八年级数学上册第一章勾股定理阶段专题复习课时练(新版)北师大版
- 格式:doc
- 大小:377.00 KB
- 文档页数:7
北师大版八年级数学上册第一章勾股定理复习测试一.选择题1.下列各组数中,是勾股数的是().A.6,9,12B.﹣9,40,41C.52,122,132D.7,24,25 2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是().A.25B.14,C.7D.7或253.如图由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是().A.16B.25C.144D.1694.同学们都学习过“赵爽弦图”,如图所示,若大正方形的面积为5,小正方形的面积为1,则每个直角三角形的两直角边的乘积为().A.1B.2C.D.5.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为().A.1B.2C.3D.46.如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了().A.2米B.4米C.6米D.8米7.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是().A.26尺B.24尺C.17尺D.15尺8.如图,在△ABD中,△D=90°,CD=6,AD=8,△ACD=2△B,则BD的长是().A.12B.14C.16D.189.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于().A.1.2米B.1.5米C.2.0米D.2.5米10.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是().A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24二.填空题11.一直角三角形的一条直角边长是6,另一条直角边与斜边长的和是18,则直角三角形的面积是12.在正方形网格中,A、B、C、D均为格点,则△BAC﹣△DAE=.13.如图,一株荷叶高出水面1m,一阵风吹过来,荷叶被风吹的贴着水面,这时它偏离原来位置有3m远,则荷叶原来的高度是.14.如图△ABC中,△C=90°,AD平分△BAC,AB=5,AC=3,则BD的长是.15.如图,台阶阶梯每一层高20cm,宽40cm,长50cm.一只蚂蚁从A点爬到B点,最短路程是.16.在Rt△ABC中,△C=90°,AC=9,BC=12,则点C到斜边AB的距离是.17.如图,OP=1,过点P作PP1△OP且PP1=1,得OP1=;再过点P1作P1P2△OP1且P1P2=1,得OP2=;又过点P2作P2P3△OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=A.B.C.D.18.如图,在Rt△ABC中,△C=90°,BE,AF分别是△ABC,△CAB平分线,BE,AF交于点O,OM△AB,AB=10,AC=8,则OM=.三.解答题19.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。
北师大版数学八年级上册第一章勾股定理专项练习(含答案)练习一1. 如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 1942.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远 的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和 岸边的水平刚好相齐,河水的深度为( ). A.2m B.2.5cm C.2.25m D.3m3.△ABC 中,若AB=15,AC=13,高AD=12,则△A BC 的周长是( ) A.42 B.32 C.42或32 D.37或334、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一 个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、155. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h6.已知,如图,在矩形ABCD 中,P 是边AD 上的动点,AC PE ⊥于E ,BD PF ⊥于F ,如果AB=3,AD=4,那么( ) A.512=+PF PE ; B. 512<PF PE +<513; C. 5=+PF PE D. 3<PF PE +<47.(1)在Rt△ABC 中,∠C=90°.①若AB=41,AC=9,则BC=_______;②若AC=1.5,BC=2,则AB=______,△ABC 的面积为________.8.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,•他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,•小虎应把梯子的底端放在距离墙________米处.9.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C 点出发,以每分20cm 的 速度沿CA-AB-BC 的路径再回到C 点,需要______分的时间.10.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm , A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的 食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________B16925第6题11.已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0, 则第三边长为______.12.如图7所示,Rt△ABC 中,BC 是斜边,将△A BP 绕点A 逆时针旋转后,能与 △ACP′重合,如果AP=3,你能求出PP′的长吗?13.如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的 长度至少需要多少米?14.如图2,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面 用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积15.如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.CBA D16.如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?5米3米317、4个全等的直角三角形的直角边分别为a 、b ,斜边为c .现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中 的道理吗?请试一试.b18. 如图3,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M,需要爬行的最短距离是多少?19.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70km/h .如图,一辆小汽车在一条城市道路上直道行驶,某一时刻 刚好行驶到路对面车速检测仪的正前方30m 处,过了2s •后,测得小汽车 与车速检测仪间距离为50m .这辆小汽车超速了吗?小汽车观察点小汽车C A20.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想 一想,此时EC 有多长?BCB EF21.有一块三角形的花圃ABC,现可直接测得∠A=30,AC=40m,BC=25m,请你求出这 块花圃的面积.22.如图所示,△AB C 中,∠ACB=90°,CD⊥AB 于D,且AB+BC=18cm,若要求出CD •和AC 的长,还需要添加什么条件?DCA23.