副教授,生态学博士,南京农业大学风景园林系系主任,江苏
- 格式:pdf
- 大小:216.44 KB
- 文档页数:3
南京农业大学农学院2016年博士拟录取名单农学院高媛赟★农业信息学程涛农学院黄晓婷★农业信息学田永超农学院贾敏★农业信息学曹卫星农学院蒋理★农业信息学朱艳农学院李栋★农业信息学程涛农学院徐浩★农业信息学曹卫星农学院杨阳★生物信息学吴玉峰农学院王一多★生物信息学吴玉峰农学院许明敏★生物信息学张良云农学院费宇涵★生物信息学黄骥农学院万书贝★种子科学与技术管荣展农学院杨彬★种子科学与技术张红生农学院倪缘农药学周明国农学院李连山农药学王鸣华农学院雷洁遗传学万建民农学院李敬遗传学万建民农学院万文涛遗传学王秀娥农学院韩泽刚作物遗传育种张天真农学院林静作物遗传育种智海剑农学院马旭辉作物遗传育种亓增军农学院王翠英作物遗传育种张海洋农学院王鑫作物遗传育种马正强农学院臧毅浩作物遗传育种张天真农学院张姗姗作物遗传育种喻德跃农学院张笑寒作物遗传育种杨东雷农学院张芸作物遗传育种唐灿明农学院周亮作物遗传育种江玲农学院陈高明作物遗传育种王春明农学院荆若男作物遗传育种万建民农学院侯森作物遗传育种郭旺珍农学院陈文静作物遗传育种管荣展农学院杨成凤作物遗传育种赵团结农学院章潇作物遗传育种万建民农学院郑海作物遗传育种王益华农学院成城作物遗传育种严远鑫农学院杨云华作物遗传育种智海剑农学院杜文凯作物遗传育种喻德跃农学院苏燕竹作物遗传育种盖钧镒农学院柳道明作物遗传育种王春明农学院陈明作物遗传育种麻浩农学院陈造业作物遗传育种盖钧镒农学院朱小品作物遗传育种王益华农学院汪翔作物遗传育种华健农学院尤世民作物遗传育种洪德林农学院周春雷作物遗传育种江玲农学院邵巧琳作物遗传育种张红生农学院曹鹏辉作物遗传育种江玲农学院陈先连作物遗传育种盖钧镒农学院刘小林作物遗传育种麻浩农学院王荣琪作物遗传育种万建民农学院周雪松作物遗传育种郭旺珍农学院张再成作物遗传育种许为钢农学院冯捷捷作物遗传育种黄骥农学院葛冬冬作物遗传育种洪德林农学院张小利作物遗传育种邢邯文章来源:文彦考研。
㊀南京农业大学学报㊀2021ꎬ44(2):208-216http://nauxb.njau.edu.cn㊀JournalofNanjingAgriculturalUniversityDOI:10.7685/jnau.202010034收稿日期:2020-10-29基金项目:国家自然科学基金项目(32070027ꎬ32000101ꎬ31700054)ꎻ江苏省现代农业面上项目(BE2020340)ꎻ中国博士后科学基金项目(2020M671513)作者简介:李周坤ꎬ副研究员ꎬE ̄mail:zkl@njau.edu.cnꎮ∗通信作者:崔中利ꎬ教授ꎬ研究方向为环境微生物学ꎬE ̄mail:czl@njau.edu.cnꎮ李周坤ꎬ叶现丰ꎬ杨帆ꎬ等.黏细菌捕食生物学研究进展及其在农业领域的应用潜力[J].南京农业大学学报ꎬ2021ꎬ44(2):208-216.LIZhoukunꎬYEXianfengꎬYANGFanꎬetal.Thepredationbiologyofmyxobacteriaanditsapplicationinagriculturalfield[J].JournalofNanjingAgri ̄culturalUniversityꎬ2021ꎬ44(2):208-216.特约综述黏细菌捕食生物学研究进展及其在农业领域的应用潜力李周坤1ꎬ叶现丰1ꎬ杨帆1ꎬ黄彦1ꎬ范加勤2ꎬ王辉4ꎬ崔中利1ꎬ3∗(1.南京农业大学生命科学学院/农业农村部农业环境微生物重点实验室ꎬ江苏南京210095ꎻ2.南京农业大学植物保护学院ꎬ江苏南京210095ꎻ3.南京农业大学作物免疫学重点实验室ꎬ江苏南京210095ꎻ4.中国科学院南京土壤研究所土壤环境与污染修复重点实验室ꎬ江苏南京210008)摘要:黏细菌(myxobacteria)是一类具有多细胞群体行为特征的捕食性微生物类群ꎬ能够以活的微生物细胞或者其他生物大分子作为食物获取营养ꎬ同时能够形成抗逆性强的子实体和黏孢子ꎬ从而使黏细菌具有良好的环境适应性ꎮ黏细菌对于植物病原真菌和细菌的捕食特性使其在植物病害防治方面具有重要的应用潜力ꎬ被视为是新的生防微生物类型ꎮ本文综述黏细菌对于微生物的捕食机制以及捕食行为的生态学功能ꎬ概述捕食性黏细菌作为一种新型的生防微生物在病害防治方面的应用潜力ꎮ在此基础上ꎬ也讨论目前黏细菌捕食生物学研究存在的问题ꎬ旨在为黏细菌捕食作用的深入研究及其在农业生产上的实际应用提供参考ꎮ关键词:黏细菌ꎻ捕食性微生物ꎻ生防微生物ꎻ植物病害防治中图分类号:Q939.96㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1000-2030(2021)02-0208-09ThepredationbiologyofmyxobacteriaanditsapplicationinagriculturalfieldLIZhoukun1ꎬYEXianfeng1ꎬYANGFan1ꎬHUANGYan1ꎬFANJiaqin2ꎬWANGHui4ꎬCUIZhongli1ꎬ3∗(1.CollegeofLifeScience/KeyLaboratoryofAgriculturalEnvironmentalMicrobiologyꎬMinistryofAgricultureandRuralAffairsꎬNanjingAgriculturalUniversityꎬNanjing210095ꎬChinaꎻ2.CollegeofPlantProtectionꎬNanjingAgriculturalUniversityꎬNanjing210095ꎬChinaꎻ3.KeyLaboratoryofPlantImmunityꎬNanjingAgriculturalUniversityꎬNanjing210095ꎬChinaꎻ4.KeyLaboratoryofSoilEnvironmentandPollutionRemediationꎬInstituteofSoilScienceꎬChineseAcademyofSciencesꎬNanjing210008ꎬChina)Abstract:MyxobacteriaareGram ̄negativebacteriaubiquitousdetectedinsoilenvironment.Theyarehighlysocialmicrobeswithacomplexmulticellularpopulationbehaviorwhichareassociatedwithfeedingonabroadrangeofsoilbacteriaandfungitoachievenutri ̄tion.Theformationoffruitingbodyandmyxosporesfromvegetativecellsdifferentiationthatrespondstostarvationmaymakemyxobac ̄teriaexcellentadaptationinnaturalenvironment.Myxobacteriaareversatilepredatorsthatpreyonmicrobesasexcellentcandidatesforbiologicalcontrolagents(BCAs).Hereꎬwediscussedthemechanismsandecologicalfunctionsoftheubiquitousandaccomplishedgeneralistpredatorꎬandthebiocontrolpotentialofplantdiseaseusingmyxobacteriawasalsosummarized.Onthisbasisꎬthefuturechal ̄lengesfortheinvestigationofpredatorymyxobacteriaincontrollingplantpathogenswereprovidedꎬwhichmightprovideinsightsforthepracticalapplicationofmyxobacteriainagriculturalfield.Keywords:myxobacteriaꎻpredatorymicrobesꎻbiologicalcontrolagentsꎻbiocontrolofplantdisease植物病害是制约农作物优质高产的重要因素之一ꎬ据统计全球主要农作物的病害损失约占作物总产量的20%~40%ꎬ每年直接经济损失高达数十亿美元[1-2]ꎬ其中70%~80%的病害是病原真菌所致[3-4]ꎮ至2050年全球粮食产量需要增加70%以满足日益增长的人口需求ꎬ令人担忧的是自2000年以来ꎬ新的真菌类型或者真菌类植物病原菌(fungal ̄likeplantpathogen)呈现逐年增加的趋势[5]ꎬ粮食生产安全问题越来越受到关注ꎬ已成为最重要的国际问题之一[6]ꎮ902㊀第2期李周坤ꎬ等:黏细菌捕食生物学研究进展及其在农业领域的应用潜力目前ꎬ农业生产上的植物病害主要以化学防治为主ꎬ而过度依赖和滥用化学农药产生了有害生物抗药性㊁农药残留超标㊁环境污染等一系列问题ꎬ严重影响我国农业的绿色可持续发展[7]ꎮ为了避免过度依赖化学农药的农业病害防治现状ꎬ近年来利用微生物的抗菌㊁植物免疫调节以及根际或叶际微生物组调控作用ꎬ阻止病原菌入侵植物已成为有效策略[8-10]ꎮ生防微生物的抗菌方式具有多样性ꎬ目前ꎬ受到关注比较多的生防微生物主要来自于假单胞菌(Pseudomonas)㊁芽胞杆菌(Bacillus)㊁伯克氏菌(Burkholderia)㊁溶杆菌(Lysobacter)㊁木霉(Trichoderma)和腐霉(Pythium)等属[11-12]ꎬ其中以枯草芽胞杆菌㊁哈茨木霉和寡雄腐霉等为代表的生防菌已被开发成商业化微生物菌剂ꎬ应用于农业生产的病害控制ꎬ其主要作用机制包括拮抗作用㊁竞争作用㊁诱导植物系统抗性等ꎬ且孢子形成特性使其在菌剂长效保存和土壤生存方面具有一定的优势ꎮ生防微生物进入环境中受到环境因子的多变性[13]㊁植物与微生物互作过程中的免疫识别[14]以及植物根际调控[15]等因素的影响ꎬ生防微生物在开放环境中难以定殖且防治效果不稳定ꎬ导致生物菌剂的实际应用受到一定程度的限制ꎮ在自然生态系统中ꎬ存在着大量不同类型的生物体ꎬ这些生物个体之间为争夺养分和空间形成了复杂的生态网络结构ꎮ捕食是生物体之间广泛存在的一种相互作用模式ꎬ是构建生态系统群落结构和维持生物多样性的关键过程[16]ꎮ目前ꎬ捕食性微生物包括吸血球菌(Vampirococcus)㊁蛭弧菌(Bdellovibrio)㊁噬菌弧菌(Bacteriovorax)㊁Micavibrio㊁Daptobacter㊁拟杆菌(Bacteroidetes)和黏细菌(myxobacteria)等[17-18]ꎮ其中ꎬ蛭弧菌能够直接入侵细胞周质空间实现对革兰氏阴性细菌的捕食ꎬ被广泛应用于养殖产业中改善水质和治疗水生动物细菌性疾病等方面[19]ꎮ此外ꎬ研究人员发现Micavibrioaeruginosavorus可通过黏附到细菌的细胞壁上ꎬ掠夺它们的养分来维持自身的生存和繁殖ꎬ研究成果为治疗多种传染性疾病提供了依据ꎬ从而减缓了微生物耐药性问题[20]ꎮ利用微生物的捕食作用能实现对病原微生物的控制ꎬ为农业病害防治提供策略ꎮ黏细菌是一类具有多细胞群体行为特征的革兰氏阴性细菌ꎬ可以捕食包括细菌和真菌在内的多种微生物ꎬ存在于土壤㊁树皮㊁朽木㊁动物粪便㊁地衣和昆虫等不同类型的环境中[21]ꎮ黏细菌具有超大的基因组(大约10Mb)ꎬ能形成类似真菌的不同形态的子实体结构ꎬ被称为 高等原核生物 ꎮ该类群大多具有复杂的生活史和生长代谢调控过程以及较强的环境适应能力[22]ꎮ然而ꎬ黏细菌作为一类具有捕食特性的新型生防微生物ꎬ其在农业生产过程中植物病害控制方面的应用并未引起太多的关注ꎮ本文综述黏细菌对于微生物的捕食策略㊁抗菌机制㊁捕食的生态学功能等方面的研究进展ꎬ评估捕食性黏细菌在病害防治方面的应用潜力ꎮ同时ꎬ讨论目前黏细菌对于微生物的捕食研究方面所存在的问题及其应对策略ꎬ为黏细菌应用于农业生产过程的病害控制提供理论依据和策略ꎮ1㊀黏细菌是一类通才型(generalistpredator)的微生物捕食者捕食性微生物分布广泛ꎬ在5个门(Proteobacteria㊁Chloroflexi㊁Cytophagaceae㊁Actinobacteria和Nanoar ̄chaeota)中的15个科均发现了捕食性细菌ꎬ包括寄生于硬蜱属的立克次氏体(Rickettsia)等[23]ꎮ除细菌外ꎬ真菌中也存在具有捕食能力的类群ꎬ如Arthrobotrys等可以捕食线虫和一些微生物[24]ꎮ微生物的捕食作用可能是通才型的(generalistpredator)ꎬ如黏细菌ꎬ对不同类型的细菌和真菌均具有捕食作用[25-26]ꎻ也可能是专性的(obligatepredator)ꎬ如蛭弧菌ꎬ通过侵入革兰氏阴性细菌的周质空间进而实现对猎物细胞的分解[27]ꎮ然而ꎬ黏细菌和蛭弧菌都可以在固体界面上滑行运动实现捕食ꎬ但是所涉及的分子机制是相互独立的[28]ꎮ对于黏细菌的捕食研究开展的较早[29]ꎬ其捕食作用与已报道的几种捕食性微生物的作用方式不同ꎮ相对于以盘基网柄菌(Dictyosteliumdiscoideum)为代表的细胞吞噬作用㊁蛭弧菌(Bdellovibriobac ̄teriovorus)为代表的胞质入侵作用㊁溶杆菌(Lysobacter)为代表的分泌扩散性抗菌物质以及腐生螺旋体属(Saprospira)为代表的通过黏性物质捕捉猎物(Ixotrophy)等方式[30]ꎬ黏细菌利用一种特殊的胞外猎杀机制入侵猎物菌落ꎮ黏细菌的捕食策略类型分为:1)直接攻击模式(frontalattack)ꎮ黏细菌细胞间相互合作形成直接攻击模式ꎬ如黏细菌Myxococcussp.BS对软腐果胶杆菌等病原细菌的捕食作用[26]ꎮ2)狼群围捕攻击模式(wolfpackattack)ꎮ黄色黏球菌(Myxococcusxanthus)DZ2对苜蓿中华根瘤菌(Sinorhizobiummedicae)AK21的捕食过程中ꎬ由于菌株AK21产生大量的胞外半乳葡聚糖抵御捕食ꎬ因此黏细菌DZ2采取一种先围捕后猎杀的方式实现对猎物的捕食[31]ꎮ3)孤立捕食模式(solitarypredation)ꎮ通常认为黏细菌通过类似群体狩猎南㊀京㊀农㊀业㊀大㊀学㊀学㊀报第44卷的策略捕食猎物[30]ꎬ然而研究者也发现黏细菌单个细胞的孤立捕食也能实现对猎物细胞的猎杀[32-34]ꎮ基于自然环境中可获取资源的局限性ꎬ多样化的捕食策略有助于黏细菌类群在环境中的适应能力ꎮ2㊀捕食性黏细菌(predator)与猎物(prey)之间的多重博弈关系目前ꎬ关于黏细菌捕食作用的研究主要集中在细菌捕食方面ꎬ包括黏细菌产生的次级代谢物㊁裂解酶㊁外膜囊泡(OMVs)等[30ꎬ35-36]ꎬ其中次级代谢物的抗菌活性被认为在黏细菌捕食过程中发挥着重要的作用[37-38]ꎬ而外膜囊泡被认为是黏细菌攻击猎物的短距离 运输机 [39]ꎮ此外ꎬ黏细菌分泌的蛋白酶或肽酶㊁溶菌酶等裂解酶可能参与黏细菌的捕食作用[30ꎬ40]ꎬ但到目前为止并无直接的证据ꎮ在黏细菌捕食大肠杆菌的研究中ꎬ转录组学分析发现上千个基因响应捕食过程ꎬ同时推测猎物细胞壁和蛋白质是黏细菌攻击的首要目标[41]ꎮ与对细菌的捕食研究相比ꎬ黏细菌对真菌的捕食研究较少ꎬ仅涉及具有抗真菌活性的几丁质酶㊁β-1ꎬ3-葡聚糖酶等细胞壁裂解酶[42-44]以及抗真菌活性的次级代谢物[45]等ꎮ在细菌与真菌互作关系研究中ꎬ伯克霍尔德菌和沙雷氏菌分别进化出三型分泌系统(T3SS)和六型分泌系统(T6SS)ꎬ将毒性蛋白直接注入真菌细胞内实现对真菌的猎杀[46-47]ꎮ与之不同的是ꎬ黏细菌通过分泌一种新型外膜型β-1ꎬ6-葡聚糖酶分解真菌细胞壁中的β-1ꎬ6-葡聚糖组分ꎬ进而实现对植物病原真菌的捕食(图1)[48]ꎮ目前具有酶活性的外膜蛋白主要包括膜结合蛋白酶或酯酶等[49-50]ꎬ黏细菌来源的外膜型β-1ꎬ6-葡聚糖酶是目前已报道的唯一具有糖苷水解酶活性的外膜蛋白ꎬ具有广谱的抗真菌活性ꎬ是黏细菌捕食真菌的关键因子[48]ꎮ图1㊀黏细菌与猎物细胞之间的捕食与防御策略Fig 1㊀Theattack ̄defensemodelbetweenpredatorymyxobacteriaandprey捕食性黏细菌通过多种模式攻击猎物以获取营养并建立竞争优势ꎬ而猎物群体面对捕食者的攻击进化出相应的防御策略抵御微生物的捕食ꎬ从而实现种群的自我保护(图1)ꎮ猎物抵御黏细菌捕食的防御策略类型主要分为:1)产生抑菌物质ꎮ黏细菌可以分泌抗生素杀死猎物ꎬ而猎物也可以分泌抗菌物质抑制黏细菌的生长ꎮ在黄色黏球菌(M.xanthus)DK1622与天蓝色链霉菌(Streptomycescoelicolor)M45的互作研究中ꎬ链霉菌M45通过气生菌丝和抗菌物质抵御黏细菌的捕食[18]ꎬ在黏细菌与芽胞杆菌的互作研究中也有类似的抑制作用报道[51]ꎮ此外ꎬ真菌也能够产生具有生物活性的次级代谢物ꎬ如青霉菌产生的抗生素能够抑制炭疽杆菌的生长[52]ꎬ具有抑制黏细菌生长的可能ꎮ2)形成外围屏障ꎮ枯草芽胞杆菌(Bacillus012112㊀第2期李周坤ꎬ等:黏细菌捕食生物学研究进展及其在农业领域的应用潜力subtilis)NCIB3610和大肠杆菌与黄色黏球菌(M.xanthus)DK1622的互作研究中ꎬ芽胞杆菌和大肠杆菌作为猎物类群通过产生胞外基质和生物膜抵御黏细菌的入侵[53-54]ꎻ根瘤菌利用分泌的胞外半乳葡聚糖保护细胞免受黏细菌的攻击[31]ꎮ3)修饰捕食因子结构ꎮ黏细菌捕食细菌的一个重要武器是抗生素myxovirescin(TA)ꎬ地衣芽胞杆菌通过分泌糖基转移酶(YjiC)对黏细菌分泌的抗生素TA进行葡萄糖糖基化修饰ꎬ减弱其对自身细胞的毒性ꎬ进而逃脱黏细菌的捕食[55](图1)ꎮ4)共进化ꎮ地衣芽胞杆菌在黏细菌的捕食压力下进化出对抗生素TA的修饰能力[55]ꎻ在黏细菌与大肠杆菌共进化研究中发现ꎬ大肠杆菌通过增加黏液量降低黏细菌的运动速度ꎬ同时通过突变自身的毒力蛋白-外膜蛋白酶(OmpT)以适应捕食的压力ꎬ而黏细菌则通过突变1个未知的eatB基因从而增强对细菌捕食的适应性[56]ꎮ5)改变细胞壁结构组成ꎮ黏细菌通过分泌抗菌蛋白β-1ꎬ6-葡聚糖酶实现对真菌的猎杀ꎬ然而粗糙脉孢菌等微生物细胞壁不含β-1ꎬ6-葡聚糖ꎬ进而避免了黏细菌的捕食[48ꎬ57]ꎮ6)其他类型ꎮ改变猎物细胞表面成分与细胞形态(如丝状细胞)和增加游动速度等也能够保护猎物逃避捕食[58]ꎮ3㊀黏细菌捕食行为在土壤菌群生态调控中的功能微生物群落中的捕食涉及原生生物㊁噬菌体以及具有捕食能力的细菌和真菌等[59]ꎮ黏细菌作为微生物食物网结构中的捕食者ꎬ在土壤微生物食物网中代谢活跃ꎬ在土壤生态系统碳循环中起着关键作用[60]ꎮ土壤中黏细菌占总细菌群落的比例为0.4%~4.5%ꎬ几乎包含了所有黏细菌科或属ꎬ因此ꎬ黏细菌被认为是土壤细菌群落的重要组成部分[61]ꎮ此外ꎬ黏细菌在农田土壤环境中与捕食性细菌存在显著的正相关性ꎬ推测其在农田土壤细菌群落调控方面具有重要的作用[62]ꎮ尽管黏细菌广泛分布ꎬ并且在微生物生态调控中发挥着重要的作用ꎬ但对具体的影响或控制机制的研究并不统一ꎮ研究者在开展土壤微生物与植物互作关系研究中发现ꎬ黏细菌Corallococcussp.EGB能够对植物根际分泌物中麦芽糖和麦芽糖醇具有较强的趋化作用ꎬ使黏细菌向根部定向迁移并定殖ꎮ由于黏细菌EGB对包括尖孢镰刀菌在内的多种植物病原真菌和细菌均表现良好的捕食作用[25ꎬ48]ꎬ在向根部迁移的过程中ꎬ黏细菌通过捕食作用调控土壤微生物群落结构ꎮ其中ꎬBacillus和Pseudomonas等潜在的病害生防菌以及植物促生菌(PGPR)等丰度上升ꎬ尖孢镰刀菌黄瓜专化型(F.oxysporumf.sp.cucumerinumꎬFOC)数量明显下降ꎬ从而抑制病害的发生[63]ꎮ研究结果为利用捕食性黏细菌调控土壤微生物菌落进而实现植物病害的控制提供了新思路ꎬ同时也暗示着捕食性微生物作为土壤食物网的重要组成部分[64]ꎬ在微生物生态系统动态过程调控中起着重要的作用ꎮ4㊀捕食性黏细菌在植物病害控制方面的应用潜力研究发现来源于不同种属的黏细菌菌株对不同类型的植物病原菌均表现良好的抗菌活性[38ꎬ65-66]ꎬ在植物病害生物防治方面表现出潜在的应用价值ꎮ盆栽试验中ꎬ黏细菌对病原细菌㊁真菌和卵菌等造成的植物病害具有良好的生防效果ꎬ表现出较好的土壤定殖能力ꎬ从而保护植物免受病原菌的危害[25ꎬ63ꎬ67-68]ꎮ此外ꎬ在水果采后病害控制方面ꎬ黏细菌Corallococcussp.EGB产生的多种挥发性抗真菌次级代谢物(VOC)ꎬ能够有效抑制青霉菌对橘子的侵染[69]ꎬ延长水果采后货架期(图2)ꎮ基于黏细菌潜在的生防效果ꎬ研究者进一步开展了田间试验ꎮ黏细菌SorangiumcellulosumKYC3262在辣椒炭疽病的防控试验中连续3年表现出稳定的生防效果ꎬ防控效率与化学杀菌剂相当[70]ꎮ黏细菌Corallococcussp.EGB在连续2年的黄瓜和香蕉枯萎病田间防控试验中也表现出良好的生防效果ꎬ并优于化学药剂处理ꎬ显著提高作物产量[63] (图2)ꎮ与目前已报道的生防微生物相比ꎬ黏细菌在植物病害控制方面具有显著的特点:1)能在固体表面滑行运动ꎮ黏细菌利用2种不同类型的运动系统(A运动:AdventurousmotilityꎻS运动:Socialmotility)实现在固体界面的滑行运动[71]ꎬ降低微生物对土壤水分的要求[72]ꎬ而土壤水分含量是生防微生物在土壤中运动的限制因素之一[13]ꎮ2)产生丰富的抗菌物质ꎮ从黏细菌中已经发现了大量具有抗菌活性的次级代谢产物和酶类[43ꎬ73-74]ꎬ是原核生物中仅次于放线菌的第二大次级代谢物来源菌ꎮ3)发育形成抗性黏孢子ꎮ黏细菌是革兰氏阴性细菌ꎬ但可以分化或诱导分化形成具有抗逆性的孢子[75]ꎬ有利于生防菌剂的研发和保存ꎮ4)环境适应性强ꎮ黏细菌广泛分布于土壤㊁水体㊁腐败的树木枯枝落叶㊁草食类动物的粪便等不同的环境ꎬ具有较强的环境适应力[76-77]ꎮ5)能通过多样化的策略捕食真菌和细菌[30ꎬ78]ꎮ黏细菌通才型的南㊀京㊀农㊀业㊀大㊀学㊀学㊀报第44卷图2㊀黏细菌Corallococcussp.EGB在植物真菌病害控制方面的应用性评估Fig 2㊀ApplicationevaluationofofCorallococcussp.EGBinthebiocontrolofplantfungaldisease㊀㊀a.黏细菌利用挥发性抗菌物质(VOC)抑制气传性植物病原菌的生长[69](VOC:抑制灰霉病菌对橘子的侵染)ꎻb.黏细菌通过捕食和土壤微生物调控作用控制土传枯萎病害的发生[63](捕食与调控:抑制黄瓜枯萎病菌对黄瓜的侵染)ꎮa.Biocidaleffectsofvolatileorganiccompounds(VOC)producedbythemyxobacteriaagainstfungalphytopathogens[69]ꎻb.Predationandmicrobialcommunityregulationofmyxobacteriaareinvolvedinthecontrolofsoil ̄borneFusariumwilt[63].捕食特性㊁良好的环境适应性㊁土壤微生物群落调控能力ꎬ使其被视为是一类新型的生防微生物ꎬ可应用于农业生产过程中植物病害的生防控制ꎮ除了在植物病害生物防治方面ꎬ黏细菌在动物病害控制方面也表现一定的应用潜力ꎮ研究人员发现包含不同种属的113株黏细菌对多种动物致病菌均具有高效的捕食作用ꎬ包括肺炎克雷伯菌(Klebsiellapneumoniae)㊁奇异变形杆菌(Proteusmirabilis)㊁白色念珠菌(Candidaalbicans)㊁肠球菌(Enterococcus)㊁葡萄球菌(Staphylococcus)等[79]ꎮ此外ꎬ黏细菌分泌的具有生物活性的次级代谢物在保护动物健康方面也具有应用潜力ꎬ如S.cellulosum来源的Ambruticin等可以有效抑制多种动物致病菌的生长ꎻ来源于Myxococcusstipitatus的Rhizopodin㊁S