模拟分页式存储管理中硬件的地址转换和产生缺页中断
- 格式:doc
- 大小:74.00 KB
- 文档页数:7
合肥学院计算机科学与技术系实验报告2011~2012学年第一学期课程操作系统原理课程设计名称模拟分页式存储管理中硬件的地址转换和产学生姓名学号专业班级10计本(2)班指导教师2011年11月1.实验目的:通过实验模拟分页式存储管理中硬件的地址转换和产生缺页中断帮助理解在分页式存储管理中怎样虚拟存储器。
2.实验内容:分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
3.实验步骤:任务分析:(1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。
主存块号----用来表示已经装入主存的页所占的块号。
在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。
(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
模拟页式虚拟存储管理中硬件的地址转心得体会
页式虚拟存储管理中,硬件的地址转换过程是非常复杂的,需要多个硬件组件的协同工作来完成。
在我的学习中,我有一些体会和心得体会:
首先,在页式虚拟存储管理中,硬件的地址转换是通过页表实现的。
每个进程都有自己的页表,其中包含了虚拟页与物理页之间的对应关系。
当进程需要访问内存时,其虚拟地址会被分为页号和页内偏移量两部分,而页号就是用来查找页表中对应的物理页号的。
其次,在硬件地址转换的过程中,还需要使用到一个称为MMU(内存管理单元)的硬件组件。
MMU的作用就是将虚拟地址转换为物理地址。
它会在页表中查找想要访问的虚拟页号对应的物理页号,并使用物理页号和页内偏移量重新构造出物理地址。
最后,在使用页式虚拟存储管理时,还需要注意物理页的分配和清除。
物理页可以被多个进程共享使用,但是在进程结束时,需要及时清除对应的物理页帧,以确保不会引起内存泄漏和资源浪费。
总之,页式虚拟存储管理中硬件的地址转换过程非常复杂,需要多个硬件组件的协同工作来完成。
正确理解这个过程,并且合理地进行管理和分配物理页,才能保证进程的正常运行。
页式虚拟存储器的工作原理页式虚拟存储器是一种通过将磁盘空间作为内存的扩展来增加计算机可用内存的技术。
它允许计算机运行比物理内存更大的程序,并且可以在需要时将数据从磁盘移动到内存中。
在本文中,我们将探讨页式虚拟存储器的工作原理和实现方式。
一、页式虚拟存储器的概念页式虚拟存储器是指一种采用分页技术管理内存和磁盘的技术。
它分为内存页和磁盘页两部分,内存页是为了进程运行而存在的,磁盘页是为了在内存不够的时候将其置换到磁盘上而存在的。
当程序需要访问某一部分数据的时候,CPU会根据页表将数据从磁盘移动到内存中,然后再访问内存中的数据。
这种技术可以有效地增加计算机的可用内存,并且可以提高程序的运行效率。
二、页式虚拟存储器的工作原理1.内存页和磁盘页内存页是虚拟存储器中的一个概念,它用来表示物理内存中的一个固定大小的数据块。
通常情况下,内存页的大小是2的幂次方,比如4KB或者8KB。
磁盘页是虚拟存储器中的另一个概念,它用来表示在磁盘上的一个固定大小的数据块,通常情况下,磁盘页的大小和内存页的大小相同。
2.页表页表是虚拟存储器的核心数据结构,它用来将虚拟地址映射到物理地址。
当程序运行时,CPU会根据虚拟地址访问内存中的数据,而页表会将虚拟地址转换成物理地址。
如果所需的数据不在内存中,CPU会引发一个缺页中断,操作系统会根据页表将数据从磁盘移动到内存中,然后再由CPU访问内存中的数据。
3.页式置换算法页式虚拟存储器采用了页式置换算法来管理内存和磁盘之间的数据移动。
当内存不够时,操作系统会根据一定的置换算法将内存中的某些数据移到磁盘上,从而给新的数据腾出空间。
常用的页式置换算法包括最近最少使用(LRU)、先进先出(FIFO)、时钟置换算法等。
4.缺页中断处理当程序需要访问内存中的数据但是数据不在内存中时,CPU会引发一个缺页中断,操作系统会根据页表将数据从磁盘移动到内存中。
这是页式虚拟存储器的核心操作之一,它保证了程序在内存不够的情况下也能正常运行。
实验四页式虚拟存储管理中地址转换和页式中断FIFO一、实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断以及页面置换算法。
二、实验主要内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体内容包括:首先对给定的地址进行转换工作,若发现缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所做工作进行测试。
假定主存64KB,每个主存块1024字节,作业最大支持到64KB,系统中每个作业分得主存块4块。
三、实验原理1)地址转换过程:首先从逻辑地址中的高位取得页号,然后根据页号查页表,得到块号;然后从逻辑地址中的低位取得页内地址,将块号和页内地址合并即得到物理地址。
2)缺页中断处理根据页号查找页表,判断该页是否在主存储器中,若该页标志位“0”,形成缺页中断。
操作系统让调出中断处理程序处理中断。
四、实验方法与步骤实现地址转换与缺页中断处理,主要考虑三个问题:第一,设计页式虚拟存储管理方式中页表的数据结构;第二,地址转换算法的实现;第三,缺页中断处理算法的实现。