四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11 a ,按上述方法所作的正方形的边长依次为n a a a a ,,,,432 ,请求出432,,a a a 的值;⑵根据 以上规律写出n a 的表达式.24.已知:如图,在Rt△ABC 中,∠C=90°,∠ABC=60°,BC 长为3 p ,BB l 是∠ABC 的平分线交AC 于点B 1,过B 1作B 1B 2⊥AB 于点B 2,过B 2作B 2B 3∥BC 交AC 于点B 3,过B 3作B 3B 4⊥AB 于点B 4,过B 4作B 4B 5∥BC 交AC 于点B 5,过B 5作B 5 B 6⊥AB 于点B 6,…,无限重复以上操作.设b 0=BB l ,b 1=B 1B 2,b 2=B 2B 3,b 3=B 3B 4,b 4=B 4B 5,…,bn=BnBn +1,….(1)求b 0,b 3的长;(2)求bn 的表达式(用含p 与n 的式子表示,其中n 是正整数)25、已知:在Rt△ABC 中,∠C=900,∠A、∠B、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l . ⑴填表:⑵如果a +b -c =m ,观察上表猜想:S l=__________(用含有m 的代数式表示). ⑶证明⑵中的结论.26.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.DCBA图(一) 图(二)练习二1. 有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52, 以各组数为边长,能组成直角三角形的个数为( ). A.1 B.2 C.3 D.42.三角形的三边长分别为6,8,10,它的最短边上的高为( ) A.6 B.4.5 C.2.4 D.83.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成 直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组4.在同一平面上把三边BC=3,AC=4、AB=5的三角形沿最长边AB 翻折后得到 △ABC′,则CC′的长等于( ) A 、125 ; B 、135 ; C 、56 ; D 、2455、下列说法中, 不正确的是 ( )A. 三个角的度数之比为1:3:4的三角形是直角三角形B. 三个角的度数之比为3:4:5的三角形是直角三角形C. 三边长度之比为3:4:5的三角形是直角三角形D. 三边长度之比为5:12:13的三角形是直角三角形6、如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能 构成一个直角三角形三边的线段是( )A. CD 、EF 、GHB. AB 、EF 、GHC. AB 、CD 、GHD. AB 、CD 、EF7.如图4所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积的和是_______cm 2.7cmDCB A8.已知2条线段的长分别为3cm 和4cm ,当第三条线段的长为_______cm 时,这3条线段能组成一个直角三角形.9、在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是________.(第6题)10. 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米,其中的道理是______________________11.小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方法吗?12.给出一组式子:32+42=52,82+62=102,152+82=172,242+102=262……(1)你能发现上式中的规律吗?(2)请你接着写出第五个式子.13.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41……这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.如果132=b+c,则b、c的值可能是多少14.如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A 处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?15.如图,在△ABC 中,AB=AC=13,点D 在BC 上,AD=12,BD=5,试问AD 平分∠BAC 吗?为什么?CAB16.如图,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm ,BC=12cm ,CD=13cm ,AD=4cm ,东东由此认为这个四边形中∠A 恰好是直角, 你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果 你认为他不正确,那你认为需要什么条件,才可以判断∠A 是直角?DCA B17. 学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a 2+b 2=c 2, 或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm. 比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm.比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:_________________. 对你猜想22a b 与2c 的两个关系,利用勾股定理证明你的结论.(1)B A(2)CB A(3)CBA18.如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条? (2)试比较立体图中BAC ∠与平面展开图中B A C '''∠的大小关系?AC B 第17题图(1) 第17题图(2) A ' C 'B ' 第17题图(1)A ' C 'B 'D ' 第17题图(2) A ' C 'B '练习一答案1.C2.A3.C4.C5.D6.A7.(1)①40;②2.5;1.58.0.7 9. 12 10.25dm11.22或13或5 12.PP′=3. 13. 7米 14. 100平方米 15.12.516.=∴EC=84-80=4(m),∴S 阴=4×60=240(m 2).17.由图可知,边长为a 、b 的正方形的面积之和等于边长为c 的正方形的面积18. 25cm19.超速,经计算的小汽车的速度为72km/h20.由条件可以推得FC=4,利用勾股定理可以得到EC=3cm .21.提示:分锐角、钝角三角形两种情况:(1)S △ABC 2;(2)S △ABC 2.22.提示:可给特殊角∠A=∠BCD=30°,也可给出边的关系,如BC:AB=1:2等等. 23解:⑴11=a ;211222=+=a ()()222223=+=a ;2222224=+=a⑵12-=n n a∵12111==-a ;22122==-a ;22133==-a222144==-a ∴12-=n n a24.(1)b0=2p在Rt△B 1B 2中,b 1=P .同理.b 2=3 p/2b 3=3p/4(2)同(1)得:b 4=(3 /2)2p .∴bn=(3 /2)n-1(n 是正整数).25、⑴填表:⑵S l =m 4⑶证明:∵a+b -c =m ,∴a+b =m +c , ∴a 2+2ab +b 2=m 2+c 2+2mc .∵a 2+b 2=c 2,∴2ab=m 2+2mc∴ab 2=14m(m +2c) ∴S l =12ab a +b +c =14m(m +2c)m +c +c =m 426解:(1)方法一:S =12×6×4 =12方法二:S =4×6-12×2×1-12×4×1-12×3×4-12×2×3=12 (2)(只要画出一种即可)练习二答案1.C2.D3.B4.D5.B6.B7.49 8.5cmcm 9. 