cellulosum的Epothilone被认为在抗肿瘤方面具有重要的作用[35ꎬ80]ꎮ黏细菌通过捕食作用和次级代谢物的抗菌作用使其在致病性微生物引起的动物病害控制方面也具有一定的应用潜力ꎮ然而ꎬ目前黏细菌在病害防控中的作用还未引起足够的关注和重视ꎮ5㊀捕食性黏细菌在植物病害控制方面所面临的问题目前ꎬ捕食性黏细菌通过多种模式对植物病原菌进行捕食或者抑制ꎬ在病害控制方面具有良好的应用潜力ꎬ然而黏细菌捕食生物学研究中还存在一些瓶颈直接制约黏细菌的实际应用ꎮ例如:1)黏细菌捕食行为的复杂性ꎮ目前对于黏细菌的捕食相关研究多数集中在行为特征的描述等方面ꎬ已确定的黏细菌捕食因子只有抗生素TA和外膜型β-1ꎬ6-葡聚糖水解酶等ꎬ而黏细菌在捕食过程中降解酶与代谢调控㊁互作关键因子㊁感知与猎物响应㊁细胞依赖㊁群体捕食效率等方面的机制未知ꎬ限制了研究者对黏细菌捕食行为的深入了解ꎮ2)黏细菌生长与营养需求的特殊性ꎮ黏细菌特殊的生长发育方式导致黏细菌的分离周期长ꎬ且可培养性黏细菌资源有限ꎬ我国只有山东大学㊁广东省微生物研究所㊁内蒙古大学㊁河北大学等在黏细菌菌种资源收集方面建立了良好的基础ꎮ同时ꎬ黏细菌生长聚集成团和丰富的胞外多糖等特性使野生型黏细菌的遗传操作难以建立ꎬ具有优良特性的野生型黏细菌的作用机制研究存在瓶颈ꎮ此外ꎬ黏细菌生长过程中的自溶特性也导致扩大培养黏细菌受限ꎬ直接限制了黏细菌的实际应用和菌剂的规模化制备ꎮ3)研究材料的单一性ꎮ目前对于黏细菌的基础研究主要是以黄色黏球菌(M.xanthus)DK1622为材料ꎬ然而黏细菌与植物㊁微生物共进化过程中ꎬ不同种属之间的特性差异较大ꎬ如黄色黏球菌DK1622分泌的次级代谢物具有良好的抗菌作用ꎬ而黏细菌EGB主要是通过分泌真菌细胞壁裂解酶实现对真菌的抗性作212312㊀第2期李周坤ꎬ等:黏细菌捕食生物学研究进展及其在农业领域的应用潜力用ꎬ研究材料的单一性直接导致黏细菌捕食研究的进展较为缓慢ꎮ6 研究展望目前ꎬ黏细菌的基础研究主要是以黏细菌为模式生物ꎬ开展发育生物学㊁种群识别㊁进化生物学以及生态学等研究ꎬ包括黏细菌子实体的形成㊁运动性ꎬ多糖的生物合成ꎬ多形态细胞表面受体蛋白TraA(poly ̄morphiccellsurfacereceptor)及其互作蛋白TraB(cohortprotein)依赖的外膜融合参与黏细菌细胞识别的作用以及生物多样性等[81-82]ꎮ此外ꎬ以黏细菌为种质资源库ꎬ分离筛选一系列具有生物活性的次级代谢物ꎬ黏细菌已成为重要的生物活性物质来源菌[83]ꎮ黏细菌早在1941年就被报道具有捕食细菌的能力ꎬ然而黏细菌是如何完成对细菌和真菌的捕食这一关键科学问题至今未知ꎮ因此ꎬ解析黏细菌的捕食机制是未来黏细菌研究的重要方向ꎮ黏细菌在自然环境中分布广泛ꎬ具有较高的丰度ꎬ然而已分离培养的黏细菌资源依然较少ꎮ广东省微生物研究所科研人员利用病原菌作为被捕食菌构建了直接面向生物防治用途的黏细菌筛选模型[38]ꎬ为未来黏细菌分离方法的优化提供了方向ꎮ同时ꎬ2010年启动的地球微生物组计划(EarthMicrobiomeProject)ꎬ也为获取不同黏细菌的基因组信息ꎬ构建基因资源库提供了可能ꎮ此外ꎬ野生型黏细菌的分子生物学研究体系对于黏细菌研究的深入开展至关重要ꎮ研究者前期发现黏细菌细胞分散性㊁胞外多糖(exopolysaccharideꎬEPS)㊁限制-修饰系统(restriction ̄modificationsystemꎬR ̄Msystem)以及分泌系统等在黏细菌转化过程中起着重要的作用[84]ꎮ突破黏细菌胞外多糖的物理屏障ꎬ强化黏细菌生长过程细胞分散性ꎬ建立高效的遗传转化体系对于深入了解黏细菌的抗菌机制具有重要的作用ꎮ因此ꎬ为了促进捕食性黏细菌在农业生产过程中的实际应用ꎬ需要深入了解黏细菌捕食的作用机制和生态学功能ꎬ通过基因组学和培养组学等方法获取具有良好抗菌活性的优良菌株ꎻ利用代谢组学㊁蛋白和转录组学等鉴定参与黏细菌捕食行为的关键因子ꎬ系统解析黏细菌的捕食和代谢调控机制ꎻ结合微生物学㊁生态学㊁植物保护等多学科交叉阐明捕食性黏细菌在自然环境中的生态学功能以及与植物㊁土壤微生物菌群之间的互作关系ꎻ同时ꎬ建立和优化黏细菌规模化培养工艺ꎬ为黏细菌的实际应用提供依据ꎮ参考文献References:[1]㊀SavarySꎬWillocquetLꎬPethybridgeSJꎬetal.Theglobalburdenofpathogensandpestsonmajorfoodcrops[J].NatureEcology&Evolutionꎬ2019ꎬ3(3):430-439.[2]SavarySꎬFickeAꎬAubertotJNꎬetal.Croplossesduetodiseasesandtheirimplicationsforglobalfoodproductionlossesandfoodsecurity[J].FoodSecurityꎬ2012ꎬ4(4):519-537.[3]康振生.我国植物真菌病害的研究现状及发展策略[J].植物保护ꎬ2010ꎬ36(3):9-12.KangZS.CurrentstatusanddevelopmentstrategyforresearchonplantfungaldiseasesinChina[J].PlantProtectionꎬ2010ꎬ36(3):9-12(inChinesewithEnglishabstract).[4]CasadevallA.Fungaldiseasesinthe21stcentury:thenearandfarhorizons[J].Pathogens&Immunityꎬ2018ꎬ3(2):183-196. [5]FisherMCꎬHenkDAꎬBriggsCJꎬetal.Emergingfungalthreatstoanimalꎬplantandecosystemhealth[J].Natureꎬ2012ꎬ484(7393):186-194.[6]KeinanAꎬClarkAG.Recentexplosivehumanpopulationgrowthhasresultedinanexcessofraregeneticvariants[J].Scienceꎬ2012ꎬ336(6082):740-743.[7]王桂荣ꎬ王源超ꎬ杨光富ꎬ等.农业病虫害绿色防控基础的前沿科学问题[J].中国科学基金ꎬ2020ꎬ34(4):374-380.WangGRꎬWangYCꎬYangGFꎬetal.Frontiersinscientificissuesofcontrollingagriculturalpestsanddiseasesbyenvironmental ̄friendlymethods[J].BulletinofNationalNaturalScienceFoundationofChinaꎬ2020ꎬ34(4):374-380(inChinesewithEnglishabstract). [8]ChenTꎬNomuraKꎬWangXLꎬetal.Aplantgeneticnetworkforpreventingdysbiosisinthephyllosphere[J].Natureꎬ2020ꎬ580(7805):653-657.[9]WeiZꎬGuYAꎬFrimanVPꎬetal.Initialsoilmicrobiomecompositionandfunctioningpredeterminefutureplanthealth[J].ScienceAdvancesꎬ2019ꎬ5(9):eaaw0759.[10]TringeSG.Alayereddefenseagainstplantpathogens[J].Scienceꎬ2019ꎬ366(6465):568-569.[11]LegeinMꎬSmetsWꎬVandenheuvelDꎬetal.Modesofactionofmicrobialbiocontrolinthephyllosphere[J].FrontiersinMicrobiologyꎬ2020ꎬ11:1619.[12]RahmanSFSAꎬSinghEꎬPieterseCMJꎬetal.Emergingmicrobialbiocontrolstrategiesforplantpathogens[J].PlantScienceꎬ2018ꎬ267:102-111.[13]BabalolaOO.Beneficialbacteriaofagriculturalimportance[J].BiotechnologyLettersꎬ2010ꎬ32(11):1559-1570.412南㊀京㊀农㊀业㊀大㊀学㊀学㊀报第44卷[14]Trd LꎬBoutrotFꎬClaverieJꎬetal.Perceptionofpathogenicorbeneficialbacteriaandtheirevasionofhostimmunity:patternrecognitionreceptorsinthefrontline[J].FrontiersinPlantScienceꎬ2015ꎬ6:219.