脱硫物料平衡水平衡计算培训教材
- 格式:pptx
- 大小:1.74 MB
- 文档页数:34
脱硫物料平衡水平衡计算引言脱硫是指对燃煤等含硫燃料进行处理,去除其中的硫化物,减少大气中的硫化物排放,减少空气污染。
在脱硫过程中,物料平衡是一个重要的参数,用于计算输入和输出的物料流量以及物料的组成。
本文将介绍脱硫物料平衡的计算方法,并给出一个示例。
脱硫物料平衡的基本原理脱硫过程中的物料平衡是根据质量守恒定律进行计算的。
假设脱硫系统中只有一个输入流和一个输出流,则物料平衡可以表示为以下公式:输入物料 = 输出物料其中,输入物料是指进入脱硫系统的物料流量和组成,输出物料是指离开脱硫系统的物料流量和组成。
脱硫物料平衡的计算方法脱硫物料平衡的计算包括以下几个步骤:1.确定输入流的物料流量和组成:根据实际情况,确定进入脱硫系统的物料流量和组成。
物料的组成可以通过化验等方法测定,一般以百分比的形式表示。
2.确定输出流的物料流量和组成:根据实际情况,确定离开脱硫系统的物料流量和组成。
与输入流相似,输出流的物料组成也以百分比的形式表示。
3.物料平衡计算:根据质量守恒定律,将输入物料和输出物料进行比较,并进行物料平衡计算。
物料平衡计算可以采用以下公式:输入物料 = 输出物料根据物料平衡公式,可以得到进一步的更具体的计算公式,如下所示:输入物料流量 × 输入物料组成 = 输出物料流量 × 输出物料组成根据该公式,可以计算出未知的物料流量或组成。
4.检查和修正:完成物料平衡计算后,应该对结果进行检查,确保计算的准确性。
如果有必要,可以对输入物料和输出物料的流量或组成进行修正,以满足物料平衡公式。
示例下面给出一个脱硫物料平衡的示例,以帮助读者更好地理解物料平衡的计算方法。
假设一个脱硫系统的输入流为500 kg,含硫量为3%;输出流的物料流量和组成未知。
我们需要计算输出流的物料流量和含硫量。
首先,根据已知条件可以得到:输入物料流量 = 500 kg,输入物料含硫量 = 3%然后,假设输出物料流量为X kg,输出物料含硫量为Y%。
1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
脱硫系统培训教材目录1.1脱硫岛的根本概念51.1.1 脱硫岛的构成及主要设备51.1.2 脱硫岛的原料和产品61.1.3 脱硫反响原理61.1.4 脱硫岛的设计原那么71.1.5 脱硫岛的关键控制参数:81.2设计的条件91.3性能指标111.4工艺流程图121.5总平面布置图122 分系统介绍122.1烟气系统122.1.1 系统简介122.1.2 主要设备132.2吸收塔系统182.2.1 系统简介182.2.2 反响原理212.2.3 影响SO2脱除效率和能耗的参数232.2.4 主要设备232.3石灰石浆液制备系统262.3.1 系统简介262.3.2 主要设备262.4石膏脱水系统282.4.1 概述282.4.2 吸收塔排出泵系统292.4.3 石膏一级脱水系统〔石膏旋流器〕292.4.4 石膏二级脱水系统292.4.5 废水旋流器302.4.6 主要设备302.5工艺水系统322.5.1 概述322.5.2 主要设备322.6排放系统332.6.1 概述332.6.2 主要设备342.7压缩空气系统352.8电气系统352.8.1 设计依据352.8.2 电气主接线352.8.3 电气设备布置与安装372.8.4 保护、测量及控制382.8.5 直流系统和UPS系统392.8.6 过电压与接地402.8.7 照明及检修系统412.8.8 电缆防火及阻燃412.8.9 通信系统422.9控制系统422.9.1 专业设计依据地技术规程、规422.9.2 烟气脱硫控制方式及控制水平422.9.3 脱硫控制系统的构造442.9.4 控制系统的可靠性452.9.5 热工自动化功能462.9.6 脱硫自动化设备选择512.9.7 脱硫车间的火灾报警522.9.8 电源和气源522.9.9 电缆及敷设522.9.10 脱硫岛工业电视监视系统533 运行组织533.1正常启动533.1.1 简介533.1.2 