108 10. 6,6,10 勾股定理的逆定理11.方法不惟一.如:•分别测量三角形三边的长a 、b 、c (a≤b≤c),然后计算是否有a 2+b 2=c 2,确定其形状12.(1)(n 2-1)2+(2n)2=(n 2+1)2(n>1).(2)352+122=372.13.•其中的一个规律为(2n+1)=2n (n+1)+[2n (n+1)+1].当n=6时,2n (n+1)、[2n (n+1)+1]的值分别是84、•8514.AB=5cm ,BC=13cm .•所以其最短路程为18cm15.AD 平分∠BAC.因为BD 2+AD 2=AB 2,所以AD⊥BC,又AB=AC ,所以结论成立16.不正确.增加的条件如:连接BD ,测得BD=5cm .17.解:若△ABC 是锐角三角形,则有222a b c +>若△ABC 是钝角三角形,C ∠为钝角,则有222a b c +<.当△ABC 是锐角三角形时,a cb DC BA证明:过点A 作AD ⊥BC ,垂足为D ,设CD 为x ,则有BD =a x -根据勾股定理,得22222()b x AD c a x -==--即222222b x c a ax x -=-+-.∴2222a b c ax +=+∵0,0a x >>,∴20ax >.∴222a b c +>.当△ABC 是钝角三角形时,a cb D C BA证明:过B 作BD ⊥AC ,交AC 的延长线于D .设CD 为x ,则有222BD a x =-根据勾股定理,得2222()b x a x c ++-=.即2222a b bx c ++=.∵0,0b x >>,∴20bx >,∴222a b c +<.18解:(1如图(1)中的A C '',在A C D '''Rt △中13C D A D ''''==,,由勾股定理得:A C ''∴==答:这样的线段可画4条(另三条用虚线标出).(2)立体图中BAC ∠为平面等腰直角三角形的一锐角, 45BAC ∴∠=.在平面展开图中,连接线段B C '',由勾股定理可得:A B B C ''''==又222A B B C A C ''''''+=,由勾股定理的逆定理可得A B C '''△为直角三角形. 又A B B C ''''=,A B C '''∴△为等腰直角三角形.45B A C '''∴∠=. 所以BAC ∠与B A C '''∠相等. D '。
第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c =b,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC = 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴4AC =, 2.4AC BCCD AB⋅==⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DECD == 在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。
a北师大版八年级上册第一章勾股定理专题训练(全章)专题一、勾股定理与面积1、、在Rt▲ABC中,∠C=90︒,a=5,c=3.,则Rt▲ABC的面积S=。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为:3、直线l上有三个正方形a、b、c,若a和c的面积分别为5和11,则b的面积为4、在直线l上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于。
S11S223S3S4l5、三条边分别是5,12,13的三角形的面积是。
6、如果一个三角形的三边长分别为a,b,c且满足:2+b2+c2+50=6a+8b+10c,则这个三角形的面积为。
7、如图1,∠ACB=90︒,BC=8,AB=10,CD是斜边的高,求CD的长?CBD图1A8、如下图,在∆ABC中,∠ABC=90︒,AB=8cm,BC=15cm,P是到∆ABC三边距离相等的点,求点P到∆ABC 三边的距离。
9、有一块土地形状如图3所示,∠B=∠D=90︒,AB=20米,BC=15米,CD=7米,请计算这块土地的S S的面积。
ADB C图310、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′位置上,已知AB=3,BC=7,求:重合部分△EBD的面积11、如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、2、3表示,则不难证明S1=S2+S3. (1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.专题二、勾股定理与折叠1、如图4,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B 恰好落在DC边上的点G处,求BE的长。
北师大版八年级数学上册第一章勾股定理专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为( )A .4.5B .4.6C .4.8D .52、如图,在△ABC 中,AB =6,AC =9,AD⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .453、如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为( ).A .54 B .52 C .53 D .654、如图,在Rt △ACB 和Rt △DCE 中,AC =BC =2,CD =CE ,∠CBD =15°,连接AE ,BD 交于点F ,则BF 的长为( )A .B C .D 5、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a 、b ,且2()15a b +=,大正方形的面积是9,则小正方形的面积是( )A .3B .4C .5D .66、已知点P 是AOB ∠平分线上的一点,且5OP =,作PM OB ⊥于点M ,点N 是射线OA 上的一个动点,若4OM =,则PN 的最小值为( )A .2B .3C .4D .57、如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则BAC ∠与DAC ∠的大小关系为( )A .BAC DAC ∠>∠B .BAC DAC ∠<∠ C .BAC DAC ∠=∠D .无法确定8、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米9、在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( )A .如果a 2=b 2−c 2,那么△ABC 是直角三角形且∠A =90°B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形C .如果222::9:16:25a b c =,那么△ABC 是直角三角形D .如果A B C ∠-∠=∠,那么△ABC 是直角三角形10、如图,在Rt ABC △中,90C ∠=︒,两直角边6cm AC =,8cm BC =,现将AC 沿AD 折叠,使点C 落在斜边AB 上的点E 处,则CD 长为( )A .3cmB .4cmC .5cmD .6cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米2、如图,在Rt ABC △中,90ACB ∠=︒,分别以AB ,BC ,AC 边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当10AB =,6BC =时,阴影部分的面积为________.3、如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F 处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为__________cm(容器壁厚度忽略不计).4、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________________.5、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.