[15]ZhalninaKꎬLouieKBꎬHaoZꎬetal.Dynamicrootexudatechemistryandmicrobialsubstratepreferencesdrivepatternsinrhizospheremicrobialcommunityassembly[J].NatureMicrobiologyꎬ2018ꎬ3(4):470-480.[16]ErkenMꎬLutzCꎬMcDougaldD.Theriseofpathogens:predationasafactordrivingtheevolutionofhumanpathogensintheenvironment[J].MicrobialEcologyꎬ2013ꎬ65(4):860-868.[17]GuerreroRꎬPedros ̄AlioCꎬEsteveIꎬetal.Predatoryprokaryotes:predationandprimaryconsumptionevolvedinbacteria[J].ProcNatlAcadSciUSAꎬ1986ꎬ83(7):2138-2142.[18]PérezJꎬMoraleda ̄MuñozAꎬMarcos ̄TorresFJꎬetal.Bacterialpredation:75yearsandcounting![J].EnvironmentalMicrobiologyꎬ2016ꎬ18(3):766-779.[19]陈康勇ꎬ钟为铭ꎬ高志鹏.蛭弧菌在水产养殖中应用研究进展[J].水产科学ꎬ2018ꎬ37(2):283-288.ChenKYꎬZhongWMꎬGaoZP.ResearchprogressonutilizationofBdellovibrioinaquaculture[J].FisheriesScienceꎬ2018ꎬ37(2):283-288(inChinesewithEnglishabstract).[20]WangZꎬKadouriDEꎬWuM.Genomicinsightsintoanobligateepibioticbacterialpredator:MicavibrioaeruginosavorusARL ̄13[J].BMCGenomicsꎬ2011ꎬ12:453.[21]李曙光.黏细菌的环境分布㊁季节演替及其相互作用[D].济南:山东大学ꎬ2014.LiSG.Distributionꎬseasonalsuccessionandintraspeciesinteractionsofmyxobacteria[D].Jinan:ShandongUniversityꎬ2014(inChinesewithEnglishabstract).[22]王春玲ꎬ冯广达ꎬ姚青ꎬ等.黏细菌基因组学研究进展[J].微生物学通报ꎬ2019ꎬ46(9):2394-2403.WangCLꎬFengGDꎬYaoQꎬetal.Researchprogressingenomicsofmyxobacteria[J].MicrobiologyChinaꎬ2019ꎬ46(9):2394-2403(inChinesewithEnglishabstract).[23]JurkevitchE.Predatorybehaviorsinbacteria:diversityandtransitions[J].MicrobeMagazineꎬ2007ꎬ2(2):67-73.[24]BarronGL.Predatoryfungiꎬwooddecayꎬandthecarboncycle[J].Biodiversityꎬ2003ꎬ4(1):3-9.[25]LiZKꎬYeXFꎬChenPLꎬetal.AntifungalpotentialofCorallococcussp.strainEGBagainstplantpathogenicfungi[J].BiologicalControlꎬ2017ꎬ110:10-17.[26]LiZKꎬWangTꎬLuoXꎬetal.BiocontrolpotentialofMyxococcussp.strainBSagainstbacterialsoftrotofCallalilycausedbyPectobacteriumcarotovorum[J].BiologicalControlꎬ2018ꎬ126:36-44.[27]DavidovYꎬHuchonDꎬKovalSFꎬetal.Anewalpha ̄proteobacterialcladeofBdellovibrio ̄likepredators:implicationsforthemitochondrialendo ̄symbiotictheory[J].EnvironmentalMicrobiologyꎬ2006ꎬ8(12):2179-2188.[28]ZhangYꎬGuzzoMꎬDucretAꎬetal.AdynamicresponseregulatorproteinmodulatesG ̄protein ̄dependentpolarityinthebacteriumMyxococcusxanthus[J].PLoSGeneticsꎬ2012ꎬ8(8):e1002872.[29]BeebeJM.Studiesonthemyxobacteria:ⅠꎬdistributioninIowasoilsanddescriptionofanewspeciesꎻⅡꎬMyxobacteriaasbacterialparasitesꎻⅢꎬthemorphologyandcytologyofMyxococcusxanthus[D].Iowa:IowaStateUniversityꎬ1941.[30]BerlemanJEꎬKirbyJR.Decipheringthehuntingstrategyofabacterialwolfpack[J].FEMSMicrobiologyReviewsꎬ2009ꎬ33(5):942-957. [31]PérezJꎬJiménez ̄ZurdoJIꎬMartínez ̄AbarcaFꎬetal.RhizobialgalactoglucandeterminesthepredatorypatternofMyxococcusxanthusandprotectsSinorhizobiummelilotifrompredation[J].EnvironmentalMicrobiologyꎬ2014ꎬ16(7):2341-2350.[32]ZhangWCꎬWangYꎬLuHNꎬetal.DynamicsofsolitarypredationbyMyxococcusxanthusonEscherichiacoliobservedatthesingle ̄celllevel[J].AppliedandEnvironmentalMicrobiologyꎬ2019ꎬ86(3):e02286-19.[33]McBrideMJꎬZusmanDR.BehavioralanalysisofsinglecellsofMyxococcusxanthusinresponsetopreycellsofEscherichiacoli[J].FEMSMicrobiologyLettersꎬ1996ꎬ137(2/3):227-231.[34]ShiloM.Lysisofblue ̄greenalgaebymyxobacter[J].JournalofBacteriologyꎬ1970ꎬ104(1):453-461.[35]KaurRꎬKumariAꎬKaurRꎬetal.Myxobacteria:producersofenormousbioactivesecondarymetabolites[J].InternationalJournalofResearchinPharmaceuticalSciencesꎬ2018ꎬ9(1):309-313.[36]EvansAGLꎬDaveyHMꎬCooksonAꎬetal.PredatoryactivityofMyxococcusxanthusouter ̄membranevesiclesandpropertiesoftheirhydrolasecargo[J].Microbiologyꎬ2012ꎬ158(11):2742-2752.