1)设计页表的数据结构页式虚拟存储管理方式中页表除了页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。
在实验中页表用数组模拟,其数据结构定义如下:struct{int lnumber; //页号int flag; //表示页是否在主存中,“1”表示在,“0”表示不在int pnumber; // 该页所在主存块的块号int write; //该页是否被修改过,“1”表示修改过,“0“表示没有修改过int dnumber; //该页存放在磁盘上的位置,即磁盘块号}page[n]; //页表定义2)地址转换算法的实现地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程。
在实验中,每个主存块1024字节,则块内地址占10位;主存64KB,则主存共64块,即块号占6位;物理地址共占16位;作业最大64KB,则作业最大占64块,即页号占6位,逻辑地址共占16位。
缺页中断 缺页中断:缺页中断就是要访问的页不在主存,需要操作系统将其调⼊主存后再进⾏访问。
在这个时候,被内存映射的⽂件实际上成了⼀个分页交换⽂件。
中断:是指计算机在执⾏程序的过程中,当出现异常情况或特殊请求时,计算机停⽌现⾏程序的运⾏,转向对这些异常情况或特殊请求的处理,处理结束后再返回现⾏程序的间断处,继续执⾏原程序。
缺页中断的顺序:缺页中断发⽣时的事件顺序如下: 1)硬件陷⼊内核,在内核堆栈中保存程序计数器。
⼤多数机器将当前指令的各种状态信息保存在特殊的CPU寄存器中。
2)启动⼀个汇编代码例程保存通⽤寄存器和其他易失的信息,以免被操作系统破坏。
这个例程将操作系统作为⼀个函数来调⽤。
3)当操作系统发现⼀个缺页中断时,尝试发现需要哪个虚拟页⾯。
通常⼀个硬件寄存器包含了这⼀信息,如果没有的话,操作系统必须检索程序计数器,取出这条指令,⽤软件分析这条指令,看看它在缺页中断时正在做什么。
4) ⼀旦知道了发⽣缺页中断的虚拟地址,操作系统检查这个地址是否有效,并检查存取与保护是否⼀致。
如果 不⼀致,向进程发出⼀个信号或杀掉该进程。
如果地址有效且没有保护错误发⽣,系统则检查是否有空闲页框。
如果没有空闲页框,执⾏页⾯置换算法寻找⼀个页⾯来淘汰。
5) 如果选择的页框"脏"了,安排该页写回磁盘,并发⽣⼀次上下⽂切换,挂起产⽣缺页中断的进程,让其他进程运⾏直⾄磁盘传输结束。
⽆论如何,该页框被标记为忙,以免因为其他原因⽽被其他进程占⽤。
6) ⼀旦页框"⼲净"后(⽆论是⽴刻还是在写回磁盘后),操作系统查找所需页⾯在磁盘上的地址,通过磁盘操作将其装⼊。
该页⾯被装⼊后,产⽣缺页中断的进程仍然被挂起,并且如果有其他可运⾏的⽤户进程,则选择另⼀个⽤户进程运⾏。
7) 当磁盘中断发⽣时,表明该页已经被装⼊,页表已经更新可以反映它的位置,页框也被标记为正常状态。
8) 恢复发⽣缺页中断指令以前的状态,程序计数器重新指向这条指令。
燕山大学课程设计说明书课程设计名称:操作系统OS题目:页式存储管理中页面置换(淘汰)的模拟程序班级:计算机应用二班开发小组名称:CAMPUS课题负责人:课题组成员:姓名学号班级自评成绩课题开发日期:2011-1-10至2011-1-14一.概述1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
2.主要完成的任务自行输入实际页数、内存可用页面数、存取内存时间、存取快表时间及缺页中断时间,然后由用户随机输入各页面号,模拟系统自动运行出FIFO、LRU、OPT、LFU四种算法的缺页次数、缺页率、命中率、总存取时间、存取平均时间等结果。
3 使用的开发工具(1)使用系统:Windows7(2)使用语言:C++(3)开发工具:Visual C++ 6.04 解决的主要问题设计的结果程序能实现FIFO、OPT、LRU、LFU算法模拟页式存储管理缺页中断,主要能够处理以下的问题:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可由用户输入页面序列;(4)系统自动计算总存取时间及平均存取时间。
二使用的基本概念和原理1.概念FIFO即先进先出页面置换算法,该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。
LRU 即最近最久未使用页面置换算法,该算法选择最近最久未使用的页面予以淘汰。
OPT 即最佳值换算法,其选择淘汰的页面是在最长时间内不再被访问的页面。
LFU 即最近使用最少页面置换算法,其淘汰的页面是最近一段时间内使用最少的页面。
缺页中断存取页面时页面不在内存中需从外存调入的现象。
缺页次数即在存取页面过程中发生缺页中断的次数。
页式虚拟FIFO存储管理缺页中断的模拟算法FIFO一课程设计目的与功能1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
设计并实现出的结果程序要能够很好地显示页面调入和替换详细信息。
2初始条件(1)预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。