三、解答题(5小题,每小题10分,共计50分)1、数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”.“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要的公式.(1)如图1,是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.①用“算两次”的方法计算图2中阴影部分的面积:第一次列式为 ,第二次列式为 ,因为两次所列算式表示的是同一个图形的面积,所以可以得出等式 ;②在①中,如果7a b +=,10ab =,请直接用①题中的等式,求阴影部分的面积;(2)如图3,两个边长分别为a ,b ,c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个梯形,用“算两次”的方法,探究a ,b ,c 之间的数量关系.2、一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?3、细心观察图形,认真分析各式,然后解答问题.OA 22=212+=,1S =OA 32=12+23=,2S =OA 42=12+24=,3S =(1)请用含有n(n是正整数)的等式表示上述变规律:OA n2=______;S n=______.(2)求出OA10的长.(3(4)求出S12+S22+S32+…+S102的值.4、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即8BC ,求这棵树在离地面多高处被折断(即求AC的长度)?5、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;(2)求原来的路线AC的长.-参考答案-一、单选题1、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高.【详解】解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则 c=10 ,直角三角形面积S=12×6×8=12×c×h,可得h=4.8 ,故选:C.【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键.2、D【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.3、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可.【详解】解:如图,连接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵12AP•BC=12AB•AC,∴AP•BC=AB•AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=125,∴AM=65.故选:D.【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP 的最小值.4、B【解析】【分析】由已知证得ACE BCD ≅,进而确定ABF 三个内角的大小,求得12BF AB =,进而可得到答案. 【详解】解:∵90,90ACB DCE ∠=︒∠=︒∴ACB BCE DCE BCE ∠+∠=∠+∠∴ACE BCD ∠=∠又∵,AC BC CD CE ==∴ACE BCD ≅∴15CAE CBD ∠=∠=︒∵在等腰直角三角形中45ABC BAC ∠=∠=︒∴60,30ABF ABC CBD BAF BAC CAE ∠=∠+∠=︒∠=∠-∠=︒∴18090AFB ABF BAF ∠=︒-∠-∠=︒ ∴12BF AB =∵AB =∴BF =故选:B .【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键.5、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积−4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案.【详解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面积为:a2+b2=9,∴2ab=15−9=6,即ab=3,∴直角三角形的面积为:13 22 ab=,∴小正方形的面积为:394=32-⨯,故选:A.【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键.6、B【解析】【分析】根据垂线段最短可得PN⊥OA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可.【详解】解:当PN ⊥OA 时,PN 的值最小,∵OC 平分∠AOB ,PM ⊥OB ,∴PM =PN ,∵5OP =,4OM =,PM OB ⊥,∴由勾股定理可知:PM =3,∴PN 的最小值为3.故选B .【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键.7、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD 、AC 、 CD 的长,再由勾股定理的逆定理得到△ACD 为等腰直角三角形,同理可得△ABC 为等腰直角三角形,即∠BAC = ∠DAC .【详解】解:如图,设正方形每个网格的边长都为1,连接CD 、BC ,则222222222=+==+==+=,,,AD CD AC2152153110225510+=+=,AD CD222∴+=,AD CD ACAD CD=,∴为等腰直角三角形,ACD∴∠=︒,45CAD同理:222222222=+==+==+=,,,BC AC AB31103110422022101020+=+=,BC AC222BC AC AB∴+=,=,BC AC∴为等腰直角三角形,ACB∴∠=︒,45BAC∴∠=∠.BAC DAC故选:C.【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识.8、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.9、A【解析】【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】解:A、如果a2=b2-c2,即b2=a2+c2,那么△ABC是直角三角形且∠B=90°,选项错误,符合题意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,选项正确,不符合题意;C、如果a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC是直角三角形,选项正确,不符合题意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC是直角三角形,选项正确,不符合题意;故选:A.【考点】本题考查的是直角三角形的判定和勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长.【详解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB10=(cm),由折叠的性质得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm−6cm=4cm,∠BED=90°,设CD=x,则BD=BC−CD=8−x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD =3cm ,故选:A .