2c-[-4a+(c+3b)]+c(41)x-(3x-2)+(2x-3) (42)(3a 2+a-5)-(4-a+7a 2)(43)x 2+(-3x-2y+1) (44)x-(x 2-x 3+1)(45)3a+4b-(2b+4a) (46)(2x-3y)-3(4x-2y)(47)(2x-3y)+(5x+4y) (48)(8a-7b)-(4a-5b)(49)a-(2a+b)+2(a-2b) (50)3(5x+4)-(3x-5)(51)(8x-3y)-(4x+3y-z)+2z (52)-5x 2+(5x-8x 2)-(-12x 2+4x)+2(53)2-(1+x)+(1+x+x 2-x 2) (54)3a 2+a 2-(2a 2-2a)+(3a-a 2)(55)5a +(3x -3y -4a) (56)3x -(4y -2x +1)(57)7a +3(a +3b ) (58)(x 2-y 2)-4(2x 2-3y )(59)2a -3b +[4a -(3a -b)] (60)3b -2c -[-4a +(c +3b)]+c(61)x+[x+(-2x-4y)] (62) (a+4b)- (3a-6b)(63)3x 2-1-2x-5+3x-x 2 (64) -0.8a 2b-6ab-1.2a 2b+5ab+a 2b (65) 222b ab a 43ab 21a 32-++- (66) 6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y (67) 8x +2y +2(5x -2y) (68) 3a -(4b -2a +1)(69) 7m +3(m +2n) (70) (x 2-y 2)-4(2x 2-3y 2)(71) -4x +3(31x -2) (72) 5(2x-7y)-3(4x-10y) (73))153()52(+---y x y x (74) )56(3)72(2+--x x(75))3(2)2(322b ab ab a +--- (76) )3123()322(2122y x y x x +-+-- (77) )]12(45[3---x x x (78) 2xy-{5x-3[xy-31x(y+1)]-4xy} 2.求下列代数式的值:3m 2n-mn 2-1.2mn+mn 2-0.8mn-3m 2n,其中m=6, n=2。