[37]XiaoYꎬWeiXMꎬEbrightRꎬetal.Antibioticproductionbymyxobacteriaplaysaroleinpredation[J].JournalofBacteriologyꎬ2011ꎬ193(18):4626-4633.[38]代京莎ꎬ李安章ꎬ朱红惠.黏细菌在植物病害生物防治中的作用[J].生物技术进展ꎬ2016ꎬ6(4):229-234.DaiJSꎬLiAZꎬZhuHH.Thefunctionofmyxobacteriainbiologicalcontrolofplantdisease[J].CurrentBiotechnologyꎬ2016ꎬ6(4):229-234(inChinesewithEnglishabstract).[39]KeaneRꎬBerlemanJ.ThepredatorylifecycleofMyxococcusxanthus[J].Microbiologyꎬ2016ꎬ162(1):1-11.[40]EnsignJꎬWolfeR.Characterizationofasmallproteolyticenzymewhichlysesbacterialcellwalls[J].Journalofbacteriologyꎬ1966ꎬ91(2):524-534.[41]LivingstonePGꎬMillardADꎬSwainMTꎬetal.TranscriptionalchangeswhenMyxococcusxanthuspreysonEscherichiacolisuggestmyxobacterialpredatorsareconstitutivelytoxicbutregulatetheirfeeding[J].MicrobialGenomicsꎬ2018ꎬ4(2):e000152.512㊀第2期李周坤ꎬ等:黏细菌捕食生物学研究进展及其在农业领域的应用潜力[42]HockingDꎬCookFD.Myxobacteriaexertpartialcontrolofdamping ̄offandrootdiseaseincontainer ̄growntreeseedlings[J].CanadianJournalofMicrobiologyꎬ1972ꎬ18(10):1557-1560.[43]LiZKꎬXiaCYꎬWangYXꎬetal.Identificationofanendo ̄chitinasefromCorallococcussp.EGBandevaluationofitsantifungalproperties[J].InternationalJournalofBiologicalMacromoleculesꎬ2019ꎬ132:1235-1243.[44]ZhouJꎬChenJHꎬLiZKꎬetal.Enzymaticpropertiesofamulti ̄specificβ ̄(1ꎬ3) ̄glucanasefromCorallococcussp.EGBanditspotentialantifungalapplications[J].ProteinExpressionandPurificationꎬ2019ꎬ164:105481.[45]KunzeBꎬSteinmetzHꎬHöfleGꎬetal.Cruentarenꎬanewantifungalsalicylate ̄typemacrolidefromByssovoraxcruenta(Myxobacteria)withinhibitoryeffectonmitochondrialATPaseactivity[J].TheJournalofAntibioticsꎬ2006ꎬ59(10):664-668.[46]SwainDMꎬYadavSKꎬTyagiIꎬetal.Aprophagetail ̄likeproteinisdeployedbyBurkholderiabacteriatofeedonfungi[J].NatureCommunicationsꎬ2017ꎬ8(1):1-9.[47]TrunkKꎬPeltierJꎬLiuYCꎬetal.ThetypeⅥsecretionsystemdeploysantifungaleffectorsagainstmicrobialcompetitors[J].NatureMicrobiologyꎬ2018ꎬ3(8):920-931.[48]LiZKꎬYeXFꎬLiuMXꎬetal.Anoveloutermembraneβ ̄1ꎬ6 ̄glucanaseisdeployedinthepredationoffungibymyxobacteria[J].TheISMEJournalꎬ2019ꎬ13(9):2223-2235.[49]RuttenLꎬMannieJPBAꎬSteadCMꎬetal.Active ̄sitearchitectureandcatalyticmechanismofthelipidAdeacylaseLpxRofSalmonellatyphimurium[J].ProcNatlAcadSciUSAꎬ2009ꎬ106(6):1960-196.[50]FairmanJWꎬNoinajNꎬBuchananSK.Thestructuralbiologyofβ ̄barrelmembraneproteins:asummaryofrecentreports[J].CurrentOpinioninStructuralBiologyꎬ2011ꎬ21(4):523-531.[51]MüllerSꎬStrackSNꎬHoeflerBCꎬetal.BacillaeneandsporulationprotectBacillussubtilisfrompredationbyMyxococcusxanthus[J].AppliedandEnvironmentalMicrobiologyꎬ2014ꎬ80(18):5603-5610.[52]BillsGFꎬGloerJB.Biologicallyactivesecondarymetabolitesfromthefungi[J].MicrobiologySpectrumꎬ2016ꎬ4(6):1-32.[53]MüllerSꎬStrackSNꎬRyanSEꎬetal.PredationbyMyxococcusxanthusinducesBacillussubtilistoformspore ̄filledmegastructures[J].AppliedandEnvironmentalMicrobiologyꎬ2015ꎬ81(1):203-210.[54]DepasWHꎬSyedAKꎬSifuentesMꎬetal.BiofilmformationprotectsEscherichiacoliagainstkillingbyCaenorhabditiselegansandMyxococcusxanthus[J].AppliedandEnvironmentalMicrobiologyꎬ2014ꎬ80(22):7079-7087.[55]WangCꎬLiuXꎬZhangPꎬetal.BacilluslicheniformisescapesfromMyxococcusxanthuspredationbydeactivatingmyxovirescinAthroughenzymaticglucosylation[J].EnvironmentalMicrobiologyꎬ2019ꎬ21(12):4755-4772.[56]NairRRꎬVasseMꎬWielgossSꎬetal.Bacterialpredator ̄preycoevolutionacceleratesgenomeevolutionandselectsonvirulence ̄associatedpreydefences[J].NatureCommunicationsꎬ2019ꎬ10(1):1-10.[57]MaddiAꎬDettmanAꎬFuCꎬetal.WSC ̄1andHAM ̄7areMAK ̄1MAPkinasepathwaysensorsrequiredforcellwallintegrityandhyphalfusioninNeurosporacrassa[J].PLoSOneꎬ2012ꎬ7(8):e42374.