【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出Rt △DEB 的三边,然后利用勾股定理列出方程是解题的关键.二、填空题1、8【解析】【分析】先设水深x 米,则AB =x ,则有BD =AD +AB =x +2,由题条件有BD =BC =x +2,又根据芦节直立水面可知BD ⊥AC ,则在直角△ABC 中,利用勾股定理即可求出x .【详解】解:设水深x 米,则AB =x ,则有:BD =AD +AB =x +2,即有:BD =BC =x +2,根据芦节直立水面,可知BD ⊥AC ,且AC =6,则在直角△ABC 中:222AB AC BC +=,即:2226(2)x x +=+,解得x =8,即水深8米,故答案为8.【考点】本题考查了勾股定理的应用,从现实图形中抽象出勾股定理这一模型是解答本题的关键.2、24【解析】【分析】根据勾股定理得到AC 2=AB 2-BC 2,先求解AC ,再根据阴影部分的面积等于直角三角形的面积加上以AC ,BC 为直径的半圆面积,再减去以AB 为直径的半圆面积即可.【详解】解:由勾股定理得,AC 2=AB 2-BC 2=64,8,AC ∴=则阴影部分的面积22211111112222222AC BC AC BC AB 222116828AC BC AB24=,故答案为24.【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的关键.3、34【解析】【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间线段最短,可知CF 的长即为所求;然后结合已知条件求出DF 与CD 的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF 是蜘蛛由C 到F 的最短路程.根据题意,可知DF=18-1-1=16(cm ),CD 160302=⨯=(cm ),∴34CF =(cm ),即蜘蛛所走的最短路线的长度是34cm.故答案为34.【考点】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;4、53【解析】【分析】设CF x =,在Rt CFD '△中利用勾股定理求出x 即可解决问题.【详解】解:∵D '是BC 的中点,8BC =,6CD =, ∴142D C BC '==, 由折叠的性质知:DF D F =',设CF x =,则6D F DF CD CF x '==-=-,在Rt CFD '△中,根据勾股定理得:222D F CF CD '=+',即:()22264x x -=+,解得53x =, ∴53CF =. 故答案为:53【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.5、2.5m【解析】【详解】设木棒的长为xm ,根据勾股定理可得:x 2=22+1.52,解得x=2.5.故木棒的长为2.5m .故答案为2.5m .三、解答题1、(1)①2()a b -,2()4a b ab +-,22()()4a b a b ab -=+-;或2()4a b ab +-,2()a b -,22()4()a b ab a b +-=-;②9;(2)222+=a b c 【解析】【分析】(1)①第一次求解阴影部分的边长,再计算面积,第二次利用大的正方形的面积减去四个长方形的面积,从而可建立等式;②直接利用公式22()()4a b a b ab -=+-,再整体代入求值即可;(2)第一次利用梯形的面积公式计算,第二次利用图形的面积和计算,从而得到公式,再整理即可得到答案.【详解】解:(1)因为小正方形的边长为:,a b -所以第一次计算的面积为:2()a b -,第二次计算的面积为:2()4a b ab +-,所以:22()()4a b a b ab -=+-;或2()4a b ab +-,2()a b -,22()4()a b ab a b +-=-②∵7a b +=,10ab =∴22()()4a b a b ab -=+-274109=-⨯=(3)第一次利用梯形的面积公式图形面积为:()21,2a b + 第二次利用图形的面积和计算为:2112,22ab c ⨯+ ∴ 22111()2222a b ab c +=⨯+ 整理得:22222a ab b ab c ++=+∴ 222+=a b c【考点】本题考查的是利用几何图形的面积推导代数公式,掌握等面积法推导两个完全平方公式之间的关系,推导勾股定理是解题的关键.2、(1)这个梯子的顶端A 距地面有24m 高;(2)梯子的底部在水平方向滑动了8m .【解析】【分析】(1)根据勾股定理即可求解;(2)先求出BD ,再根据勾股定理即可求解.【详解】解:(1)由题意可知:90B ∠=︒,25m AC DE ==;7m BC =,在Rt ABC 中,由勾股定理得:222AB BC AC +=,∴AB=24=,因此,这个梯子的顶端A 距地面有24m 高.(2)由图可知:AD =4m ,24420BD AB AD =-=-=,在Rt DBE 中,由勾股定理得:222BE BD DE +=,∴BE ==15=,∴1578CE BE BC =-=-=.答:梯子的底部在水平方向滑动了8m .【考点】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解.3、(1)OAn2=n;Sn(2)OA10;(3)说明他是第20个三角形;(4)554.【解析】【分析】(1)利用已知可得OA n2,注意观察数据的变化,(2)结合(1)中规律即可求出OA102的值即可求出,(3(4)根据题意列出式子即可求出.【详解】(1)结合已知数据,可得:OAn2=n;Sn(2)∵OAn2=n,∴OA10;(3Sn∴说明他是第20个三角形,(4)S12+S22+S32+…+S102,=12310 4444+++⋯+,=123104+++⋯+,=51054⨯+, =554.故答案为(1)OAn 2=n ;Sn (2)OA 10;(3)说明他是第20个三角形;(4)554. 【考点】本题考查规律型:图形的变化类,勾股定理的应用.4、这棵树在离地面6米处被折断【解析】【分析】设AC x =,利用勾股定理列方程求解即可.【详解】解:设AC x =,∵在Rt ABC △中,222AC BC AB +=,∴()222816x x +=-,∴6x =.答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方. 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.5、(1)是,理由见解析;(2)2.5米.【解析】【分析】(1)先根据勾股定理逆定理证得Rt△CHB 是直角三角形,然后根据点到直线的距离中,垂线段最短即可解答;(2)设AC =AB =x ,则AH =x -1.8,在Rt△ACH 中,根据勾股定理列方程求得x 即可.【详解】(1)∵2221.8 2.43+=,即222+=BH CH BC ,∴Rt△CHB 是直角三角形,即CH⊥BH,∴CH 是从村庄C 到河边的最近路(点到直线的距离中,垂线段最短);(2)设AC =AB =x ,则AH =x -1.8,∵在Rt△ACH,∴222CH AH AC +=,即 2222.4 1.8)x x -=+(,解得x =2.5,∴原来的路线AC 的长为2.5米.【考点】本题主要考查了勾股定理的应用,灵活应用勾股定理的逆定理和定理是解答本题的关键.。