(2)实践准备:掌握一种计算机高级语言的使用3 开发环境(1)使用系统:Windows XP(2)使用语言:C++(3)开发工具:Visual C++ 6.04功能设计的结果程序能实现OPT、FIFO、随机淘汰算法模拟页式存储管理缺页中断,主要能够处理以下的情形:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可随机生成页面序列,替代用户输入;(4) 缺页时,如果发生页面置换,输出淘汰的页号。
二需求分析,整体功能及设计数据结构或模块说明1 需求分析在纯页式存储管理提高了内存的利用效率,但并不为用户提供虚存,换句话说,当一个用户程序的页数大于当前总空闲内存块数时,系统就不能将该程序装入运行。
即用户程序将受到物理内存大小的限制。
为了解决这个问题,人们提出了能提供虚存的存储管理技术——请求分页存储管理技术和请求分段技术。
本设计实现请求分页管理技术。
请求分页系统是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。
它允许只装入部分页面的程序和数据,便启动运行。
以后,再通过调页功能和页面置换功能,陆续把即将要运行的页面调入内存,同时把暂时不运行的页面换出到外存上。
置换时以页面为单位,为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。
操作系统实验二〔第一题〕一.实验内容模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。
二.实验目的在电脑系统总,为了提高主存利用率,往往把辅助存储器作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间综合可以超出主存的绝对地址空间。
用这种方法扩充的主存储区成为虚拟存储器。
三.实验题目模拟分页式存储管理中硬件的地址转换和产生缺页中断。
四.程序清单//// 操作实验二.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"#include<iostream>#include<string>#include<fstream>using namespace std;class ins{private:string ope;long int page;long int unit;public:ins(){ }ins(string o,long int p,long int u):ope(o),page(p),unit(u){}void setope(string o){ ope=o;}void setpage(long int p){ page=p;}void setunit(long int u){ unit=u;}string getope(){return ope;}long int getpage(){return page;}long int getunit(){return unit;}};class work{private:long int Page;int sym;long int inum;long int onum;public:work(){}work(long int P, int s,long int i,long int o):Page(P),sym(s),inum(i),onum(o){} void setPage(long int P){ Page=P;}void setsym( int s){ sym=s;}void setinum(long int i){ inum=i;}void setonum(long int o){ onum=o;}long int getPage(){return Page;}int getsym(){return sym;}long int getinum(){return inum;}long int getonum(){return onum;}};void diaodu(work *w,ins * i,int numofins){ for(int j=0;j<numofins;j++){long int tempofk;long int a =i[j].getpage();for(int k=0;k<7;k++) //7是页表的页数if(w[k].getPage()!=a)continue;else{tempofk=k;break;}if(w[tempofk].getsym()==1)cout<<"绝对地址:"<<w[tempofk].getinum()*128+i[j].getunit()<<" "<<"磁盘地址为:"<<w[tempofk].getonum()<<" "<<"操作为:"<<i[j].getope()<<endl;else cout<<"*"<<"发生缺页中断"<<endl;}}int main(){ins*INS=new ins[12];INS[0].setope ("+");INS[0].setpage(0);INS[0].setunit(70);INS[1].setope ("+");INS[1].setpage(1);INS[1].setunit(50);INS[2].setope ("×");INS[2].setpage(2);INS[2].setunit(15);INS[3].setope ("存"); INS[3].setpage(3);INS[3].setunit(21);INS[4].setope ("取"); INS[4].setpage(0);INS[4].setunit(56);INS[5].setope ("-");INS[5].setpage(6);INS[5].setunit(40);INS[6].setope ("移位"); INS[6].setpage(4);INS[6].setunit(53);INS[7].setope ("+");INS[7].setpage(5);INS[7].setunit(23);INS[8].setope ("存"); INS[8].setpage(1);INS[8].setunit(37);INS[9].setope ("取"); INS[9].setpage(2);INS[9].setunit(78);INS[10].setope ("+"); INS[10].setpage(4);INS[10].setunit(1);INS[11].setope ("存"); INS[11].setpage(6);INS[11].setunit(84);work*W =new work[7]; ifstream in("g://operate1.txt");long int p;int s;long int i;long int o;for(int jj=0;jj<7 ;jj++){in>>p;in>>s;in>>i;in>>o ;W[jj].setPage(p);W[jj].setsym(s);W[jj].setinum(i);W[jj].setonum(o);}diaodu(W,INS,12);}五.结果显示操作系统实验二〔第二题〕一.用先进先出〔FIFO〕九.程序清单/ 操作系统实验二.cpp : 定义控制台应用程序的入口点。
实验四处理缺页中断1.实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断。
2.实验预备知识页式存储管理中的地址转换的方法;页式虚拟存储的缺页中断处理方法。
3.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所作工作进程测试。
假定主存64KB ,每个主存块1024字节,作业最大支持到64KB ,系统中每个作业分得主存块4块。
4.提示与讲解页式存储管理中地址转换过程很简单,假定主存块的大小为2n 字节,主存大小为2m'字节和逻辑地址m 位,则进行地址转换时,首先从逻辑地址中的高m-n 位中取得页号,然后根据页号查页表,得到块号,并将块号放入物理地址的高m'-n 位,最后从逻辑地址中取得低n 位放入物理地址的低n 位就得到了物理地址,过程如图1所示。
图1 页式存储管理系统地址转换示意图地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程,模拟地址转换的流程图如图2所示(实验中假定主存64KB ,每个主存块1024字节,即n=10,m'=16,物理地址中块号6位、块内地址10位;作业最大64KB ,即m=16,逻辑地址中页号6位、页内地址10位)。
在页式虚拟存储管理方式中,作业信息作为副本放在磁盘上,作业执行时仅把作业信息的部分页面装入主存储器,作业执行时若访问的页面在主存中,则按上述方式进行地址转换,若访问的页面不在主存中,则产生一个“缺页中断”,逻辑地址由操作系统把当前所需的页面装入主存储器后,再次执行时才可以按上述方法进行地址转换。
页式虚拟存储管理方式中页表除页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。
合肥学院
计算机科学与技术系
实验报告
2011~2012学年第一学期
课程操作系统原理
课程设计名称模拟分页式存储管理中硬件的地址转换和产学生姓名
学号
专业班级10计本(2)班
指导教师
2011年11月
1.实验目的:
通过实验模拟分页式存储管理中硬件的地址转换和产生缺页中断帮助理解在分页式存储管理中怎样虚拟存储器。
2.实验内容:
分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:
绝对地址=块号×块长+单元号
计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
3.实验步骤:
任务分析:
(1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业
的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,
其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。
主存块号----用来表示已经装入主存的页所占的块号。
在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。
(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地
址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号
计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
(30设计一个“地址转换”程序来模拟硬件的地址转换工作。
当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。
当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断。