[58]JoussetA.Ecologicalandevolutiveimplicationsofbacterialdefencesagainstpredators[J].EnvironmentalMicrobiologyꎬ2012ꎬ14(8):1830-1843. [59]ThakurMPꎬGeisenS.Trophicregulationsofthesoilmicrobiome[J].TrendsinMicrobiologyꎬ2019ꎬ27(9):771-780.[60]LuedersTꎬKindlerRꎬMiltnerAꎬetal.Identificationofbacterialmicropredatorsdistinctivelyactiveinasoilmicrobialfoodweb[J].AppliedandEnvironmentalMicrobiologyꎬ2006ꎬ72(8):5342-5348.[61]ZhouXWꎬLiSGꎬLiWꎬetal.Myxobacterialcommunityisapredominantandhighlydiversebacterialgroupinsoilniches[J].EnvironmentalMicrobiologyReportsꎬ2014ꎬ6(1):45-56.[62]WangWHꎬLuoXꎬYeXFꎬetal.PredatoryMyxococcalesarewidelydistributedinandcloselycorrelatedwiththebacterialcommunitystructureofagriculturalland[J].AppliedSoilEcologyꎬ2020ꎬ146:103365.[63]YeXFꎬLiZKꎬLuoXꎬetal.ApredatorymyxobacteriumcontrolscucumberFusariumwiltbyregulatingthesoilmicrobialcommunity[J].Microbiomeꎬ2020ꎬ8(1):49.[64]Mendes ̄SoaresHꎬVelicerGJ.Decomposingpredation:testingforparametersthatcorrelatewithpredatoryperformancebyasocialbacterium[J].MicrobialEcologyꎬ2013ꎬ65(2):415-423.[65]任兴波ꎬ张子良ꎬ赵璞钰ꎬ等.马铃薯晚疫病菌拮抗黏细菌YR ̄35的分离鉴定及其代谢产物稳定性[J].中国生物防治学报ꎬ2016ꎬ32(3):379-387.RenXBꎬZhangZLꎬZhaoPYꎬetal.IsolationandidentificationofthestrainYR ̄35resistanttophytophthorainfestansanditsmetabolites[J].ChineseJournalofBiologicalControlꎬ2016ꎬ32(3):379-387(inChinesewithEnglishabstract).[66]李百元ꎬ谢小林ꎬ张鲜娇ꎬ等.不同被捕食细菌对新疆盐碱地黏细菌分离的影响[J].微生物学报ꎬ2013ꎬ53(4):379-389.LiBYꎬXieXLꎬZhangXJꎬetal.Influenceofdifferentpreystrainsonisolationofmyxobacteriainsaline ̄alkalinesoilsofXinjiang[J].ActaMicrobiologicaSinicaꎬ2013ꎬ53(4):379-389(inChinesewithEnglishabstract).[67]KimSTꎬYunSC.BiocontrolwithMyxococcussp.KYC1126againstanthracnoseinhotpepper[J].ThePlantPathologyJournalꎬ2011ꎬ27(2):156-163.[68]DahmMꎬBrzezińskaAJꎬWrótniak ̄DrzewieckaWꎬetal.Myxobacteriaasapotentialbiocontrolagenteffectiveagainstpathogenicfungiofeconomicallyimportantforesttrees[J].Dendrobiologyꎬ2015ꎬ74:13-24.[69]YeXFꎬChenYꎬMaSYꎬetal.BiocidaleffectsofvolatileorganiccompoundsproducedbythemyxobacteriumCorrallococcussp.EGBagainst612南㊀京㊀农㊀业㊀大㊀学㊀学㊀报第44卷fungalphytopathogens[J].FoodMicrobiologyꎬ2020ꎬ91:103502.[70]YunSC.Selectionanda3 ̄yearfieldtrialofSorangiumcellulosumKYC3262againstanthracnoseinhotpepper[J].ThePlantPathologyJournalꎬ2014ꎬ30(3):279-287.[71]NanBꎬZusmanDR.Uncoveringthemysteryofglidingmotilityinthemyxobacteria[J].AnnualReviewofGeneticsꎬ2011ꎬ45:21-39. [72]SpormannAM.Glidingmotilityinbacteria:insightsfromstudiesofMyxococcusxanthus[J].MicrobiologyandMolecularBiologyReviewsꎬ1999ꎬ63(3):621-641.[73]刘新利ꎬ李越中.黏细菌次级代谢产物及其在农业上的应用价值[J].中国农业科技导报ꎬ2007ꎬ9(3):44-51.LiuXLꎬLiYZ.Myxobacterialsecondarymetabolitesandtheirpotentialapplicationsinagriculture[J].JournalofAgriculturalScienceandTechnologyꎬ2007ꎬ9(3):44-51(inChinesewithEnglishabstract).[74]KaurRꎬSinghSꎬKaurRꎬetal.Myxococcusxanthus:asourceofantimicrobialsandnaturalbio ̄controlagent[J].ThePharmaInnovationJour ̄nalꎬ2017ꎬ6(11):260-262.[75]DworkinM.Recentadvancesinthesocialanddevelopmentalbiologyofthemyxobacteria[J].MicrobiologyReviewꎬ1996ꎬ60(1):70-102. [76]DawidW.Biologyandglobaldistributionofmyxobacteriainsoils[J].FEMSMicrobiologyReviewsꎬ2000ꎬ24(4):403-427.[77]李曙光ꎬ周秀文ꎬ吴志红ꎬ等.黏细菌的种群生态及其生存策略[J].微生物学通报ꎬ2013ꎬ40(1):172-179.LiSGꎬZhouXWꎬWuZHꎬetal.Populationecologyandsurvivalstrategyofmyxobacteria[J].MicrobiologyChinaꎬ2013ꎬ40(1):172-179(inChinesewithEnglishabstract).[78]Muñoz ̄DoradoJꎬMarcos ̄TorresFꎬGarcia ̄BravoEꎬetal.Myxobacteria:movingꎬkillingꎬfeedingꎬandsurvivingtogether[J].FrontiersinMicrobiologyꎬ2016:781.