北北北北北北北北北北北北北北北北北北北北北一、选择题1.下列说法正确的是()A. 若a,b,c是△ABC的三边,则a2+b2=c2B. 若a,b,c是Rt△ABC的三边,则a2+b2=c2C. 若a,b,c是Rt△ABC的三边,∠A=90∘,则a2+b2=c2D. 若a,b,c是Rt△ABC的三边,∠A=90∘,则c2+b2=a22.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.通过该图形,可以验证公式()A. (a+b)(a−b)=a2−b2B. (a+b)2=a2+2ab+b2C. c2=a2+b2D. (a−b)2=a2−2ab+b23.勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A. B.C. D.4.如图:三个正方形和一个直角三角形,图形A的面积是()A. 225B. 144C. 81D. 无法确定5.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D都在格点上,则下面4条线段长度为√10的是()A. ABB. BCC. CDD. AD6.已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A. 3B. 4C. 5D. √347.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A. S1=a2+b2+2abB. S1=a2+b2+ababC. S2=c2D. S2=c2+128.如图所示,已知Rt△ABC中,AB=4,分别以AC, BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A. 2πB. 4πC. 8πD. 16π9.已知直角三角形的斜边长为15,一直角边长为12,则另一条直角边长为()A. √369B. 3C. 27D. 910.如图,直角三角形的三边长分别为a,b,c,以直角三角形的三边为边(或直径)分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是( )A. 1B. 2C. 3D. 4二、填空题11.直角三角形的两直角边是3和4,则斜边是______12.如图,直线l上有三个正方形甲、乙、丙.若甲、丙的面积分别为5、11,则乙的面积为 .13.一直角三角形的两边长分别为5和12,则第三边的长是______.14.图中A代表的是所在的正方形的面积,则A的值是______ .15.如图,在正方形网格中,每个小正方形的边长为1,△ABC是网格上的格点三角形,则它的边AC上的高等于______ .16.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是 .17.如图,以直角三角形的三边为边向外作三个正方形A、B、C.若S A=26,S B=18,则S C= ______ .18.我国汉代数学家, 赵爽为了证明勾股定理,创制了一幅“弦图”,如图所示,后人称其为“赵爽弦图”,它是由四个全等的直角三角形拼接而成.若直角三角形的短直角边长为2,中间小正方形的面积为4,则大正方形面积为 .19.如图,网格中的小正方形的边长均为1,小正方形的顶点叫做格点,△ABC的三个顶点都在格点上,则AB边上的高为______ .20.在Rt△ABC中,斜边AB=√3,则BC2+AC2的值是________.三、解答题21.设直角三角形的两条直角边长分别为a和b,斜边长为c(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.22.如图,在△ABC中,∠B=90°,AC=4,AB=3,求BC的长.23.如图.大正方形是由4个相等的直角三角形和一个小正方形拼成的.(1)在左图中,已知AE=3,AF=4,求小正方形的面积;(2)在右图中,已知AE=a,AF=b,求大正方形的面积.24.如图,求直角三角形中未知边AB的长度.25.如图,在△ABC中,AB=10,BD=8,AD⊥BC,垂足为点D,AD=CD.(1)求AD的长.(2)求△ABC的面积.26.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.。
例1. (1)如图1是一个外轮廓为矩形的机器零件 平面示意图,根据图中的尺寸(单位: mm ),计算两圆孔中心A 和B 的距离为(2)如图2,直线I 上有二个正方形a, b, 的面积分别为5和11,则b 的面积为( C . 16D . 55点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一 起考查,在中考试卷中的常见题型为填空题、选择题和简单的解答题典例剖析分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90, BC=180-60=120,由勾股定理得:AB 2=902+1202=22500,所以 AB=150 (mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .60]15060c)图2三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求Z AE2A2 Z A4E2C4 Z A4E5C4 的度数.、图3解:连A3E2. Q A3A2A]A2, A2E2A2E2,A3A2E2 AA2E2 90o,Rt △ A3A2E2如Rt △ A1A2E2(SAS).5 A-I E2A3 E2 A2由勾股定理,得:C4E5 22 12 ,5 C3E2 , A4E5 、42 12 ,17 A3E2 ,2Q A4C4AC B 2 , △ A4C4E5◎△ A3C3E2 (SSS).A3 E2C3A4 E5C4A1E2 A2A4E2C4 A4 E5C4 A3E2C4 A4 E2C4 A3E2C3 A2E2C4 •由图可知△ E2C2C4为等腰直角三角形. A2E2C4 45o.即A,E2A2A4E2C4 A4E5C4 45° .点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如45°、90°、135°, 便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力.专练一:〔、△ ABC 中,/ A :/ B:/ C=2 : 1: 1, a,b,c分别是/ A、/ B、/ C 的对边,则下列各等式中成立的是( )(A) a2b2c2; (B) a22b2; (C) c22a2; (D) b22a22、若直角三角形的三边长分别为2, 4, X,则x的可能值有( )(A) 1 个;(B) 2 个;(C) 3个;(D) 4 个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A) 10.5 米; ( B) 7.5 米; (C) 12 米; (D) 8 米4、下列说法中正确的有( )(1)如果/ A+ / B+Z C=3: 4: 5,则厶ABC是直角三角形;(2) 如果/ A+Z B= Z C,那么△ ABC是直角三角形;(3)如果三角形三边之比为6: 8:10,则ABC是直角三角形;(4)如果三边长分别是n21,2n,n21(n 1),则ABC是直角三角形。
课时练第1单元勾股定理的应用一、单选题1.我国古代数学名著《九章算术》中有这样一道题目“勾股定理的应用今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?”示意图如图所示,设绳索AC的长为x尺,根据题意,可列方程为()A.x2﹣(x+3)2=82B.x2﹣(x﹣3)2=82C.(x+3)2﹣x2=82D.x2﹣(x﹣3)2=82.如图,一个梯子斜靠在一竖直的墙AO上,测得AO=4m,若梯子的顶端沿墙下滑1m,这时梯子的底端也下滑1m,则梯子AB的长度为()A.5m B.6m C.3m D.7m3.如图,有一个圆柱,底面圆的直径AB=16pcm,高BC=12cm,P为BC的中点,一只蚂蚁从A点出发沿着圆柱的表面爬到P点的最短距离为()A.9cm B.10cm C.11cm D.12cm4.如图,正四棱柱的底面边长为10cm,侧棱长为16cm,一只蚂蚁从点A出发,沿棱柱侧面到点C′处吃食物,那么它需要爬行的最短路径的长是()cmA.41B.41C.41D.125.一根竹子高一丈,折断后竹子顶端落在离竹子底端6尺处,折断处离地面的高度是多少?(这是我国古代《九章算术》中的“折竹抵地问题.其中的丈、尺是长度单位,一丈=10尺)设折断处离地面的高度为x尺,则可列方程为()A.x2+62=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2﹣6=(10﹣x)26.