(4)假定主存的每块长度为128个字节;现有一个共七页的作业,其中第0页至第3页已经
装入主存,其余三页尚未装入主存;该作业的页表为:
(1)概要设计:
定义页表结构体typedef struct
{页号、标志、主存块号、在磁盘存储位置
} table用以存放页表的数据结构信息,
定义一个操作表数据结构typedef struct {
操作、页号、单元号
}list;
用以存放输入的操作指令,当输入操作指令时,通过操作表中的页号访问页表,查看页表的标志位flag是否为1,若flag= 1 ,则表示在内存通过绝对地址=块号×块长+单元号模拟出硬件的地址转换工作,若flag=0,则表示不再内存,产生一次缺页中断输出“* 该页页号”,表示产生了一次缺页中断。
主函数main()用以实现指令的输出和地址的转换工作。
(2)流程图如下:
(3)详细设计:
typedef struct //页表定义
{
int pagenum; //页号
int flag; //标志
int block;//主存块号
int location; 磁盘上的位置
}table;存储页表信息
typedef struct //操作表定义
{
char ope[10];//操作
int pagenum;//页号
int address;//单元号
}list;
table p1[7]=
{
{0,1,5,11},{1,1,8,12},{2,1,9,13},
{3,1,1,21},{4,0,NULL,22},{5,0,NULL,23},{6,0,NULL,121}
};模拟输入页表信息,期中0,1,2,3,表示存入内存,4,5,6,表示未装入内存。
Main主函数的实现如下
{
定义一个数组p2[N]用以存储输入的指令
用for(i=0;i<N;i++)实现操作指令数循环
{ 、、、、、、
page=p2[i].pagenum;
flag=p1[page].flag;//通过页号访问页表的标志位
if(flag==0&&p2[i].pagenum<7)//不在主存
{
输出缺页中断
}
else if(页面数<7)
{
绝对地址=块号×块长+单元号;
输出模拟转换的地址;
}
else
页面超出;
}
}
(4)调试分析:
程序只是实现简单的模拟地址转换工作,当缺页时也不做任何处理功能简单(5)测试结果:
在内存输出模拟的地址:
不在内存
(1)使用说明:
当输入页号为0、1、2、3时,访问标志位为1,表示在主存,此时输出存储物理地址menaddress=block*size+address,当输入页号为4、5、6时,访问标志位为0,表示不在主存,输出*pagename=4 Page fault generated表示缺页中断,
(6)实验总结:本次的实验花费了我们整个小组不少的精力,虽然每个人的
分工不同,有轻有重,但我们每一个人都还是尽心尽力去完成自己的任务,实验的过程中,让我们深刻体会到即使是再怎么简单的原理,要想写出一个完整且完美的程序也还是很困难的。
我们都只能力所能及的去做到最好。
7.附录:
#include "stdio.h"
#include "string.h"
#define size 128 //块长
#define N 12
typedef struct
{
int pagenum;
int flag;
int block;
int location;//页表定义
}table;
typedef struct //操作表定义
{
char ope[10];
int pagenum;
int address;
}list;
table p1[7]=
{
{0,1,5,11},{1,1,8,12},{2,1,9,13},
{3,1,1,21},{4,0,NULL,22},{5,0,NULL,23},{6,0,NULL,121} };
void main()
{
list p2[N];
int i,page,flag, memaddress;
printf("the Operating command has(+,-,*,int,out,displace)\n"); for(i=0;i<N;i++)
{
printf("Enter the command:\nope= ");
scanf("%s",&p2[i].ope);
printf("pagename= ");
scanf("%d",&p2[i].pagenum);
printf("Unitnum= ");
scanf("%d",&p2[i].address);
page=p2[i].pagenum;
flag=p1[page].flag;
if(flag==0&&p2[i].pagenum<7)//不在主存
{
printf("*pagenum=%d Page fault generated\n\n",p2[i].pagenum);
}
else if(p2[i].pagenum<7)
{
memaddress=p1[page].block*size+p2[i].address;
printf(" memaddress=block(%d)*size(%d)+address(%d);\n memaddress= %ld\n\n", p1[page].block,size,p2[i].address,memaddress);
}
else
printf("page over! again\n");
}
}。