[79]LivingstonePGꎬMorphewRMꎬWhitworthDE.Myxobacteriaareabletopreybroadlyuponclinically ̄relevantpathogensꎬexhibitingapreyrangewhichcannotbeexplainedbyphylogeny[J].FrontiersinMicrobiologyꎬ2017ꎬ8:1593.[80]刘新利ꎬ李越中.黏细菌资源与埃博霉素研发[J].生物产业技术ꎬ2011(2):26-32.LiuXLꎬLiYZ.Myxobacteriaresourcesanddevelopmentofepothilone[J].Biotechnology&Businessꎬ2011(2):26-32(inChinese). [81]CaoPꎬWallD.Directvisualizationofamolecularhandshakethatgovernskinrecognitionandtissueformationinmyxobacteria[J].NatureCommunicationsꎬ2019ꎬ10(1):3073.[82]YuYTNꎬYuanXꎬVelicerGJ.AdaptiveevolutionofansRNAthatcontrolsMyxococcusdevelopment[J].Scienceꎬ2010ꎬ328(5981):993. [83]ReichenbachH.Myxobacteriaꎬproducersofnovelbioactivesubstances[J].JournalofIndustrialMicrobiologyandBiotechnologyꎬ2001ꎬ27(3):149-156.[84]WangJꎬHuWꎬLuxRꎬetal.NaturaltransformationofMyxococcusxanthus[J].JournalofBacteriologyꎬ2011ꎬ193(9):2122-2132.责任编辑:刘怡辰。
《农业生态工程》课程教学大纲Agriculture ecological engineering一、课程基本信息二、教学目标(一)知识目标。
学习农业工程的基本概念、理论,对当前生产中的各种农业模式进行认知、分析。
(二)能力目标。
在知识学习的基础上,能根据实际现状构建合适的农业工程模式,并分析不同模式间的差异和优缺点。
— 1 —(三)素质目标。
能综合所学的生态学、环境学、景观生态学及生物学知识,结合工程技术对农业生产过程中的问题进行分析、并提出解决方法和模式。
三、基本要求(一)了解农业生态工程的基本概念、理论及当前常用农业生态工程技术。
(二)理解农业生态工程相关技术和模式,并能根据现状和要求构建合适的农业生态工程模式。
(三)掌握各类农业生态工程技术的特点,学会针对不同农业生产确立合适的农业生产模式。
四、教学内容与学时分配第一章生态农业工程理论2学时第一节生态学与农业生态系统第二节生态农业工程的生态学原理第三节生态农业工程的工程学原理第四节生态农业工程经济学原理本章小结重点:农业生态系统、生态农业工程的生态学、工程学和经济学原理难点:生态农业工程的生态学、工程学和经济学原理思考题:如何理解生态农业工程?及本学科主要解决什么问题?作业:举例分析某一种生态农业工程的特点。
建议教学方法:板书第二章农学概论2学时第一节作物的生长发育与品质形成知识点:作物生长发育、产量构成与品种特征第二节种植制度知识点:轮作、套作、间作、免耕栽培等本章小结— 2 —重点:学习基本的农学概念,了解相关农艺措施。
难点:作物产量构成、种植制度第三章区域生态农业工程模式与技术2学时第一节不同层次生态农业工程模式与技术知识点:庭院、农场、村镇及区域生态农业工程模式与技术第二节生态农业工程与组装技术知识点:相关技术组装第三节农业区划及其资源、环境利用的生态模式知识点:农业生产与环境、资源的关系本章小结重点:不同层次下的工程模式与技术、技术的组装、环境和资源对技术的影响难点:技术的组装思考题:如何在一定的条件下确立相关的技术进行组装?作业:举例说明你所了解的某一层次上的技术模式。
副教授,生态学博士,南京农业大学风景园林系
系主任,江苏省文旅厅乡村旅游特邀专家。
近年来主
持并参与国家自然科学基金、农业部专项课题、中央
高校基本业务费重点课题等课题10余项,发表学术
论文30余篇,参与编写出版农业部十二五规划教材
《园林规划设计案例》。
主要研究方向:
(1)风景园林规划设计
(2)大地景观与生态修复
(3)风景园林小气候
(4)乡村景观规划
教学情况
校级教育教学改革研究:基于实践案例的《种植设计》教学方法改革研究,
先后8次教学质量评价优秀,2014、2016年度南京农业大学教学质量优秀奖,南京农
业大学社会实践优秀指导老师,南京农业大学大学生创新创业指导老师
科研项目:
1、绿色基础设施生态系统服务功能提升与生态安全格局构建(国家重点研发计划课题,
项目编号2017yfc0505705)
2、休闲旅游类城郊型生态农业建设综合技术集成与示范,(中央高校基本业务费重点
项目,编号KYLH201601)
3、特大型城市公园绿地的生态用地效率研究-以南京市为例,(国家自然科学基金青
年基金,项目编号3120053)
4、江苏省生态型土地整治试点项目,(江苏省国土资源厅项目,2018)
5、基于休闲创意农业的植物景观配置方法技术研究与应用。
(江苏农业科技自主创新
项目,项目编号cx(17)3025)
6、基于生态功能量提升的塔克拉玛干沙漠北缘城镇绿地生态网络构建——以第一师阿拉尔市为例,(中央高校基本业务费项目,南京农业大学-塔里木大学联合基金,编号KYLH201602)
7、基于微气候优化的城市滨江带状绿地生态功能定量研究,(南京市园林局项目,项目编号201603JH)
8、南京入江河道生态系统生态修复关键技术研究与示范,(南京市科技局项目,项目编号宁科201301083)
主要论文:
1、Jiaxing Wei, Jing Qian, Feng Hu and Weixin Ou. Evaluating Spatial Priority of Urban Green Infrastructure for Urban
Sustainability in Areas of Rapid Urbanization : A Case Study of Pukou in China. Sustainability.2018(1)
2、美丽乡村建设与农业遗产保护耦合发展研究.中国农史,2017(1)
3、多元主体的感知与行为逻辑:基于美丽乡村建设过程中规划认知的实证. 南京农业大学学报(社会科学版)2017(6)
6、城市边缘区居民就业、居住和服务空间区位选择——基于南京市桥北高新片区的实证分析.大连理工大学学报(社会科学版).2017(6)
4、浅析旅游经济开发视角下南京美丽乡村建设的成效与对策.湖南农业科学,2015(2)
5、我国环城绿带的发展:问题、对策与展望,中国城市林业,2017(7)
6、春夏秋三季不同类型植物群落的温湿度调节效应研究——以南京滨江公园为例,中国城市林业,2018(7)
7、基于中国知网的我国休闲观光农业发展区域差异研究.上海农业学报,2014(7)
8、旅游开发型美丽乡村绿地多功能耦合协调度研究——以南京市农家乐示范村为例.湖南农业科学,2016(7)
9、南京市旅游农业项目调研及优化策略. 江苏农业科学,2013,41( 1)
10、江苏省旅游农业园区建设现状及发展对策研究. 江苏农业科学,2012,(11)
11、基于城墙遗址保护的南京明外郭沿线地区环城绿带景观分析. 黑龙江农业科学,2016(7)
12、旅游开发型美丽乡村聚落景观的营造研究.湖南农业科学,2016(9)
社会服务情况:
1、基于举办第八届花博会的武进嘉泽花木产业提升重点工程项目规划设计
2、昆山锦溪白莲湖风情小镇规划
3、南京汤山翠谷概念规划
4、肥城山东兴润生态绿园规划设计
5、空中华西村屋顶花园设计
6、汇源集团山东肥城德汇田源循环经济示范园区(新乡村综合体)概念规划
7、安徽来安新乡村综合体概念规划
8、南京江宁谷里现代农业示范区总体规划
9、高淳东坝公园总体设计。