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B,C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B 与船C之间的距离为()A.1500m B.1200m C.1000m D.800m7.如图,要从电线杆离地面3.6m处向地面拉一条长为4.5m的钢缆.则地面钢缆固定点A到电线杆底部点B的距离是()A.2m B.2.2m C.2.4m D.2.7m8.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m9.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?“意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5.45尺D.5.55尺10.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm11.如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边,它的顶端恰好到达池边的水面,求水的深度是()尺A.8B.10C.13D.1212.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB竖直插CD=米.竹竿高出水面的部分AD长0.2到水底,此时竹竿AB离岸边点C处的距离0.8米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD为()A .1.5米B .1.7米C .1.8米D .0.6米二、填空题13.如图,一艘轮船以8海里/时的速度从港口O 出发向东北方向航行,另一轮船以6海里/时O 出发向东南方向航行,离开港口0.5小时后,两船相距_________海里.14.如图,一木杆在离地面9米处断裂,木杆顶部落在离木杆底端12米处,则木杆折断之前高_______米.15.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),则秋千绳索(OA 或OB )的长度为______尺.16.《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与C处(如图),水深和水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的'芦苇长各多少尺?则该问题的水深是___________尺.17.如图,在Rt△ABC中,∠ACB=90°,D、E是边AB上的点,连接CD、CE,先将边AC沿CD折叠,使点A的对称点A′落在边AB上;再将边BC沿CE折叠,使点B的对称点B′落在CA′的延长线上,若AC=15,BC=20,则线段B′E的长为___.三、解答题18.在某段公路的正上方有一摄像头A距离地面7米,一天李叔叔驾驶的汽车正沿公路笔直匀速驶来,当行驶到B点时第一次摄像,此时AB两点相距25米,1.5秒后第二次摄像汽车恰好行驶到A点正下方C点,已知该路段限速60km/h,请判断李叔叔是否超速,说明理由.19.如图,将长为2.5米的梯子AB斜靠在墙AO上,BO长0.7米.如果将梯子的顶端A 沿墙下滑0.4米,即AM等于0.4米,则梯脚B外移(即BN长)多少米?20.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.21.如图,AC BC ^,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,隧道总长为2公里,已知高速公路一公里造价为300万元,隧道一公里造价为500万元,80AC =公里,60BC =公里,则改建后可省工程费用多少万元?22.如图,A 、B 两点相距14km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =8km ,CB =6km ,现在要在AB 上建一个供水站E ,使得C 、D 两村到供水站E 站的距离相等,则:(1)E 站应建在距A 站多少千米处?(2)DE 和EC 垂直吗?说明理由.参考答案1.B2.A3.B4.B5.A6.A7.D8.C9.B10.D11.D12.A13.514.2415.14.516.1217.418.解:李叔叔不超速,理由如下:如图,Rt△ABC中,AC=7,AB=25,由勾股定理得:BC,v=24÷1.5=16(m/s)=57.6(km/h),∵57.6<60,∴李叔叔不超速.19.解:由题意得:AB=2.5米,BO=0.7米,在Rt△ABO中,由勾股定理得:2.4AO ====(米).∴MO =AO -AM =2.4-0.4=2(米),在Rt △MNO 中,由勾股定理得:1.5NO ===(米).∴NB =ON -OB =1.5-0.7=0.8(米),∴梯脚B 外移(即BN 长)0.8米.20.如图,△ABC 中,AB =AC =10,BC =16,过点A 作AD ⊥BC 于D ,∴BD =CD =12BC =12×16=8∴∠ADB =90°.∴AD∴S ABC =12BC ×AD=12×16×6=48∴这个等腰三角形的面积是4821.解:根据勾股定理得:100AB =原计划建公路费用:300(8060)42000´+=万元,实际打隧道及建公路费用:()50023001002´+´-10002940030400=+=万元,420003040011600-=万元,答:改建后可省工程费11600万元.22.解:(1)∵使得C ,D 两村到E 站的距离相等.∴DE =CE ,∵DA ⊥AB 于A ,CB ⊥AB 于B ,∴∠A =∠B =90°,∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB -AE =(14-x ),∵DA =8km ,CB =6km ,∴x 2+82=(14-x )2+62,解得:x =6,∴AE =6km .答:E 站应建在距A 站6千米处;(2)DE 和EC 垂直,理由如下:在△DAE 与△EBC 中,86AD BE A B AE BC ==ìïÐ=Ðíï==î,∴△DAE ≌△EBC (SAS ),∴∠DEA =∠ECB ,∠D =∠CEB ,∵∠DEA +∠D =90°,∴∠DEA +∠CEB =90°,∴∠DEC =90°,即DE ⊥EC .。
勾股定理【核心考点训练】考点一:勾股定理的应用1.如图,等腰三角形ABC中,AB=AC,AD是底边BC上的高,若AB=10,BC=12,则AD的长度为( )A.12B.10C.8D.6【解析】选C.根据等腰三角形的三线合一可得BD=CD=BC=6,在Rt△ABD中,由勾股定理得AB2=BD2+AD2,所以AD=8.故选C.2.为了向建国六十四周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的长方形纸片ABCD,②将纸片沿着直线AE 折叠,点D恰好落在BC边上的F处,……请你根据①②步骤解答下列问题:(1)找出图中∠FEC的余角.(2)计算EC的长.【解析】(1)由图可得∠FEC的余角为∠CFE,由同角的余角相等可得∠FEC的余角还有∠BAF.(2)设EC=xcm,则有EF=DE=(16-x)cm,AF=AD=20cm.在Rt△ABF中,BF2=AF2-AB2=202-162=122,所以BF=12cm.即FC=BC-BF=20-12=8(cm),在Rt△EFC中,EF2=FC2+EC2,所以(16-x)2=82+x2,解得x=6.所以EC的长为6cm.【专家点评】1.命题角度:本部分主要是应用勾股定理解决一些高度、长度或距离的问题.2.解题关键:勾股定理是反映直角三角形中三边关系的定理,是数学中从形到数的一个重要体现,根据勾股定理求线段长、距离、高度、图形面积等在各领域有着广泛的应用,勾股定理的应用是中考中重要考点.其中勾股定理是初中求线段长度的常用依据,在求线段长度的过程中,经常要设未知数,利用方程求解.3.特别提醒:利用勾股定理计算三角形的边长时要注意以下三点:(1)注意勾股定理的使用条件:必须是直角三角形.