辅助系统533.1.3 吸收塔系统设备状态543.1.4 吸收塔在线状态553.1.5 氧化风机553.1.6 烟气系统563.2正常运行563.2.1 简介563.2.2 石灰石浆液供给563.2.3 吸收塔排放563.2.4 吸收塔液位573.2.5 循环泵573.2.6 吸收塔搅拌器573.2.7 氧化风机573.2.8 氧化空气喷水583.2.9 除雾器清洗系统583.2.10 工艺水泵583.2.11 工艺水箱583.2.12 滤液583.3正常停机593.3.1 简介593.3.2 FGD辅助系统的状态593.3.3 吸收塔区域排水坑593.3.4 吸收塔区设备状态593.3.5 吸收塔停运603.3.6 吸收塔排放613.4事故停运613.4.1 简介613.4.2 停电时FGD设备状态623.4.3 恢复供电时FGD设备的状态623.4.4 供电恢复时操作员的操作步骤〔长时间停电〕634 调试容644.1启动调试围及工程644.1.1 工艺专业644.1.2 电气专业654.1.3 热控专业654.1.4 化学专业664.2主要调试工作程序664.2.1 分部试运664.2.2 整套试运程序684.3FGD启动调试阶段主要控制节点及原那么性调试方案684.3.1 FGD 启动调试阶段主要控制节点694.3.2 主要节点调试方案要点691.1 脱硫岛的根本概念1.1.1 脱硫岛的构成及主要设备石灰石-石膏湿法脱硫系统是一个完整的工艺系统,主要分成以下几个分系统:烟气系统、SO吸收系统、氧化空气系统、石灰石浆液制备与供给系统、石2膏脱水系统、工艺水和冷却水系统、排放系统、效劳空气系统等。
1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
设计煤种校核煤种一、项目概况 、项目设计条件元素分析□□□□□□□□1)规模 2)燃料 75t/h煤3)脱硫工艺 石灰石-石膏湿法 4)吸收剂 石灰石 5)副产品石膏6)脱水系统真空皮带脱水机7)再加热方式:无8)烟气量 112000Nm3/h (湿基)x2(100%BMCR )9)FGD 入口温度135°C(设计),141°C(最大) 10)FGD 入口SO2浓度 40001m3(干基)11)FGD 入口粉尘浓度<200mg/Nm3(干基,6%02)12)FGD 出口温度(进烟囱)>50 13)除雾器出口含水量<75mg/Nm3(干基) 14)吸收剂耗量<7.8t/h15)工艺水消耗量<8.6t/h 16)副产品石膏含水量<15% 17)电力消耗<12700kWh/h18)脱硫效率>92% 19)系统可用率>95%5.1.2设计条件1)煤质分析2.1FGD 装置条件 项目 单位Car 59.95 65.71 Har2.252.36Oar%0.570.9Nar%0.940.74Sar% 2.29 2.29工业分析Var%9.07.0Aar%27.0320.0Mar%7.08.0Mad% 2.17 1.67低位发热量kj/kg2146524668100%BMCR燃煤消耗量t/h(每台134.89134.89炉)2)烟气设计条件项目单位100%BMCR35%BMCR FGD入口烟气流量Nm3/h(湿基)1256682517256 FGD入口烟气流量Nm3/h(干基)1193075492172 FGD入口烟气温度°C131103 FGD入口烟气压力Pa00粉尘浓度mg/Nm3180.5164.6 SO2浓度ppm(dry)17611652Nm3/h2101813烟气含水量Vol%(dry) 5.06 4.85烟气含氧量Vol%(dry)7.468.29 CO2Vol%(dry)12.2911.53 N2Vol%(dry)80.0780.01 HCL ppm(dry)25.223.0HF ppm(dry) 11.2 10.2资料确认注意事项:1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%02\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。