(2)注意分清斜边和直角边,避免盲目代入公式致错.(3)注意勾股定理公式的变形.考点二:利用三边关系判定直角三角形1.在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【解析】选B.在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.2.下列三角形中,可以构成直角三角形的是( )A.三边长分别为2,2,3B.三边长分别为3,3,5C.三边长分别为4,5,7D.三边长分别为1.5,2,2.5【解析】选D.选项A,由于22+22=8≠32=9,故错误;选项B,由于32+32=18≠52=25,故错误;选项C,由于42+52=41≠72=49,故错误;选项D,由于1.52+22=6.25=2.52,故正确.【专家点评】1.命题角度:本部分主要是利用三边关系来判别三角形是否为直角三角形.2.解题关键:利用三边关系判定直角三角形是从边的方面来判断直角三角形,只需判断三角形三边是否满足a2+b2=c2(c为最大边)即可,而直角三角形的判定在数学及其他学科某些领域的研究中都起着非同寻常的作用.3.特别提醒:判断直角三角形时要注意以下三点:(1)这一方法与勾股定理的条件和结论正好相反,值得注意的是,在这一方法中不能用“斜边”“直角边”等字样.(2)要判断一个三角形是否是直角三角形,先确定最大边c,再验证c2与a2+b2是否相等.(3)学会识别勾股数:满足a2+b2=c2的三个正整数,称为勾股数,也就是说,在给定的三个正整数中,其中最大的数的平方等于其他两数的平方和,这组数就是勾股数,如3,4,5就是勾股数.考点三:利用勾股定理解决实际问题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300m【解析】选B.小明去书店共有三种走法:(1)A→C→书店;(2)A→B→书店;(3)A→B→D→书店.因为曙光路与环城路垂直,所以△BDE为直角三角形,所以BD>BE,所以(3)的路程大于(2)的路程,因此只比较(1)(2)的路程即可.在Rt△ABC和Rt△EDB中,因为∠CAB=∠BED=90°,AC∥BD,∠ACB=∠EBD,AB=ED,所以Rt△ABC ≌Rt△EDB,所以BE=AC=300,而BC2=3002+4002,所以BC=500,所以EC=500-300=200,所以(1)的路程为300+200=500(m);(2)的路程为400+300=700(m),所以(1)的路程最短为500m.2.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是( )A.(4+)cmB.5 cmC.6 cmD.7 cm【解析】选B.画出圆柱的侧面展开图,根据高BC=6cm,PC=BC,得PC=×6=4(cm),在Rt△ACP中,根据勾股定理求出AP的长,即蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离:AP2=AC2+CP2,所以AP2=32+42=52,所以AP=5cm.【专家点评】1.命题角度:本部分主要是利用勾股定理解决最短路径问题及解决简单的实际问题.如求圆柱侧面上两点的最短路径.求正方体表面上两点间的最短路径等.2.解题关键:勾股定理和直角三角形的判别在现实世界中有着较为广泛的应用,如古埃及人利用结绳的方法作出直角,利用勾股定理求出蚂蚁爬行的最短路线等.在这些应用问题中,正确地作出图形,找出直角三角形并确定斜边是解题的关键.3.特别提醒:运用勾股定理及其逆定理解决实际问题应注意以下两点:(1)实际问题转化为平面直角三角形来解决时,应明确实际问题中的量与直角三角形边的长度的关系.(2)在解决实际问题的过程中,展开成平面图形时,应分清对应点、线的位置关系.立体图形中的最短距离区别于平面图形中的最短距离,一定要先把立体图形展成平面图形,再利用两点之间线段最短的性质求解.【中考真题训练】训练点一:勾股定理及其应用1.如图,在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交BC 于点E,连接AE,则△ACE的周长为( )A.16B.15C.14D.13【解析】选A.在Rt△ABC中,∠BAC=90°,AB=8,AC=6,所以BC2=AB2+AC2=102,即BC=10.因为DE 是AB边的垂直平分线,所以AE=BE.l△ACE=AC+CE+EA=AC+CE+BE=AC+BC=16.2.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A.7B.6C.5D.4【解析】选C.如图,因为等腰三角形ABC中,AB=AC,AD是BC上的中线,所以BD=CD=BC=3,AD 同时是BC上的高线,所以AB2=AD2+BD2=52,即AB=5.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形K L MJ的边上,则矩形K L MJ的面积为( )A.90B.100C.110D.121【解析】选C.如图,过B作BN⊥KL于N,则△BNF≌△CAB,所以BN=AC=4,NF=AB=3,同理FL=4.所以KL=KN+NF+FL=10,KJ=KE+ED+DJ=11,所以矩形KLMJ的面积为10×11=110.4.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=____________.【解析】因为AC=3,BC=4,所以AB2=AC2+BC2=9+16=52,即AB=5.因为以点A为圆心,AC长为半径画弧,交AB于点D,所以AD=AC,所以AD=3,所以BD=AB-AD=5-3=2.答案:25.如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD=____________.【解析】设B点的对应点为B′.连接DB′,由勾股定理得AC=5.又AB′=AB,所以B′C=5-3=2,设DB=DB′=x,则DC=4-x,在Rt△DB′C中,利用勾股定理得x2+22=(4-x)2,解得x=,即BD=.答案:6.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE⊥DF,交AB 于E,交BC于F,若AE=4,FC=3,求EF的长.【解析】连接BD,因为在等腰直角三角形ABC中,D为AC边上的中点,所以BD⊥AC,BD=CD=AD,∠ABD=45°,∠C=45°.又DE⊥DF,所以∠FDC=∠EDB,所以△EDB≌△FDC,所以BE=FC=3,所以AB=7,则BC=7,所以BF=4.在直角三角形EBF中,EF2=BE2+BF2=32+42,所以EF=5.训练点二:利用三边关系判定直角三角形7.在直角三角形中,满足条件的三边长可以是____________(写出一组即可).【解析】例如,3,4,5(答案不唯一).答案:3,4,5(答案不唯一)训练点三:勾股定理在实际生活中的应用8.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是( )A.2mB.3mC.6mD.9m【解析】选C.如图,Rt△ABC中,AC=6m,BC=8m,则AB2=62+82=102,即AB=10(m).设O到支路的距离为xm,连接AO,BO,CO.因为S△ABC=S△AOB+S△BOC+S△AOC,所以×6×8=×10x+×8x+×6x,解得x=2(m),则3x=6m,即O到三条支路的管道总长是6m.9.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于______.【解析】S1+S2=π(AC2+BC2)=πAB2=2π.答案:2π10.如图,长方体的底面边的长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要________cm.【解析】把长方体的四个侧面展开为一个长方形,这个长方形的长为3+1+3+1=8(cm),宽为6cm,此时从A到B的最短距离为线段AB.连接AB,由勾股定理可求出AB=10cm.答案:10。